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Abstract—In the mobile orthogonal frequency-division multi-
plexing (OFDM) systems, a frequency-domain channel matrix
represents the same-carrier channel frequency response (CFR)
in the diagonal and inter-carrier interference (ICI) between
the subcarriers in the off-diagonals, respectively. A variety of
the banded equalizers manipulated the banded approximation
of the channel matrix to be exploited by the low-complexity
equalizations. In this paper, we derive a simple and tight lower
bound on the variance of the individual coefficients in the
channel matrix for insights of the banded approximations. We
obtain the errors introduced with the banded approximation
and the ICI-mitigation gains of the banded equalizers in simple
closed forms. The derivations of the banded approximation
errors are beneficially applicable to the equalizers that perform
the minimum mean square error (MMSE) estimation with the
banded channel matrix. Simulations show that both the block
MMSE banded equalizers and the block turbo MMSE banded
equalizers significantly reduce the error floors by considering the
banded approximation errors.

Index Terms—Orthogonal frequency-division multiplexing
(OFDM), inter-carrier interference (ICI), banded approximation.

I. INTRODUCTION

Orthogonal frequency-division multiplexing (OFDM) is one
of the effective transmission schemes and is widely used in
many standards such as DVB-T/H, DAB, IEEE 802.11 and
802.16, etc. In a time-invariant frequency-selective channel,
OFDM can eliminate inter-symbol interference (ISI) and ren-
der simple one-tap equalization for each subcarrier [1]. In a
time-variant channel, the OFDM subcarriers are coupled with
inter-carrier interference (ICI) since the orthogonality among
OFDM subcarriers is destroyed by Doppler spreads. The
one-tap equalization becomes suboptimal in Doppler-affected
channels [2]. As a consequence, more powerful equalization
with ICI suppression is required for mobile OFDM systems.

A variety of techniques have been proposed to counter-
act the ICI introduced with the Doppler spreads in mobile
OFDM systems. Most of these techniques [3]–[20] employed
a frequency-domain channel matrix H of a size of N × N
to describe the interactions among N subcarriers. A diagonal
entry in the channel matrix, denoted as [H]a,a, represents
the channel frequency response (CFR) on ath subcarrier. In
addition, an arbitrary off-diagonal entry, denoted as [H]a,b,
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records the ICI fraction which the signal for bth subcarrier
imposes on ath subcarrier [21]. Although the channel matrix
provides an explicit structure to interpret the CFRs and the ICI
fractions distributed in N2 pairs of the subcarriers, handling
the channel matrix entails significant increase in complex-
ity. Consequently, varieties of recent works [8]–[20] for the
channel estimation and the equalization of mobile OFDM
systems have been proposed to manipulate the channel matrix
in linear complexity. These works often employed the banded
approximation of the channel matrix.

The banded approximation of the channel matrix is based
on the property where most ICI power spreads within a few
adjacent subcarriers. Therefore, in the channel matrix, the
entries corresponding to the ICI fractions relating two distant
subcarriers are considered as insignificant and negligible. Con-
sidering the ICI power coming within Qth adjacent subcarriers,
we manipulate a Qth banded approximation on the channel
matrix. As a result, the channel matrix is approximated by the
banded matrix that retains the coefficients in the 2Q+1 central
diagonals and sets the other coefficients to zeros.

Utilizing the banded approximations, the prior works re-
formulated the minimum mean square error (MMSE) block
linear equalizer (BLE) [16]–[18] and the MMSE serial linear
equalizer (SLE) [8], [15] to linear complexity O(Q2N) with-
out significant impacts on bit error rate (BER) performance.
With properly designed pilot clusters [22], the banded channel
matrix can be efficiently estimated through the basis expansion
model [12]. However, the practice of the banded approxima-
tion involves two major challenges: 1) the selection of the
efficient band (Q) upon various factors such as the normal-
ized maximum Doppler frequency, the subcarrier number, the
propagation model and the techniques of detections, etc; 2)
the analysis on the performance degradation by the banded
approximation upon a selected band Q. To the best of the
authors’ knowledge, P. Schniter [15] attempts to deal with
the 1st challenge and proposed Q ≥ dfD + 1e for Rayleigh
fading channels, where fD denotes the maximum Doppler
frequency normalized to the subcarrier spacing. As to the 2nd
challenge, a universal lower bound on the partial ICI was
expressed in [8] to assess the errors introduced with the banded
approximations.

