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The Scalar Scheme for Reversible Information-
Embedding in Gray-Scale Signals: Capacity

Evaluation and Code Constructions
Sian-Jheng Lin and Wei-Ho Chung, Member, IEEE

Abstract—Reversible information-embedding (RIE) is a
technique transforming host signals and the message into the
stego-signals, and the stego-signals can be losslessly reversed to
the host signals and the message. We consider the conditions:
1) the host signals are composed of gray-scale independent and
identically distributed (i.i.d.) samples; 2) the mean squared error
is adopted as the measure of distortion; and 3) the procedure is a
scalar approach, i.e., the encoder only reads a host signal and then
outputs the corresponding stego-signal in each iteration. In this
paper, we propose an iterative algorithm to calculate the signal
transition probabilities approximating the optimal rate-distortion
bound. Then we propose an explicit implementation to embed a
message in an i.i.d. host sequence. The experiments show that the
proposed method closely approaches the expected rate-distortions
in i.i.d. gray-scale signals. By the image prediction model, the
proposed method can be applied to gray-scale images.

Index Terms—Arithmetic coding, gray-scale signals, rate-distor-
tion function, reversible information embedding, steganography.

NOMENCLATURE

For the host signal , stego-signal and embedded message
, the lowercase letters denote the realizations, and capital let-
ters denote random variables. The superscript , denotes
the sequence with length , and the subscript of , describes
the th signal in the sequence. The head notations denote the
decoded versions of the signals.

Length of host sequence.

Size of possible gray-scale signals.

Size of possible messages.

Set of integer
.

Entropy
of a

discrete random variable
.

Encoding function.

Decoding function.
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Distortion.

Embedding rate.

, , Probability mass functions (pmf)
of host signal, stego-signal and
transaction events.

, , Cumulative pmf of host signal,
stego-signal and transaction
events.

, Optimal rate-distortion
configurations for a given .

I. INTRODUCTION

I NFORMATION embedding is the art of writing secret mes-
sages in digital host files, such as images, videos and audios,

subject to a distortion constraint. The major utilities of infor-
mation embedding include the digital watermarking (copyright
protection) [1], authentication [2], and steganography [3]. The
fundamental theorems and theoretical bounds of information
embedding, in terms of the distortion level, embedding rate, ro-
bustness and detectability, have been formulated in recent liter-
ature [4]–[7]. Reversible information embedding (RIE) has the
property where the receiver can completely reconstruct the host
file from the received stego-signals [8], [9]. This property pro-
tects the sensitive host data, such as medical photographs or mil-
itary maps, and avoids the distortion derived from the embed-
ding process. For independent and identically distributed (i.i.d.)
host signals, Kalker and Willems [10] proved the fundamental
property of the embedding rate subject to an admissible distor-
tion. Certain generalized issues, such as partially RIE scheme
[11] and robust embedding [12], [13], have also been investi-
gated. Zhang et al. [22] provide a capacity-approaching code
for binary i.i.d. signals. Haroutunian et al. [14] analyzed the
error-exponent of the RIE system. Voloshynovskiy et al. [15]
provides the theoretical results of the partial reversibility under
the Gelfand-Pinsker formulation and Gaussian Costa setup. The
scenario of decoding with the partial information of host signals
is studied by Steinberg [16]. The models of multiple access and
broadcast channels are considered by Kotagiri et al. [17].
In many practical RIE methods for gray-scale images

[18]–[21], the curve of embedding rates versus PSNR distor-
tion measures is frequently adopted as the metric of merits.
Kalker and Willems [10] investigate the criteria of realizable
rate-distortion pairs for i.i.d. signals, and a coding scheme for
binary i.i.d. case is proposed. An improved version for the
binary i.i.d. case is proposed by Zhang et al. [22] to approach
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Fig. 1. Reversible noise-free information-embedding system.

the theoretical rate-distortion bound. However, the explicit
capacity-approaching codes for gray-scale i.i.d. case are not
being further investigated. The observations described here
motivate the problem setup of this paper. We consider the host
signals composed of i.i.d. gray-scale samples, and the metric
of distortion is the mean squared error (MSE). Based on the
results of [10], the considered embedding method is a scalar
scheme which sequentially processes the host signals.
The rest of this paper is organized as follows. Section II gives

the basic notations and definitions of the system. Section III
defines the scalar approach of the embedding scheme. In
Sections IV and V, we derive an equation for the optimal
rate-distortion bound and then propose an iterative algorithm to
evaluate the rate-distortion curve. In Section VI, we propose the
coding method to achieve the rate-distortion bound. Section VII
shows the experiments of the proposed algorithms. Section VIII
discusses several topics w.r.t. the proposed scheme. Section IX
concludes this work.

