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Abstract—Two low-complexity effective detection schemes for multiple-
input–multiple-output (MIMO) systems based on post-equalization sub-
space search are proposed in this paper. With the initial solution given by
the linear detector, calibrated constellation search is conducted in symbol
subspace and eigenspace associated with the largest estimation errors in
linear detection to identify improved solutions. Complexity analysis is
performed to understand the cost of the proposed add-on procedures.
Simulation results demonstrate that the proposed schemes yield noticeable
performance gains over linear detectors at moderate additional computa-
tional cost.

Index Terms—Linear detection, low-complexity detection, multiple-
input–multiple-output (MIMO) systems.

I. INTRODUCTION

Multiple-input–multiple-output (MIMO) technology has the poten-
tial to greatly enhance the capacity of wireless cellular networks and/or
the reliability of data transmission through wireless media. It has been
adopted in advanced cellular systems such as Long Term Evolution
Advanced (LTE-A) [1]. To fully exploit the potential of MIMO, a
high-fidelity and low-complexity detection scheme at the receiving
end is needed. Maximum-likelihood (ML) detection is known to be
theoretically optimal but computationally infeasible in practice. While
various reduced-complexity optimal or near-optimal algorithms have
been proposed [2], [3], their worst-case complexity is still formidably
high for real-time implementation [4].

The well-known linear zero-forcing (ZF) and minimum-mean-
square-error (MMSE) detection presents an attractive low-complexity
option for practical use with suboptimal performance. Applications of
the ZF or MMSE criterion have been examined in many contexts, such
as sphere decoding [5], lattice-reduction-aided detection [6], succes-
sive interference cancellation (SIC)-based detection [7]–[9], reduced-
dimension ML search-based decoding [10], and iterative detection for
coded systems [11]. This work specifically deals with the standard ZF
or MMSE detector and augments it with a novel low-complexity add-
on procedure. We introduce the concept of post-equalization constella-
tion search for the augmentation, aiming to leverage the performance
of linear detection in well-conditioned channels and “correct” its errors
in ill-conditioned channels [12]. Constellation search is conducted in
sensibly selected signal subspaces after linear detection. Two novel
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algorithms that establish the “search-and-correct” procedure in symbol
subspace and eigenspace, respectively, are proposed. Performance
and complexity results demonstrate that the proposed schemes offer
notable performance advantage over conventional linear detectors. The
pros and cons of the two proposed algorithms in different MIMO
system settings are also discussed.

This paper is organized as follows: Section II defines the system
model and reviews linear detection. Our proposed methods are de-
scribed in Section III. Complexity evaluation of various detection
algorithms is conducted in Section IV. Numerical figures of the com-
plexity and the performance are demonstrated in Section V. Finally,
concluding remarks are given in Section VI.

II. SYSTEM DESCRIPTION AND REVIEW OF LINEAR DETECTION

A. System Model and Problem Description

We consider a MIMO transmission system with M transmit an-
tennas and N receive antennas (N ≥ M). Then, the baseband signal
model is given by

y = Hx̃ + n (1)

where y is the N × 1 received signal composed of M × 1 transmitted
signal x̃ passed through N × M flat-fading channel H and N × 1
perturbing noise vector n. Transmitted symbol vector x̃ contains
uncorrelated entries from the countably finite set of modulation con-
stellation points, denoted by S, and has zero mean and covariance
matrix σ2

xIM , where IM is the M × M identity matrix. Complex-
valued channel matrix H has independent and identically distributed
(i.i.d.) Gaussian entries with zero mean and covariance matrix σ2

HIN ,
where σ2

H = 1. The channel information is assumed perfectly known
to the receiver. Noise n is additive white Gaussian noise (AWGN)
with i.i.d. complex elements and has zero mean and covariance matrix
σ2

nIN .
Given the signal model in (1), ML detection is equivalent to solving

a constrained least-squares problem, i.e.,

x̃ML = arg min
x∈SM

Dx (2)

where Dx
Δ
= ‖y −Hx‖2 is the likelihood metric for some x given y

and H, and ‖ · ‖ is the l2-norm of a vector. ML detection is optimal
in the sense that it finds a solution that minimizes the error probabil-
ity given equally probable transmitted symbol vectors. However, its
search space quickly grows prohibitively large for moderate-sized M
and |S| for ML detection to be computationally feasible in practice,
where | · | denotes the cardinality of a set. As a result, some suboptimal
detection schemes with low complexity are useful in practical systems.