The inequality Q ≥ dfD + 1e was first employed as a rule
of thumb to determine the band Q in the prior works [11]–[13],
[15]–[18]. This rule degrades to Q ≥ 2 for fD ≤ 100% and
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hence the prior works [15]–[18] selected the minimum Q = 2.
However, the recent works in [11]–[13] called for larger bands
to support lower BER performance as well as higher mobility.
Therefore, the need for an updated evaluation on the banded
approximation becomes apparent. In this paper, we seek to
answer the challenges about the banded approximation. In
[23], a pair of upper and lower bounds on the total ICI power
for the OFDM systems in the specific time-varying channel
models were derived to provide useful insights. Motivated by
[8] and [23], we derive a simple lower bound on the variance of
the individual coefficients in the channel matrix of the specific
channel models in [23]. Accordingly, we provide insights into
the banded structure of the channel matrices responding to
different channel models. The lower bound of the banded
approximation errors is derived in a simple closed form, which
is tighter than the universal lower bound derived in [8].

The analysis of the banded approximation errors is ben-
eficial for the prior techniques that employed the banded
approximation. As a generalized application, we propose to
take the banded approximation errors into account in the
signal-to-interference-plus-noise ratio (SINR) of the MMSE
estimation core of the banded equalizers in [8], [15]–[18].
With simulation results, we show that the simple lower bounds
derived in this paper accurately predict the mean squares of
the individual coefficients in the channel matrix and the sum
of square errors introduced with the banded approximation,
respectively. Employing the predictions of the banded approx-
imation errors, we enhance the block MMSE banded equalizer
[17] and the block turbo MMSE banded equalizer [18] with
significantly lower error floors than those ignoring the banded
approximation errors.

The rest of this paper is organized as follows. In section
II, we derive the variances of the individual coefficients in
the channel matrix for the systems in the channel models of
interest. In section III, we discuss the banded approximations
of the channel matrix with a simple lower bound of the
errors, the ICI-mitigation gains of the banded equalizers and a
generalized application for the banded MMSE equalizers. The
simulation results are presented in section IV. In section V,
we briefly conclude the methodology and findings presented
in this paper.

Notation: We use upper (lower) boldface letters to denote
matrices (column vectors). The (·)H and ‖·‖ denote complex
conjugate transpose and the Frobenius norm of a matrix,
respectively. The (·)∗ denotes complex conjugate. The [A]m,n

indicates the entry in the mth row and nth column of matrix
A. The In represents the n × n identity. The operator ◦
denotes element-wise product between two matrices. The δ(·)
denotes the Kronecker delta; the 〈·〉N represents the modulo-N
operation; the E {·} denotes the statistical expectation. The ∗
denotes convolution and R represents the set of real numbers.

II. THE VARIANCE OF THE COEFFICIENTS IN CHANNEL
MATRIX

A. Theoretical expressions

We consider the OFDM systems over the linear time-
varying (LTV) channel, with N subcarriers and the cyclic

prefix (CP) of length no less than the maximum channel
delay spreads L. The LTV channel is modeled by ht(n, l),
which denotes the channel impulse response of the lth tap
at time n. Assuming perfect time synchronization, we ex-
press the output of discrete Fourier transform (DFT) unit
z = [z0, z1, · · · , zN−1]

T after CP removal as

z = Hx + w (1)

where H denotes the N×N frequency-domain channel matrix
of the coefficients previously derived in [20] as

[H]a,b =
1
N

N−1∑
n=0

L−1∑

l=0

ht (n, l) e
−j2πbl

N e
j2π(b−a)n

N ,

0 ≤ a, b ≤ N − 1.