II. NOISE-FREE EMBEDDING SYSTEM

This section introduces the reversible noise-free embed-
ding by Kalker and Willems [10], [13] shown in Fig. 1. The
host sequence is composed of sam-
ples i.i.d. drawn from the probability mass function (pmf)

, where the set
is a finite set of integers modulo the integer . The random
variable denotes the message uniformly distributed in

. The encoder produces a stego-se-
quence through an injective function

to write the message in the host se-
quence , so that the decoder can losslessly reconstruct the
message and the host sequence through the inverse
function , where and .
The stego-sequence is required to be as close as possible to the
host sequence according to a distortion metric expressed as

(1)

where the distortion measure is defined as

(2)

The condition of lossless reversible
provides the upper bound of em-

bedding rate , in bits per signal, expressed as

(3)

Let denote an realizable rate-distortion pair for the re-
versible noise-free embedding system. We define the random

variables and with .
For , [10, Th. 1] proves a useful property that

and (4)

where the maximum is over all possible configurations of the
joint pmf .

III. SCALAR EMBEDDING SCHEME WITH SQUARE
ERROR DISTORTION

In the proposed scheme, the distortion metric in (2) is defined
as the square error distortion

(5)

It is noted that we discuss other distortion metrics in
Section VII-B. We consider the scheme which decomposes
the embedding function into sub-functions

, for , where the
random variable represents the information required to be
embedded in the unprocessed host signals .
The initialization is given by , and the termination
condition occurs when the information of
the message is completely embedded in the stego-sequence.
The condition of lossless reversibility gives the property

. In other
words, the encoder embeds a portion of the message into each
host signal to produce the corresponding stego-signal at each
step. The decoder transforms the into and in reverse
order through the decoding function ,
for to 1.
The previous conditions provide the property that the stego-

sequence achieving the optimal rate-distortion performance
are composed of gray-scale i.i.d. samples. Each pair
is required to be mutually independent
to prevent the redundant information in . For any two
stego-signals and , , we have ,
and

where and are shown to be independent and identically
distributed. In the following, for simplicity of presentation, we
omit the subscripts of the stego-signal and host signal.
The pmf of the stego-signal is defined as

, and the probabilities of transition
events is defined as the joint pmf

. The embedding
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Fig. 2. Diagram showing relations of , and with intervals.

rate and the average distortion are formulated as

(6)

(7)

It is noted that is given by the host sequence, and the and
are determined by the applied encoder. For a given pmf

, the rate-distortion function gives the bound of embedding
rate upon a specific average distortion .
The optimality of the scalar scheme is investigated as fol-

lows. The theoretical conditions for the reversible noise-free
embedding system are given in (4). We can observe that (4) is
identical to the scalar scheme (6)–(7). Thus, for each optimal
rate-distortion pair of the reversible noise-free embed-
ding system, there exists a configuration of the scalar scheme to
achieve the rate-distortion performance.

IV. RATE-DISTORTION OPTIMIZATION

The embedding rate versus the average distortion can be for-
mulated as an optimization problem:

Maximize

(8)

(9)

(10)

(11)

where is a constant. To
simplify the notations in the following, we define

(12)

Lemma 1: Assume maximizes (8) subject to the con-
straints (9)–(11). For any and
where , we have

and (13)

Proof: We attempt to solve the with the KKT condi-
tions. Since is optimal, there exists the values ,
and such that

(14)

(15)

(16)

Because of and , we have
by (15), and

(17)

Equation (16) gives and . By (14) and
(17), we prove the (13)

Lemma 1 supports the crossing-edges property proven by
Willems et al. [26]. The proof of crossing-edges property is in
[26, Cor. 1]. We give another proof as follows.
Corollary 1 (Crossing-Edges Property): Given an op-

timal , for any two distinct possible transaction events
and with , then the

holds.
Proof: By Lemma 1, we have

(18)