B. Linear ZF and MMSE Detection

Two commonly used suboptimal detection schemes with very low
complexity are ZF and MMSE detection. ZF detection performs linear
equalization on the received symbol vector y followed by entrywise
quantization (or slicing) to the closest constellation point. Its equal-
ization matrix is given by the Moore–Penrose pseudoinverse [13] of
H, i.e.,

GZF = (HHH)−1HH (3)
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where (·)−1 and (·)H denote matrix inverse and Hermitian matrix
transpose, respectively. It is assumed that H has full column rank.
Equalized symbol vector x̂ZF is given by

x̂ZF = GZFy = x̃ + ñ (4)

where ñ = GZFn. The ZF-detected symbol vector is x̃ZF = q(x̂ZF),
where q(·) denotes entrywise quantization.

MMSE detection follows the same procedure but with a different
equalization matrix, which was derived from minimizing mean-square
error E[‖Gy − x̃‖2] and given by [14]

GMMSE =

(
HHH +

σ2
n

σ2
x

IM

)−1

HH . (5)

It follows that the equalized symbol vector is

x̂MMSE = GMMSEy = x́ + ń (6)

where x́ = GMMSEHx̃, and ń = GMMSEn. The MMSE-detected
symbol vector is x̃MMSE = q(x̂MMSE). Note that, different from
ZF detection in (4), MMSE detection trades complete interference
nullification for the mitigation of noise enhancement in (6).

III. PROPOSED DETECTION ALGORITHMS

Equalization-based detection methods generally achieve signifi-
cantly lower computational complexity compared with ML detection
at the cost of suboptimal performance. To improve the performance
of equalization-based methods while still maintaining their low-
complexity advantage, we propose two efficient schemes that perform
intelligent post-equalization constellation search in symbol subspace
and eigenspace, respectively, without introducing a substantial com-
plexity increase. The proposed two schemes can work in conjunction
with ZF or MMSE detection, as individually described as follows.

A. ZF Detection Plus Symbol Subspace Search (ZF-SS)

The first proposed scheme is developed based on the observa-
tion that linear detectors provide satisfactory initial solutions for
well-conditioned channels, and thus, a reduced-dimension exhaustive
search in selected symbol subspace may correct symbol errors incurred
in linear equalization and yield a better solution. Specifically, this post-
equalization search is conducted in K-dimensional symbol subspace
(1 ≤ K ≤ M), and among the

(
M
K

)
possible subspaces, we choose

the one that corresponds to the K most error-prone symbols. If ZF
detection was employed, these are symbols with a low postdetection
signal-to-noise ratio (SNR), which, from (4), are symbols associated
with rows g

(i)
ZF of GZF that have large l2-norm. These K symbols in

x̃ZF are replaced by different combinations in S
K to identify improved

solutions. When K = M , this method is equivalent to ML detection;
therefore, for low-complexity considerations, usually, K = 1 or K =
2 is used. The ZF-SS algorithm is summarized as follows.

Algorithm I: ZF-SS(K)

Step 1) Calculate x̃ZF = [x̃1
ZF, . . . , x̃M

ZF]T and ‖g(i)
ZF‖, i = 1, . . . ,

M .
Step 2) Order elements of x̃ZF in descending order of

‖g(i)
ZF‖, resulting in x̃

(P )
ZF = [x̃i1

ZF, . . . , x̃iM
ZF ]T , where

i = [i1, . . . , iM ]T denotes the new indexing after ordering.
Step 3) Obtain the set of all search candidates ΨSS =

{[xi1 , . . . , xiK , x̃
iK+1
ZF , . . . , x̃iM

ZF ]T |∀[xi1 , . . . , xiK ]T ∈
S

K}.
Step 4) Output the solution x̃ZF-SS(K) = arg minx∈ΨSS Dx.