(2)

The x represents the N × 1 vector for the modulated sym-
bol and w denotes the N × 1 vector for frequency-domain
Gaussian noise. In this paper, we consider the equalization
individually in one symbol duration, and hence the symbol
index is omitted for brevity.

Assuming the wide-sense stationary uncorrelated scattering
(WSSUS) model for the LTV channels, we have

E {ht (n, l)ht
∗ (n− q, l − r)} = γt (q) σt

2 (l) δ (r) (3)

where γt(q) denotes the normalized tap autocorrelation and
σt

2(l) denotes the variance of the lth tap. Accordingly, the
Doppler spectrum of the LTV channels can be expressed [15]
as

S (φ) ≡
∑

q

γt (q) e−jφq, φ ∈ R, (4)

where φ denotes the angular Doppler frequency in radians
normalized to bandwidth. Letting f = N

2π φ be the Doppler
frequency in Hz normalized to subcarrier spacing, we de-
note s(f) as the Doppler spectrum defined in f . Subject to∫ φD

−φD
S (φ) dφ =

∫ fD

−fD
s (f) df = 1 where φD and fD denote

the normalized maximum Doppler frequencies for φ and f ,
respectively, we obtain s(f) = 2π

N S(φ)|φ= 2πf
N

.

To analyze the interference between two subcarriers, we
have a N based cyclic number p denoting the “Doppler index”
previously defined in [15] to count the number of subcarriers
from the sourcing subcarrier to the sinking subcarrier for
the entries in the channel matrix. As a consequence, the
Doppler index for an arbitrary entry [H]a,b is given by
p ≡ 〈b− a〉N , 0 ≤ p ≤ N−1. With the potential instability of
frequency oscillators at both the transmitter and the receiver,
we include the carrier frequency offset (CFO) in the system
model. Assuming the invariance of CFO in an OFDM symbol
duration, we utilize the derivation by P. Schniter in [15] to
obtain the variance of the coefficients of the Doppler index p
in the channel matrix as

σF
2(p) = (S ∗ V ) (φ)

∣∣∣
φ=

2π(p+fO)
N

·
L−1∑

l=0

σt
2(l), (5)

where S (φ) is defined in (4), fO denotes the CFO normalized
to the subcarrier spacing, and V (φ) represents the Dirichlet
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function as

V (φ) =

(
sin φN

2

N sin φ
2

)2

. (6)

Without loss of generality, we normalize
∑L−1

l=0 σt
2(l) = 1.

Inserting (6) into (5), we obtain

σF
2(p) =

∫ φD

−φD

S (φ)


 sin

(
πp + πfO − N

2 φ
)

N sin
(

π(p+fO)
N − φ

2

)



2

dφ. (7)

Inserting sin2
(
πp− N

2 φ
)

= sin2
(

N
2 φ

)
, S( 2πf

N ) = N
2π s(f)

and φ = 2πf
N into (7), we derive

σF
2(p) =

∫ fD

−fD

s (f)

(
sin (πfO + πf)

N sin
(

π
N (p + fO − f)

)
)2

df. (8)

By (8), the Doppler spectrum and the CFO collectively
determine the variances of the coefficients of the Doppler
index p in the channel matrix. Since the CFO in the mobile
OFDM systems can be well estimated and compensated [24],
[25], we consider the perfect frequency synchronization, i.e.,
fO = 0, in later discussions. Focusing on the broadband mo-
bile OFDM systems, we assume in this paper that the systems
have large subcarrier numbers, e.g., N ≥ 256, satisfying the
approximation sin(πfD

N ) = πfD

N , i.e., πfD

N → 0.

B. The upper bound and the lower bound

In this subsection, we input the statistics of the LTV channel
to derive a pair of upper and lower bounds on the variances
of the coefficients expressed in (8). Being a N -cyclic number,
the Doppler index p is defined in the domain 0 ≤ p ≤ N − 1.
For convenience to express the bounds, we alter the domain
to −N

2 + 1 ≤ p ≤ N
2 and derive the bounds on σF

2(p) for
p = 0, 1 ≤ p ≤ N

2 − 1, −N
2 + 1 ≤ p ≤ −1 and p = N

2 ,
respectively.