Thus, the inequality holds.
Corollary 1 provides the graphical representation of the pmfs
, , and with intervals shown in Fig. 2. The interval
is divided into several subintervals according to the ele-

ments in cumulative pmfs and , where
and

. It is noted that , and
. The widths of intervals and

, respectively, represent the probabilities of
events and . For each interval for overlapping
the interval for , the width of the overlapped range deter-
mines the probability of the transition event ,



1158 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 7, NO. 4, AUGUST 2012

expressed as
. Fig. 2 visually depicts the values of pmf

under the given and , so we only need to compute the
values of in the proposed algorithm.
Lemma 2: Assume achieves the optimal rate-distor-

tion for a given , where the is the cumulative pmf of
stego-signal and is a constant. For to ,
each satisfies one of the two conditions:

(19)

(20)

Proof: For the case , as shown
in Fig. 2, the two transactions and

are possible. By Lemma 1

and

(21)

The coefficient is substituted in (21) to obtain (19). By
crossing-edges property [26], for each , we have

(22)

Therefore, supposing , we can
iteratively substitute (21) with sequentially increasing the value
to find the which is between and .
The case is discussed as follows.

Under the condition , (21)
returns the larger than . Under the condi-
tion , (21) returns the
smaller than . Summarizing, the is “squeezed”
at . Based on the circumstances described
previously, (20) can be calculated by

(23)

Then lemma (19)–(20) is therefore proven.
User can control the parameter in (19)–(20) for various

rate-distortion pairs. The case admits the uniform dis-
tribution performing the max-
imal capacity, and another case admits

generating a unvaried stego-sequence without
embedding information. When decreases from infinity to 1,
the embedding rate increases from zero to maximum, but the
stego-sequence changes from an unaltered version to a uniform
random sequence.
1) Example 1: For a binary i.i.d. sequence, the optimal

satisfies

if and

if and

otherwise;

where the constant corresponds to various embed-
ding rates and distortions. The rate-distortion pair is therefore

, .
2) Example 2: For a constant sequence , the

optimal is ,
. For example, if and , we have

.
The embedding rate and the average distortion are ,
and .

V. ITERATIVE METHOD TO CALCULATE PMF OF
STEGO-SIGNALS

Except certain simple examples shown in Examples 1 and 2, it
is difficult to obtain the closed form of the through Lemma 2.
Thus, an iterative algorithm is designed to approach the unique
solution of through (19)–(20). In Algorithm 1, each tem-
poral value of is stored in the variable , and the value
is iteratively updated to approach the desired solution.

Algorithm 1: The iterative algorithm of calculating the pmf
of stego-signals.

Input: The cumulative pmf , a real number , and the
tolerance value .

Output: The cumulative pmf .

1) Given an initial set
to . It is noted that the user can design an arbitrary

initialization as long as .
Declare the variable .

2) For from 0 to , update each through
if there exists

,

if there exists

(24)
After finding the new value , we record the maximal
offset by

(25)
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3) For from to 0, update each through (24) and
record the maximal offset (25).

4) If , set and then go to step 2); otherwise,
output .

By observing (24), it can be shown that for any values of
and , there always exists a unique in .
Algorithm 1 updates each in alternating forward and back-
ward manner, which achieves faster convergence than updating
in one-way manner. We briefly explain the potential problem
of calculating each only in the forward direction. Suppose

being the fixed point to
be achieved, and for a bad initialization

, since
each is bounded in the two nearby elements , the
values are still smaller than after an iter-
ation. This phenomenon slows down the speed of convergence,
but Algorithm 1 can properly deal with the case by iteratively
reversing the order of updating each . Lemma 4 proves the
uniqueness of the iterative algorithm.
Lemma 4: After each iteration in Algorithm 1, the set

converges to an unique optimal
solution.

Proof: We only prove the convergence of the forward
manner (Step 2) by the Banach fixed point theorem [23],
since the proof of the backward manner is similar by re-
versing the calculation order. Let a -dimensional space

denote the domain of , and for each ,
. Thus, each feasible can

be assigned to an element of . We define the distance
function as the infinity norm

(26)

Thus, the constructs a complete metric space. For
and , given any two elements , the updated

elements through updating
(24) reformulated as

if there exists
,

if there exists

.
(27)

The Banach fixed point theorem claims that if

(28)

for a constant and , there exists a unique
fixed point of the iteration algorithm. Before proving (28), we
first prove the following inequality by mathematical induction:

for to (29)

For the base case , the statement (29) holds
. Assume (29) holds for , i.e.,

(30)
and then for .

Case 1: For the case , we have
satisfying (29).