B. MMSE-SS

The ZF-SS approach translates to MMSE-SS with one twist. As
shown in (6), the MMSE-equalized symbol contains both interference
and noise, and thus, the signal-to-interference-plus-noise ratio rather
than the SNR should be considered in symbol selection. More specifi-
cally, first note that (6) can be rewritten as [8]

x̂MMSE = (HHH)−1HHy = GMMSEy (7)

where

H =

[
H

σn
σx

IM

]
y =

[
y

0M,1

]
. (8)

Then, symbols associated with rows g
(i)
MMSE of GMMSE that have

large l2-norm are selected for correction. As a result, replacing x̃ZF

by x̃MMSE and g
(i)
ZF by g

(i)
MMSE in Algorithm I gives the MMSE-SS

algorithm. Note that, since GMMSE comprises the first N columns of
GMMSE, selection based on rows of GMMSE is suboptimal.

C. ZF Detection Plus Eigenspace Search (ZF-ES)

The second proposed scheme conducts a similar post-equalization
search but in a different subspace. It is motivated by the fact that
the error covariance matrix for ZF detection, i.e., ΦZF = E[(x̂ZF −
x̃)(x̂ZF − x̃)H ], is equal to the covariance matrix of colored Gaussian
noise ñ, i.e., Rñ = σ2

n(HHH)−1. Since small eigenvalues of HHH
will lead to large estimation errors and the corresponding eigenvectors
align with directions where color noise ñ exhibits large variance,
a post-equalization search is initiated in the eigenspace constructed
by these eigenvectors to correct the most likely errors incurred in
linear detection due to noise perturbation. The detailed procedure is
described as follows.

1) Search Directions: To obtain the search directions, we first
perform singular value decomposition (SVD) on channel matrix
H, i.e.,

H = UΣVH (9)

where U and V are N × N and M × M unitary matrices, and Σ is
an N × M diagonal matrix with positive-valued singular values ς1 ≤
ς2 ≤ · · · ≤ ςM on the diagonal (since N ≥ M and H has full rank).
Then, substituting (9) into Rñ yields

Rñ = σ2
n(HHH)−1 = VΩ1V

H (10)

where Ω1 = σ2
n(ΣHΣ)−1 is an M × M diagonal matrix with

σ2
n/ς2

1 ≥ σ2
n/ς2

2 ≥ · · · ≥ σ2
n/ς2

M on the diagonal. Since the first few
columns of V, denoted by v1,v2, . . ., are eigenvectors that correspond
to large eigenvalues of Rñ, or equivalently, small eigenvalues of
HHH, they indicate the directions in which the proposed search is
conducted. Let L be the dimension (1 ≤ L ≤ M) and v1,v2, . . . ,vL

be the principal directions of the search. Then, ES with dimension L
is established in the M -dimensional symbol hyperspace in principal
directions v1,v2, . . . ,vL and their reverse directions away from ZF-
equalized symbol vector x̂ZF. An illustrative example for L = 2 is
shown in Fig. 1.

2) Search Steps: In each search direction, the search range is
chosen to cover the extent to which x̂ZF was (most likely) deviated
from x̃, and the search step size is chosen such that it is neither too
fine (unnecessarily higher complexity) nor too coarse (risk of skipping
constellation points). It turns out that a sensible choice of the search
step size is d, which is the distance between two nearest constellation
points in S, and a reasonable choice of the search range is one that
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Fig. 1. Illustration of the ES method. Each lattice point represents a possible
x in the M -dimensional hyperspace, with the unfilled one being the actually
transmitted symbol x̃. Concentric disks depict contour lines of the pdf of x̂ZF

and x̂MMSE, which are x̃ and x́ perturbed by colored Gaussian noise ñ and ń,
respectively. Searching away from x̂ZF and x̂MMSE in principal directions v1

and v2 and their reverse directions increases the chance of finding the actually
transmitted symbol x̃.

covers most of the noise power in each direction. More specifically,
the set of search steps along vi in relation to x̂ZF at the origin is
given by

Bi = {0,±d,±2d, . . . ,±αid}, i = 1, . . . , L (11)

where αi = �(3σn/ςi)/d�, and �·� is the ceiling function. That is, the
search range covers three standard deviations of the noise away from
the origin. Note that |B1| ≥ |B2| ≥ · · · ≥ |BL|.