First, we consider σF
2(0) at the diagonal of the channel ma-

trix. Inserting p = 0 into (8) and applying the approximation
N sin(πf

N ) = πf , we obtain

σF
2(0) =

∫ fD

−fD

s (f) sinc2 (f) df (9)

where the sinc function is defined as sinc(x) ≡ sin(πx)/πx.
By the Taylor series expansions of sinc2(f) function at f =

0, a pair of upper and lower bounds are derived as

1− 1
3 (πf)2 ≤ sinc2(f) ≤ 1− 1

3 (πf)2 + 2
45 (πf)4. (10)

Inserting (10) into (9), we derive

1− α1
3 (πfD)2 ≤ σF

2(0) ≤ 1− α1
3 (πfD)2+ 2α2

45 (πfD)4 (11)

where αm = 1
fD

2m

∫ fD

−fD
f2ms (f) df, m = 1, 2 [23]. For the

LTV channel models of interest, these constants previously
derived in [23] are listed in Table I.

In the channel matrix, the diagonal entries determine the
channel frequency response (CFR) and the off-diagonal ele-
ments account for ICI parts. Hence, we obtain the total ICI

TABLE I. The α1 and α2 for the channel models of interest.

Models Doppler spectrum s(f) α1 α2

Two-path 1
2δ(f + fD) + 1

2δ(f − fD) 1 1
Jakes 1

πfD

√
1−(f/fD)2

, |f | ≤ fD
1
2

3
8

Uniform 1
2fD

, |f | ≤ fD
1
3

1
5

power PICI = 1− σF
2(0). According to (11), we derive

α1
3 (πfD)2 − 2α2

45 (πfD)4 ≤ PICI ≤ α1
3 (πfD)2 (12)

that are exactly the same bounds on the total ICI power as
previously derived in [23].

Next, we consider σF
2(p), 1 ≤ p ≤ N

2 − 1 in (8) for
the variance of the off-diagonal coefficients of the channel
matrix. Utilizing the property that sin(x) > 0 and sin(x)
monotonically increases in x ∈ (0, π/2), we derive

1
N2 sin2

(
π
N (p + fD)

) ≤ 1
N2 sin2

(
π
N (p− f)

)

≤ 1
N2 sin2

(
π
N (p− fD)

) , |f | ≤ fD, 1 ≤ p ≤ N
2 − 1.

(13)

To examine the tightness of the bounds, we consider N →
∞ and convert (13) into (p + fD)−2 ≤ (p + f)−2 ≤
(p− fD)−2. Accordingly, the normalized difference from the
upper bound to the lower bound can be approximated as 4fD

p .
Hence, the larger p and the smaller fD result in the tighter
bounds in (13).

Inserting (13) into (8), we obtain
∫ fD

−fD
s (f) sin2 (πf)df

N2 sin2
(

π
N (p + fD)

) ≤ σF
2(p)

≤
∫ fD

−fD
s (f) sin2 (πf)df

N2 sin2
(

π
N (p− fD)

) , 1 ≤ p ≤ N
2 − 1.

(14)

By the Taylor series expansion of sin2(πf) function at πf =
0, a pair of upper and lower bounds on sin2(πf) is derived as

(πf)2 − 1
3 (πf)4 ≤ sin2 (πf) ≤ (πf)2 . (15)

Inserting (15) into
∫ fD

−fD
s (f) sin2 (πf)df , we derive

α1(πfD)2 − α2

3
(πfD)4 ≤

∫ fD

−fD

s (f) sin2 (πf)df

≤ α1 (πfD)2
(16)

where α1 and α2 are given in (11) and Table I.
Substituting the upper bound and the low bound in (16) for∫ fD

−fD
s (f) sin2 (πf)df in (14), respectively, we obtain a pair

of upper and lower bounds on the variance of the off-diagonal
coefficients in the channel matrix as

α1(πfD)2 − α2
3 (πfD)4

N2 sin2
(

π
N (p + fD)

) ≤ σF
2(p)

≤ α1(πfD)2

N2 sin2
(

π
N (p− fD)

) , 1 ≤ p ≤ N
2 − 1.