Case 2: For the case , there exist two unique
constants and such that ,

and . By (27)

(31)

Case 3: For the case , there exist two unique
constants and such that ,

and . By (27)

(32)

By (31) and (32) and the assumption (30), we proved that
(29) holds for in (33), as shown at the bottom of the
next page. Thus, (29) holds. Then condition (28) is proven
by (29) as

(34)
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and then we have .
Therefore, the in Algo-
rithm 1 converges to the unique fixed point. Lemma 2 gives
the condition that the optimal must satisfy (19)–(20),
and we had proven that in Algorithm 1 converges to the
unique solution, so the unique solution is optimal.

VI. IMPLEMENTATION METHOD

In this section, we propose a coding method to embed the
message into the host sequence by the given cumu-
lative pmfs and . The proposed coding method adopts
four variables and to
store the temporal information during the coding process. The
space interval identifies the space of the possible code
values, and the information can be interpreted as an arbitrary
code value within the code interval . The coding frame-
work is similar to the arithmetic coding [24], [25], but we do not
restrict the space interval to .We can linearly trans-
form the code space to another ,
where and

. In the following, the
and , respectively, represent the values of host signal and the
stego-signal at the position in the sequences.

A. Model

The model follows the design shown in Fig. 2. The encoder
maintains two values , to
interpret the joint information of the host signal and the
temporal information produced at the last step. At the initializa-
tion, the vector represents
the information of the first host signal. At the th step, the
encoder transforms the vector and the next host

to the stego-signal and the next vector ,
expressed as . First, we
need to find the possible within the interval , then

iff
. Second, for the case ,

the stego-signal is determined. The destines
the interval , which is larger than

, so the decoder needs more information, expressed as

Fig. 3. Four cases of updating and in encoding. (a) Case
and . (b) Case and

. (c) Case and . (d) Case
and .

the information vector ,
for lossless decoding. The next host signal des-
tines the , and we scale the in-
formation vector to to obtain

, where

(35)
Then we proceed to process the next host signal. The graphical
diagram of this case is shown in Fig. 3(a).
For another case , the has several

possible values corresponding to each interval of
. The adaptive

arithmetic decoding is applied on the binary represen-
tation of message to determine the value . To fit
the usage requirement of the arithmetic coding, the two
ends of the vector are scaled to 0 and 1, resulting in

(33)
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where

(36)

The arithmetic decoder determines the value , and the cor-
responding residual information depends on the values
discussed as follows. For the case ,
the is in the , so we do not
have the residual information. As shown in Fig. 3(b), the
updated vector is
representing the next host signal. For the case ,
the residual information is interpreted as the vector

, which is scaled into
the to obtain the updated vector

shown in
Fig. 3(c). For the case , the residual information is in-
terpreted as the vector ,
which is scaled into the to ob-
tain the updated vector

shown in Fig. 3(d). By observing the four
cases shown in Fig. 3, we summarize the updating step as

and

(37)

At the final step, there is no next host signal, and after desig-
nating the the encoder sends out a prefix-free code value

with minimal code length,
where

(38)

The decoding process consists of two processes: The host-se-
quence decoder reads the received stego-sequence in a back-
ward manner, to produce the host sequence and the message
decoder extracts the message through simulating the encoding
steps. The host-sequence decoder transforms the stego-signal
into the host signal by maintaining a real number

at the th step. The initialization is given
as , where

(39)

Equation (39) is the inverse function of (38) by fixing the vari-
able , so . At the th step, the
decoder determines the host value under

and then calculates where

(40)
It is noted that (40) is the inverse function of (35) by fixing
the two variables , . Thus, the host-sequence decoder can
losslessly reconstruct the host sequence in reverse order.
The message decoder simulates the encoding steps upon the

decoded version of host signals and the chosen indices of
the arithmetic decoder are recognized by the stego-signals.
The message is reconstructed by the adaptive arithmetic
encoding. The decoder initializes the vector

. At the th step, the decoder determines
the , satisfying

; for the case , we have
and ,

and then go to process the next signal. For another case
, the adaptive arithmetic encoding is applied;

in the interval , the interval for is the chosen
index of the arithmetic decoder in the encoding process, so
we input the scaled interval, expressed as