As will be shown in Section V, L = 1 is observed to be sufficient
to yield satisfactory performance in the simulated MIMO settings
as additional dimensions contribute little performance gain at more
computational cost. The ZF-ES algorithm is summarized as follows.

Algorithm II: ZF-ES(L)

Step 1) Calculate x̂ZF and vi, ςi, i = 1, . . . , L.
Step 2) Obtain the set of search steps along vi, Bi, i = 1, . . . , L.
Step 3) Obtain the set of all search candidates ΨES = {q(x̂ZF +∑L

i=1
bivi)|∀bi ∈ Bi, i = 1, . . . , L}.

Step 4) Output the solution x̃ZF-ES(L) = arg minx∈ΨES Dx.

D. MMSE-ES

For the ES algorithm to work in conjunction with an MMSE
detector, first note that the error covariance matrix for MMSE de-
tection, i.e., ΦMMSE = E[(x̂MMSE − x̃)(x̂MMSE − x̃)H ], is given by
σ2

n(HHH + (σ2
n/σ2

x)IM )−1 [8]. Therefore, similar to ZF detection,
small eigenvalues of HHH will lead to large estimation errors in
MMSE detection. Moreover, the eigenvectors corresponding to small
eigenvalues of HHH align with directions where color noise ń
exhibits large variance, as the covariance matrix of ń is given by

Rń =σ2
n

(
HHH +

σ2
n

σ2
x

IM

)−1

HHH

(
HHH +

σ2
n

σ2
x

IM

)−H

=VΩ2V
H (12)

where Ω2 is an M × M diagonal matrix with σ2
nς2

i (ς2
i +

(σ2
n/σ2

x))−2, i = 1, . . . , M , on the diagonal. Comparing (10) and
(12), it is shown that the search directions for ZF-ES can be readopted
for MMSE-ES (as shown in Fig. 1), however, with a smaller search
range needed for MMSE-ES since ς2

i (ς2
i + (σ2

n/σ2
x))−2 ≤ ς−2

i . For

simplicity, we consider the same search range and steps for MMSE-
ES (which somewhat trades the complexity for performance). There-
fore, replacing x̂ZF by x̂MMSE in Algorithm II gives the MMSE-ES
algorithm.

IV. COMPLEXITY EVALUATION

Here, we evaluate the complexity of the proposed schemes. Since
the complexity of SS- and ES-based algorithms depends on the number
of search candidates (Step 3 in Algorithms I and II), we first examine
this quantity analytically and numerically in Section IV-A. Then, we
compare our proposed schemes with conventional linear detectors and
SIC-based BLAST schemes in terms of complex multiplications and
additions in Section IV-B.

A. Number of Search Candidates in SS and ES

It is straightforward to see that the number of search candidates
in ZF-SS and MMSE-SS is equal to |S|K . For ZF-ES and MMSE-
ES, however, it requires some analytical exposition. First note that
the number of search candidates for ZF-ES and MMSE-ES can be
approximated by

∏L

i=1
|Bi| if L dimensions were considered (we get

an upper bound by ignoring the fact that q(·) may take two distinct
search points to the same search candidate in ΨES, in Step 3 of
Algorithm II). Since the performance and complexity of the ES-based
schemes are dominated by the first dimension (see Section V), in the
following, we quantitatively examine |B1| and use the result as an
upper bound for other dimensions.

Since |B1| is a random variable that depends on H, we are inter-
ested in understanding its expected value averaged over all channel
realizations. From (11) and using the property of the ceiling function,
we directly have

|B1| < 6 ·
(

σn

d

)
· δ1 + 3 (13)

where δ1 = 1/ς1. Note that σn and d are fully determined by the
system setting and δ1 is a random variable that depends on the channel.
First, we analyze δ1 using the following result.