(17)

With the higher order terms in the Taylor expansions, the
lower bounds are closer to the exact evaluations than the upper
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bounds.
Third, we consider σF

2(p) in −N
2 + 1 ≤ p ≤ −1 which is

symmetric to those in 1 ≤ p ≤ N
2 − 1. Hence, the bounds are

simply inferred to as

α1(πfD)2 − α2
3 (πfD)4

N2 sin2
(

π
N (p− fD)

) ≤ σF
2(p)

≤ α1(πfD)2

N2 sin2
(

π
N (p + fD)

) , −N
2 + 1 ≤ p ≤ −1.

(18)

For the last term, we input p = N
2 to (8) and obtain

σF
2

(
N

2

)
=

∫ fD

−fD

s (f)

(
sin (πf)
N cos πf

N

)2

df. (19)

By using πfD

N → 0, we insert cos πf
N = 1 into (19) and

obtain σF
2
(

N
2

)
= 1

N2

∫ fD

−fD
s (f) sin2 (πf)df . With the upper

bound in (16), it turns out σF
2
(

N
2

) ≤ α1

(
πfD

N

)2

→ 0. As a

consequence, we obtain the approximation σF
2
(

N
2

)
= 0.

C. The simple lower bound in symmetric Doppler spectrum
Assuming the channels of the Doppler spectrum are sym-

metric to the axis of zero frequency, e.g., those in Table I,
we derive the simple lower bounds on the variance of the off-
diagonal coefficients in the channel matrix. In this subsection,
we consider σF

2(p) in 1 ≤ p ≤ N
2 − 1; then those in

N
2 +1 ≤ p ≤ −1 can be simply obtained by similar procedures.

With a symmetric Doppler spectra, we rewrite (8) as

σF
2(p) =

∫ fD

0

s† (f)
sin2 (πf)

N2

(
sin−2

( π

N
(p− f)

)

+sin−2
( π

N
(p + f)

))
df

(20)

where s†(f) determines a half of the Doppler spectrum in
f ≥ 0. In Appendix A, we prove sin−2

(
π
N (p− f)

)
+

sin−2
(

π
N (p + f)

) ≥ 2 sin−2
(

πp
N

)
for 0 ≤ f ≤ fD and

1 ≤ p ≤ N
2 − 1. Hence, we obtain

σF
2(p) ≥ 2

∫ fD

0
s† (f) sin2 (πf)df
N2 sin2

(
πp
N

)

=

∫ fD

−fD
s (f) sin2 (πf)df

N2 sin2
(

πp
N

) , 1 ≤ p ≤ N
2 − 1.

(21)

Substituting the lower bound derived in (16) for∫ fD

−fD
s (f) sin2 (πf)df in (21), we derive a low bound on

σF
2(p) as

σF
2(p) ≥ α1(πfD)2 − α2

3 (πfD)4

N2 sin2
(

πp
N

) , 1 ≤ p ≤ N
2 − 1. (22)

Inserting 1/
(
N2 sin2(πp

N )
) ≥ 1/(πp)2, 1 ≤ p ≤ N

2 − 1 into
(22), we obtain the simple lower bound as

σF
2(p) ≥ 1

p2

(
α1fD

2 − α2

3
π2fD

4
)

, 1 ≤ p ≤ N
2 − 1. (23)

In Appendix B, we further derived εF (p) = 3α2fD
4

p4 for the
errors between the variance of the off-diagonal coefficients

and its simple lower bound in (23) based on the approxima-
tions of the 4th-order Taylor expansions. In Appendix C, we
further improve (23) by using the approximations of the 8th-
order Taylor expansions for the scenarios with relatively high
Doppler frequencies. Using the simple lower bound in (23)
as an approximation of σF

2(p), we show that the variances
of the off-diagonal coefficients in the channel matrix decrease
with 1/p2 [2] and are independent to the subcarrier number
(N ) of the OFDM systems.
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Fig. 1. Comparisons of the bounds, the simple lower bounds
and the evaluations of the variances of the off-diagonal

coefficients in channel matrix.