, to the adap-
tive arithmetic encoder. The updated is calcu-
lated through (37), and then we process the next signal until
finishing the decoding.
Within the context of binary i.i.d. sequence, it is noted that the

proposed model is similar to the recursive reversible code [10].
In recursive reversible code, the host sequence is segmented
into disjoint sectors with length . At the th step, the message
is embedded in the th segment , resulting in the stego

sector and the information needed to reconstruct . The
recursive reversible code recursively embeds the reconstruction
information in the next segment . We observe that the theo-
retical rate-distortion bound of the proposed codes is identical to
the recursive reversible code by comparing Example 1 and [10,
Th. 2] for the binary signals. However, [10] does not clearly
address the code constructions for ray-scale case, so the pro-
posed codes can be viewed as a practical version of recursive
reversible code [10] for gray-scale signals. Another difference
is that the proposed codes can be viewed as another version of
recursive construction by setting the segment length to be equal
to 1.

B. Implementation With Integer Arithmetic

It is computationally unfeasible to maintain and with
infinite precision real numbers, so the proposed feasible algo-
rithm adopts the -bit integer arithmetic to implement the
and . The and denote the fractional parts of and

with -bit integers. Then (35) is reformulated as

(41)

After designating the stego-signal , the formulas of next
boundaries are expressed as

(42)
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At the final step, the encoder sends out a prefix-free code

with bits, where

(43)

is reformulated from (38). The number of fractional bits
affects the performance and efficiency of the algorithm. If
is a constant during the encoding, the encoding may suffer the
computational precision problem in certain special cases. For
example, (41) gives the inequality

, and if a long
period of encoding steps has the property

, the gradually approaches the until
the two values coincide, and the further encoding is impossible.
Thus, the encoder dynamically adjusts the number of fractional
bits to fit the condition during
the encoding process, where is a user-defined constant in-
teger. Algorithm 2 shows the proposed encoder. In Algorithm
2, we use the notations , and ;
the instruction denotes applying the
adaptive arithmetic coding decoder on the ; and the instruc-
tion DecodeNextSymbol(symbols, intervals) outputs a signal of
the vector symbolswith decoding the , where each element in
the vector symbols respectively corresponds to an interval of the
vector . Line 24 of Algorithm 2 records
the maximal number of fractional bits to facilitate decoding.

Algorithm 2: The encoder.

Input: The host sequence , the binary sequence , and the
cumulative pmfs and .

Output: The stego sequence , an integer , and a binary
float .

1.
2.
3. , and
4.
5. for to do
6. Determine and under

and .
7. if then
8.
9. , and

10. else
11.

12.
13.

14. if then
15. , and
16. else if then
17. , and

18. else if then
19. , and

20. end if
21. end if
22.
23. , , and
24.
25. end for
26. Determine and under and

and .
27. if then
28.
29. and
30. else
31.

32.
33.
34. if then
35. , and
36. else if then
37. , and
38. else if then
39. , and
40. end if
41. end if
42. Send out a prefix-free code word

of .

Transmitting the side information and is an extra over-
head for the proposed algorithm. The two constants
and can be truncated to reduce the transmission
size, and other are individually coded with -bit frac-
tional numbers, so storing requires bits, similarly
for . Thus, the total bits are required. Another
strategy is to only transfer , and the decoder side generates
the with Algorithm 1 by synchronizing the initialization and
the stop criterion at encoder and decoder sides. This strategy
consumes bits to transmit , but the decoder side
requires the computational cost to run Algorithm 1.
Algorithm 3–1 shows the procedure of decoding the host se-

quence. We define the digit to express the fractional parts
of with a -bits integer. Equation (40) is reformulated as

(44)

Algorithm 3–1: The host-sequence decoder.

Input: The stego-sequence , an integer , a binary code
word , and the cumulative pmfs , .

Output: The host sequence .

1.
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2. Determine the under .

3. for to 1 do

4.

5. Determine the under .

6. end for

The initialization is given as where

(45)

Lemma 5 proves that is always within
at each decoding step, so the Al-

gorithm 3–1 can correctly decode the host sequence.
Lemma 5: Each calculated by (44) must satisfy

(46)

Proof: For , by Line 26–42 of Algorithm 2, we have

(47)

Substituting (47) in (43), we have

(48)

Thus, (46) holds for . Assume the inequality holds for
, i.e.,
. For , we first prove the left inequality of (46).