Theorem 1 [15]: Let W̃(m, m) be a Hermitian m × m random
matrix AAH , where A is an m × m random matrix with i.i.d.
elements whose real and imaginary parts are i.i.d. N (0, 1). Then,
the probability density function (pdf) of the smallest eigenvalue λmin

of W̃(m, m) is fλmin(x) = (m/2)e−(m/2)x, i.e., it is exponentially
distributed with parameter m/2.

In our system, HHH is a 1/(2M)W̃(M, M) matrix. Thus, ς2
1 ,

which is the smallest eigenvalue of HHH, is exponentially distributed
with pdf given by fς21

(x) = M2e−M2x, x ≥ 0. It follows that ς1 is

Rayleigh distributed with pdf fς1(x) = 2M2xe−M2x2
, x ≥ 0. Then,

the pdf of δ1 = 1/ς1 is derived by using the standard change-of-
variable procedure as fδ1(x) = (2M2/x3)e−(M2/x2), x > 0. After
some algebraic manipulations, it can be shown that E[δ1] = M

√
π.

Second, σn/d can be specified for different system settings after
noting that the SNR, i.e., ϑ, is defined as

ϑ =
E [‖Hx̃‖2]

E [‖n‖2]

=
E[x̃HHHHx̃]

E[nHn]
=

NMσ2
HE [(x̃i)2]

Nσ2
n

=
Mσ2

x

σ2
n

(14)

where x̃i is the ith element of x̃. With the bit energy of each
transmitted symbol normalized to 1, we can obtain σ2

x/d2 for different
modulations. Thus, σn/d can be represented in terms of M and ϑ for
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Fig. 2. Number of search candidates in the ZF-SS(1) and ZF-ES(1) algorithms
for 4 × 4 MIMO with 16-QAM and 64-QAM.

different modulations from (14). Collecting these results, and taking
expectation on both sides of (13) and substituting E[δ1] = M

√
π into

it, yield

E [|B1|] <

√
β

πM3

ϑ
+ 3 (15)

where β = 36(σ2
x/d2), which is equal to 18, 90, and 378 for

4-quadrature amplitude modulation (4-QAM), 16-QAM, and
64-QAM, respectively.

Fig. 2 shows the number of search candidates for ZF-SS and ZF-
ES algorithms for 4 × 4 MIMO with 16-QAM and 64-QAM. For
ZF-ES, both the analytical upper bound in (15) and numerical results
are shown. The results in Fig. 2 apply to MMSE versions of the
algorithms as well, as the number of search candidates does not depend
on the initial linear detector. As shown, the ZF-SS scheme has a
fixed number of search candidates, which proportionally increases
with the order of modulation. In comparison, the ZF-ES scheme has
fewer and varying number of search candidates, which moderately
increases with the order of modulation. These results suggest that
(without taking into account the complexity of other procedures of
each algorithm) ES-based algorithms are efficient for high SNRs
and high-order modulations, whereas SS-based algorithms are more
useful for low-order modulations. This will be further investigated
in Section V.

B. Complexity Comparisons

The overall computational complexity of our proposed algorithms in
comparison to conventional methods is evaluated here. For simplicity,
we consider an equal number of transmit and receive antennas, i.e.,
M = N . Since all processing is conducted on complex values as given
by the signal model in (1), all the calculations below refer to complex
operations.

The computations of ZF and MMSE detection in (4) and
(6) involve computing a matrix inverse and some matrix/vector
multiplications. We first compute HHH and HHH + (σ2

n/σ2
x)IM

by direct multiplications and accumulations, which require
(1/2)M3 + (1/2)M2 multiplications and (1/2)M3 − (1/2)M
additions, and (1/2)M3 + (1/2)M2 multiplications and
(1/2)M3 + (1/2)M additions, respectively. Then, we compute
the inverse of the two matrices by the efficient LDLH decomposition

method [7], which requires (1/2)M3 + (1/2)M2 − M
multiplications and (1/2)M3 − (1/2)M2 additions. Summing
up these numbers plus some additional computations required for
matrix/vector multiplications, the overall complexity of ZF and MMSE
detection is given by M3 + 3M2 − M multiplications and M3 +
(3/2)M2 − (5/2)M additions, and M3 + 3M2 − M multiplications
and M3 + (3/2)M2 − (3/2)M additions, respectively.