In Fig. 1, the tightness of the bounds in (17) and the simple
lower bound in (23) are examined with the exact evaluation
of the variances of the off-diagonal coefficients. We consider
the OFDM systems with N = 256 subcarriers in the channel
models listed in Table I of the normalized maximum Doppler
frequency fD = 30%. The lower bounds (LB) are obviously
closer to exact evaluations (EV) than the upper bounds (UB).
Being tighter than the lower bounds (LB), the simple lower
bounds (SL) are indeed very close to the exact evaluations
(EV) even when the normalized maximum Doppler frequency
is as high as 30%.

III. THE BANDED APPROXIMATIONS

A. The banded approximation errors
In this subsection, we derive the errors introduced with

the manipulation of the banded approximation to a channel
matrix for the OFDM systems. Specifically, manipulating a
Qth banded approximation to a N × N channel matrix H
results in the Qth banded channel matrix H(Q) = H ◦ T(Q)

where T(Q) represents the N × N circulant matrix with all
ones in the 2Q+1 central diagonals, the Q×Q lower triangular
matrix in the bottom-left corner and the Q×Q upper triangular
matrix in the top-right corner, and all zeros else [15].

Manipulating a Qth banded approximation to the channel
matrix H in (1), we obtain the OFDM system as

z = H(Q)x + n + ε (24)
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where ε denotes the vector for the banded approximation errors
of the variance

σB
2(Q) ≡

E
{∥∥H(Q) −H

∥∥2
}

E
{
‖H‖2

} = 2

N
2 −1∑

p=Q+1

σF
2(p). (25)

Using the bounds on σF
2(p) in (17), we obtain a pair of

upper and lower bounds as

2

N
2 −1∑

p=Q+1

α1(πfD)2 − α2
3 (πfD)4

N2 sin2
(

π
N (p + fD)

) ≤ σB
2(Q)

≤ 2

N
2 −1∑

p=Q+1

α1(πfD)2

N2 sin2
(

π
N (p− fD)

) , 0 ≤ Q ≤ N
2 − 1.

(26)

Considering the channel models of symmetric Doppler
spectrum, we insert (22) into (25) and derive a tighter lower
bound on the banded approximation errors as

σB
2(Q) ≥ 2

N
2 −1∑

p=Q+1

α1(πfD)2 − α2
3 (πfD)4

N2 sin2
(

πp
N

) ,

= 2




N
2 −1∑
p=1

1
N2 sin2

(
πp
N

) −
Q∑

p=1

1
N2 sin2

(
πp
N

)



×
(
α1(πfD)2 − α2

3
(πfD)4

)
, 0 ≤ Q ≤ N

2 − 1.

(27)

The ICI power for the systems of finite subcarrier number
has no significant difference from that for infinite [8], [23]. To
resolve (27), we consider N →∞ and obtain

lim
N→∞

N
2 −1∑
p=1

1
N2 sin2

(
πp
N

) = lim
N→∞

N
2 −1∑
p=1

1

N2
(

πp
N

)2

= π−2
∞∑

p=1

p−2 = 1/6.

(28)

TABLE II. The convergence and the approximation of∑
p

1

N2 sin2(πp
N ) .