By (44) and the assumption, we have

(49)

By (42) and (41), the lower bound of is given by

(50)

The left inequality of (46) is proved by substituting the term
in (49) with (50). Then we have

(51)

For the right inequality of (46), by (44), we have

(52)

By (42), the upper bound of is

(53)

The right inequality of (46) is proved by substituting the term
in (52) with (53). Then we have

(54)

Algorithm 3–2 gives the message decoder. The en-
coding intervals are identified by simulating the encoding
steps and the corresponding stego-signals. The instruction
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denotes that the adaptive arith-
metic coding encodes the given interval , and
the outputs the encoded sequence.

Algorithm 3–2: The message decoder.

Input: The decoded host sequence , the stego-sequence
, and the cumulative pmfs and .

Output: The binary representation message .

1.
2. , and
3. for to do
4. Determine and under

and .
5. if then
6. , and

7. else
8.
9.
10.
11. if then
12. , and
13. else if then
14. , and
15. else if then
16. , and

17. end if
18. end if
19.
20. , , and
21. end for
22. Determine and under

and .
23. if then
24.
25.
26.
27. end if
28.

VII. EXPERIMENTS

A. Experiments for i.i.d. Sequence

Fig. 4 shows the results of the purposed algorithms for the
host sequences drawn from discrete normal distributions. The
host signals are 8-bit gray-scale with , and the mean
of the normal distribution is at 127.5. Fig. 4(a) illustrates the
pmf of the host signal for the variance , and the pmfs
of the corresponding stego-signals by applying Algorithm 1,
for and . In our implementation of Al-
gorithm 1, the variable is stored with a 52-bits fractional
number, and the tolerance value is set to zero; i.e., the output
pmf is a fixed point on the 52-bits fractional number space.
For , the embedding rate is 0.222 bits per pixel (bpp),

Fig. 4. Demonstrations for host sequences drawn from normal distributions.
(a) The pmf of the host signal versus pmfs of the corresponding stego-signal
for various . (b) Rate-distortion curves of the given normal distributions for
various variances , and rate-distortion values of implementation codes.

and the mean squared error (MSE) is 7.278; for ,
the embedding rate is 0.992 bpp, and the MSE is 250.396; for

, the embedding rate is 1.871 bpp, and the MSE is
2165.611. Fig. 4(a) shows that with the value of approaching
1 from the right, the pmfs regress to uniform distribution,
so that the embedding rate and the distortion are both increased.
Fig. 4(b) shows the rate-distortion curves for the pmfs with
variances , where the is used in Algorithm 2. The
dotted line, solid line and dashed line, respectively, depict the
expected rate-distortion curves for , and .
We implement Algorithm 2 with to embed the mes-
sage in 65 536 host signals for each corresponding pmf and
, and the rate-distortion values are respectively marked as

squares, crosses and triangles in Fig. 4(b). It is shown that the
performance of the proposed algorithm is very close to the ex-
pected rate-distortion bound.
Fig. 5 shows another result of the proposed algorithms for the

host sequences drawn from discrete Laplace distributions. The
host signals are also stored with 8-bit gray-scales, and the mean
of the Laplace distribution is at 127.5. Fig. 5(a) illustrates the
pmfs of the host signals for the scale parameter , and the
pmfs of the corresponding stego-signals by using Algorithm 1.
For and , the embedding rate and the
MSE are respectively shown as (0.172, 5.528), (0.766, 196.323)
and (1.489, 1784.877). Fig. 5(b) illustrates the rate-distortion
curves for the pmfs with various scale parameters . For

, and , the dotted line, solid line and dashed
line respectively depict the expected rate-distortion curves; and
the squares, crosses and triangles respectively mark the rate-
distortion values of the codes with implementing Algorithm 2
on 65 536 host signals.



LIN AND CHUNG: SCALAR SCHEME FOR REVERSIBLE INFORMATION-EMBEDDING IN GRAY-SCALE SIGNALS 1165

Fig. 5. Demonstrations for host sequences drawn from Laplace distributions.
(a) The pmf of host sequence versus pmfs of stego-sequences for various .
(b) Rate-distortion curves of given Laplace distributions corresponding to var-
ious scalar parameter , and rate-distortion values of implementation codes.