The overall complexity of the ZF-SS algorithm includes the com-
plexity of ZF detection, computing the l2-norm for rows of GZF (M2

multiplications and M2 − M additions), and computing Dx (M2 +
M multiplications and M2 + M − 1 additions) for each search can-
didate. Summing these up, the ZF-SS(K) algorithm requires M3 +
(|S|K + 4)M2 + (|S|K − 1)M multiplications and M3 + (|S|K +
(5/2))M2 + (|S|K − (7/2))M − |S|K additions. For MMSE-SS, the
complexity involves MMSE equalization based on (7) ((3/2)M3 +
(7/2)M2 − M multiplications and (3/2)M3 + 2M2 − (5/2)M ad-
ditions), calculating the l2-norm for rows of GMMSE (2M2 multipli-
cations and 2M2 − M additions), and computing Dx for each search
candidate. Overall, the MMSE-SS(K) algorithm requires (3/2)M3 +
(|S|K + (11/2))M2 + (|S|K − 1)M multiplications and (3/2)M3 +
(|S|K + 4)M2 + (|S|K − (7/2))M − |S|K additions.

The overall complexity of the ZF-ES algorithm, in general, includes
the complexity of ZF detection, performing SVD of H, and computing
Dx for each search candidate. The complexity of performing SVD
using the Golub–Reinsch algorithm to get Σ and V in (9) is 12M3,
which includes approximately equal numbers of multiplications and
additions [13]. If only 1-D ES was performed (L = 1), the power
method can be used to compute the dominant (largest) eigenvalue
and eigenvector of (HHH)−1 with lower complexity on the order of
O(4kM2 + 3kM) if k iterations are taken [16]. Therefore, the ZF-
ES(L), L > 1 algorithm requires 7M3 + (ρL + 3)M2 + (ρL − 1)M
multiplications and 7M3 + (ρL + (3/2))M2 + (ρL − (5/2))M −
ρL additions, where ρL = E[

∏L

i=1
|Bi|]. The ZF-ES(1) algorithm

requires M3 + (ρ1 + 5)M2 + (ρ1 + (1/2))M multiplications and
M3 + (ρ1 + (7/2))M2 + (ρ1 − 1)M − ρ1 additions, where we have
assumed equal numbers of multiplications and additions in the com-
plexity of the power method approximated by 4M2 + 3M . For the
MMSE-ES algorithm, note that the same power method can be ap-
plied on (HHH + (σ2

n/σ2
x)IM )−1 to obtain the dominant eigenvalue

and eigenvector that are needed. Therefore, simply by replacing ZF
with MMSE detection and reworking the complexity accordingly,
we obtain the computation counts: the MMSE-ES(L), L > 1 al-
gorithm requires 7M3 + (ρL + 3)M2 + (ρL − 1)M multiplications
and 7M3 + (ρL + (3/2))M2 + (ρL − (3/2))M − ρL additions, and
the MMSE-ES(1) algorithm requires M3 + (ρ1 + 5)M2 + (ρ1 +
(1/2))M multiplications and M3 + (ρ1 + (7/2))M2 + ρ1M − ρ1

additions.
The V-BLAST algorithm with optimal-ordered SIC detection

based on the ZF/MMSE criterion [17], termed ZF/MMSE-
BLAST in this paper, is an efficient low-complexity detec-
tion scheme adopted here for comparison with our proposed
methods. The complexity of the traditional MMSE-BLAST is
(43/12)M4 + (22/3)M3 + (65/12)M2 − (1/3)M multiplications
and (43/12)M4 + (20/3)M3 + (53/12)M2 − (5/3)M additions
[18].1 Table I summarizes the complexity results presented here.