N
∑N

2 −1
p=1

1

N2 sin2(πp
N )

∑N
2 −1

p=1
1

(πp)2
difference

64 0.1665 0.1635 0.0031
128 0.1666 0.1651 0.0016
256 0.1667 0.1659 0.0008

1024 0.1667 0.1665 0.0002
4096 0.1667 0.1667 0.0000
∞ 1/6 1/6 0

In Table II, we examine the convergence and the approxi-
mation of

∑N
2 −1

p=1 N−2 sin−2
(

πp
N

)
with the numerical results

for some candidate N . Assuming N ≥ 128 and two-place
approximations, we obtain

N
2 −1∑
p=1

1
N2 sin2

(
πp
N

) = 1/6 (29)

and
Q∑

p=1

1
N2 sin2

(
πp
N

) =
Q∑

p=1

1
(πp)2

, 0 ≤ Q ≤ N
2 − 1. (30)

Inserting (29) and (30) into (27), we obtain a simple lower
bound on the banded approximation errors for the OFDM
systems in the channels of symmetric Doppler spectrum as

σB
2(Q) ≥

(
π2

3
− 2

Q∑
p=1

1
p2

)(
α1fD

2 − α2

3
π2fD

4
)

,

0 ≤ Q ≤ N
2 − 1.

(31)

Recalling (25) and (27), we note that the simple lower bound
on the banded approximation errors in (31) are derived from
the sum of the lower bounds on the variance of off-diagonal
coefficients, and hence accumulates the errors of the lower
bound on the variances of the off-diagonal coefficients from
p = Q + 1 to p = N

2 − 1. Based on the approximation of
the 4th-order Taylor expansions, the accumulated errors are
obtained as

εB(Q) = 2

N
2 −1∑

p=Q+1

εF (p) = 2

N
2 −1∑

p=Q+1

1
p4

(
3α2fD

4
)

=

(
π4

45
− 2

Q∑
p=1

1
p4

)
(
3α2fD

4
)
, 0 ≤ Q ≤ N

2 − 1.

(32)

Inserting Q = 0 into (32), we obtain the total accumulated
errors εB(0) = α2

15 (πfD)4 equal to the difference between the
lower bound of PICI in (12) and the lower bound of σB

2(0)
in (31). It can be easily obtained that εB(Q) < 0.08 εB(0)
for Q ≥ 1, and therefore the simple lower bound in (31)
approximates σB

2(Q) with negligible errors εB(Q) for 1 ≤
Q ≤ N

2 − 1.

0 2 4 6
−24

−20

−16

−12

−8

−4

Q

T
he

 b
an

d 
ap

pr
ox

im
at

io
n 

er
ro

rs
 (

dB
)

Two−Path

 

 

UB
EV
SL
LB

0 2 4 6
−24

−20

−16

−12

−8

−4

Q

Jakes

 

 

UB
EV
SL
LB

0 2 4 6
−24

−20

−16

−12

−8

−4

Q

Uniform

 

 

UB
EV
SL
LB

Fig. 2. Comparisons of the bounds, the simple lower bound
and the evaluations of the banded approximation errors.

In Fig. 2, the tightness of the bounds in (26) and the simple
lower bound in (31) are examined with the exact evaluation
of the banded approximation errors. We consider the OFDM
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systems with N = 256 subcarriers in the channel models listed
in Table I of the normalized maximum Doppler frequency
fD = 30%. The bounds of PICI in (12) substitute for those
of σB

2(0) in (26) and (31) to eliminate the presence of the
accumulated errors εB(0). The relations among the upper
bounds (UB), the exact evaluations (EV), the lower bound
(LB) and the simple lower bound (SL) are similar to those
in Fig. 1. Both the lower bound (LB) and the simple lower
bound (SL) approach the exact evaluations (EV) in all of the
instances.