B. Reversible Information Embedding for Gray-Scale Images

We present a method to apply the proposed coding scheme
to gray-scale images. To reduce the correlations of the neigh-
boring image pixels, we preprocess the host image with pre-
dictive coding and then embed the message in the difference
map. The predictive coding processes the host pixels from left
to right, and from top to bottom. Fig. 6(a) depicts the four neigh-
boring pixels used for predicting the pixel . The predicted
value is defined as

(55)

For the pixels at rightmost column and bottom line, we pick the
nearby pixel, i.e., or , as the predicted value. The predictive
coding omits the bottom-right corner pixel. Then we have the
differenced values defined as

(56)

The message is embedded in the differenced values by applying
the embedding scheme (Algorithm 1 andAlgorithm 2), resulting
in a stego-sequence. For each stego-value in the stego-se-
quence, the corresponding pixel of the watermarked image is
defined as

(57)

We observe that

Fig. 6. Proposed scheme applied to gray-scale images. (a) Four neighboring
pixels adopted in predictor. (b) Host image Lena. (c) Comparisons with Thodi
and Rodriguez [21]. (d) Rate-distortion curve of the proposed scheme for larger
embedding rate.

The event usually occurs while is quite

close to . Thus, the distortion is almost dominated by the
given in the embedding scheme.
In decoding, we first decode the host image in the reverse

order from right-to-left, and bottom-to-top. Similar to the
host-sequence decoder (Algorithm 3–1), the host image de-
coder maintains a variable by transforming the stego-value
to the differenced value . Consider the step of decoding

shown in Fig. 6(a), the four neighboring host pixels , , ,
had been decoded by the previous decoding steps. Therefore

we have the predicted value through (55). By reversing (57),
we have the stego-value

(58)

Then the decoder enters the host-sequence decoder mode. The
value of is updated by (44) , and then
we determine the difference value under
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. Then by reversing (56), the host value is calculated
through

(59)

After decoding the host image, the message can be extracted
from the obtained difference values with Algorithm 3–2. We
compare the above method with the histogram shifting method
[21] proposed by Thodi and Rodriguez. Fig. 6(b) shows the test
image Lena, and Fig. 6(c) draws the rate-distortion curves of
[21] and the proposed RIE. Furthermore, the proposed RIE is
capable of larger embedding rates shown in Fig. 6(d).

VIII. DISCUSSION

A. Coding Scheme With Other Distortion Metrics

The square error distortion is the adopted distortion metric in
the paper. For other distortion metrics, in order to efficiently
obtain the optimal and through iterative algorithm,
the adopted distortion metric should follow the crossing-edges
property shown in Corollary 1, where, for and
, the distortion metric must satisfy the inequality

. One example is to replace
the with L1-Norm .

B. Hiding Efficiency of the Proposed Coding Scheme

The proposed coding scheme consists of computation and
the practical coding algorithm. There are two major factors de-
creasing the efficiency of the proposed scheme: 1) The accu-
racy of the computed and 2) the efficiency lost in the en-
coding process. For the first factor, the iterative method up-
dates the by using the two nearby elements
and . If the nearby element is incorrect due to the
machine precisions, the precision error will influence the up-
dating. In our experiments, for a given , if the in Algo-
rithm 1 is stored with finite precision fractional numbers, it is
still feasible to obtain different outputs from differential initial-
izations, even though the tolerance value is set to zero. For
the second factor, the practical algorithm cannot store the real
interval due to the machine precision. Suppose that

is the precise value during encoding, Algorithm 2 main-
tains the variables , and with
length . Thus, the interval is slightly narrower than the
original interval, which will slightly decrease the capacity of the
coding algorithm. The two major factors come from the preci-
sions of the computing machines, and therefore the strategy to
improve the efficiency is to increase the calculating precisions.
With the theoretical machine with near-infinite precisions, we
conjecture that the proposed codes can almost approach the the-
oretical rate-distortion bound.

IX. CONCLUSION

In this paper, we proposed a near optimal coding method for
the scalar approach of RIE on i.i.d. gray-scale signals. First,
we show that the pmfs for host signal and stego-signal can be
separately represented by the intervals within 0 and 1, and the

overlapping intervals represent the joint pmfs. We formulate the
pmf of stego-signal achieving the optimal rate-distortion perfor-
mance. Second, we propose an iterative algorithm to calculate
the pmf of stego-signal, and we also prove that the iterative algo-
rithm approaches the unique optimal solution. Third, based on
the result of the iterative algorithm, a coding scheme is proposed
to embed a message in the i.i.d. host sequence. The experiments
show that the proposed coding scheme closely achieves the ex-
pected rate-distortion performance, and the coding scheme can
be applied to gray-scale images.
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