1Improved algorithms to the traditional V-BLAST method exist, which
somewhat reduce these numbers, but the difference in the case of small numbers
of transmit and receive antennas (e.g., M = 4 or 8) is slight. See [18] for
details.
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TABLE I
COMPLEXITY COMPARISONS OF MIMO DETECTION SCHEMES IN TERMS OF NUMBER OF MULTIPLICATIONS AND ADDITIONS

Fig. 3. SER performance of MMSE-based MIMO detection schemes for 4 ×
4 MIMO with 16-QAM.

V. SIMULATION RESULTS AND DISCUSSIONS

Here, we present the performance and complexity of the considered
detection schemes for different system settings. The symbol-error-rate
(SER) performance is shown in Figs. 3–5 and the complexity is pre-
sented in Table II (in terms of floating-point operations or flops, where
one complex multiplication counts six flops and one complex addition
counts two flops). Since ZF- and MMSE-based schemes demonstrate
consistent comparison results in our extensive simulation, here, we
show only results for MMSE-based schemes. In Fig. 3, for a 4 × 4
MIMO system with 16-QAM, MMSE-ES(1), MMSE-ES(2), MMSE-
ES(4), and MMSE-SS(1) all demonstrate a comparable 4-dB gain over
the conventional MMSE detector at SER = 10−2, suggesting that the
use of additional dimensions in the ES method is not advantageous. In
particular, even with the use of maximal L = M = 4, the “distortion
effect” of the initial equalization that leads to degraded performance
and loss of diversity gain [12] can still only be partially mitigated by
post-equalization constellation search. MMSE-SS(2) has an 8-dB gain,
and MMSE-BLAST has a 12-dB gain over the MMSE detector. The
computational cost of MMSE-ES(1) is about twice of that of MMSE at
high SNRs, which is significantly lower than that of MMSE-BLAST.
The complexity of MMSE-SS quickly grows with each additional
search subspace and with the order of modulation, rendering it more
useful with K = 1 or K = 2 and for lower order modulations.

In Fig. 4, for a 4 × 4 MIMO system with 64-QAM, similar
performance gains are observed. However, the MMSE-SS scheme
loses its advantage in this case, as it is too computationally costly for

Fig. 4. SER performance of MMSE-based MIMO detection schemes for 4 ×
4 MIMO with 64-QAM.

Fig. 5. SER performance of MMSE-based MIMO detection schemes for 8 ×
8 MIMO with 16-QAM.

the performance gain it provides. In contrast, the MMSE-ES scheme
maintains its low complexity despite the higher order modulation.
Similar conclusions about MMSE-SS and MMSE-ES can be drawn
from Fig. 5 for an 8 × 8 system with 16-QAM. In this scenario,
a more significant performance loss is observed for MMSE and the
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TABLE II
COMPLEXITY COMPARISONS OF MIMO DETECTION SCHEMES IN TERMS OF NUMBER OF FLOPS FOR DIFFERENT SYSTEM SETTINGS

proposed schemes compared with optimal ML detection. MMSE-
ES(1) outperforms MMSE by about 4 dB at SER = 10−2, and similar
to previous scenarios, an increased search dimension does not pro-
vide an impressive performance gain for MMSE-ES. MMSE-BLAST
achieves a higher gain over MMSE in this larger system but also at a
higher complexity cost (about 30 times), as compared with that in a
smaller system.

The overall performance and complexity results suggest that the
proposed ES-based algorithms are particularly efficient for high op-
erating SNRs and higher order modulations, and SS-based algorithms
are useful for lower order modulations. In their suitable operating
scenarios, both ES- and SS-based algorithms present very useful low-
complexity options for MIMO detection.

VI. CONCLUSION

Two simple yet effective MIMO detection algorithms have been
proposed. The proposed method consists of two phases, namely,
standard linear detection and post-equalization constellation search
in selected subspaces. Two algorithms conducting informed search in
different subspaces associated with the largest estimation errors were
proposed and compared. The demonstrated simplicity, low complexity,
and performance make the proposed algorithms attractive for use in
next-generation cellular systems such as LTE-A.
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