B. The ICI mitigation with the banded equalizers

To evaluate the ICI power mitigated with the banded equal-
izers, we consider g(Q) ≡ PICI

σB
2(Q) representing the ratio of

the total ICI power to the residual ICI power in the Qth
banded channel matrix H(Q) in (24). Since εB(0) is the
only significant term in (32), we employ (31) to approximate
σB

2(Q), 1 ≤ Q ≤ N
2 − 1 and obtain

g(Q) =
σB

2(0) + εB(0)
σB

2(Q)
≥ σB

2(0)
σB

2(Q)

=
1(

1− 6
π2

∑Q
p=1

1
p2

) , Q ≥ 0.
(33)

In Fig. 3, we compare the ICI-mitigation gains g(Q) in
different conditions: 1) the prior universal lower bound (PLB)
on g(Q) previously derived in [8] (section III); 2) the simple
universal lower bound (SLB) given in (33); 3) the exact
evaluations of g(Q) for the OFDM systems with N = 256
subcarriers in the specific channel models. The “U-10%”
denotes the uniform Doppler spectrum of the normalized
maximum Doppler frequency fD = 10%; “J-10%” denotes the
Jakes Doppler spectrum of fD = 10%, and “T-10%” denotes
the two-path Doppler spectrum of fD = 10%. The legends for
those of the normalized maximum Doppler frequencies fD =
30% and fD = 70% are similarly inferred.
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Fig. 3. The ICI-mitigation gains of the banded equalizers (a)
a wide range of the band; (b) a close-up view for smaller

bands.

As compared to the prior lower bound (PLB), the simple
lower bound (SLB) in (33) is beneficial in tightness and
simplicity. Several useful insights into the banded approxi-
mations are observed in Fig. 3. First, the 1st (Q = 1) banded
equalizer mitigates the ICI power to –4 dB at least. Hence,
more than 60% of the total ICI power comes from the pair
of the 1st adjacent subcarriers. Similarly, the 2nd (Q = 2)
banded equalizer decreases the ICI power to –6 dB at least.
Hence, at least, accumulated 75% of the total ICI power comes
from the 2nd neighboring subcarriers, and so forth. Second,
the more total ICI power the systems suffer, the higher ratio
the banded equalizers mitigate the ICI power. Third, the 2nd
banded equalizers reduce the total ICI power to only –6 dB,
and hence the bands selected in Q ≥ 2 [15] is necessary in
general application. Fourth, the increase of bands apparently
returns diminishing gains of ICI mitigation for the system in
the channel models listed in Table I. The rapid ascent of the
gains ends after Q = 6, therefore, the efficient use of bands
can be suggested to be in the range 2 ≤ Q ≤ 6. Eventually,
the banded equalizers with an efficient band mitigate the ICI
less than 11 dB. In spite of a large band Q = 30 (hence
computational complexity of the equalizers may dramatically
increase), the ICI-mitigation gains are limited to 18 dB.

While the total ICI power can be known to the systems
through well established methods, the banded approximation
errors can be estimated without information of channel states.
Upon σB

2(Q) =
(
1− 6

π2

∑Q
p=1

1
p2

)
σB

2(0), the banded ap-
proximation errors are overestimated by

σB
2(Q) ≈

(
1− 6

π2

Q∑
p=1

1
p2

)
PICI (34)

with an error εg ≡ PICI/σB
2(0) ≈ (

α1
3 fD

2 − 2α2
45 π2fD

4
)

/
(

α1
3 fD

2 − α2
9 π2fD

4
)
. Considering the Jakes channels model

with fD = 30% as an example, we obtain εg = 0.69 dB which
is negligible.

C. A generalized application

In this subsection, we propose a generalized application of
the acquisition of the banded approximation errors for the
MMSE banded equalizers previously proposed in [8], [9],
[14]–[18]. As a common component, the linear MMSE es-
timation core was employed in the MMSE banded equalizers.
Without loss of generality, we consider a simplified linear
MMSE estimation core for the system in (24) as

x̂k = Hk
H

(
HkHH

k + γ−1INk

)−1
zk. (35)

In the block linear MMSE banded equalizers [16]–[18], xk

denotes the data vector which is the central vector of x after
removal of the guard bands [17]. Corresponding to xk, Hk and
zk denote the central block of H(Q) and the central vector of z,
respectively. The Nk denotes the size of Hk and γ denotes the
signal-to-interference-plus-noise ratio (SINR) of the systems.
In the serial MMSE linear equalizers [8], [15], alternatively,
xk denotes the 2Q + 1 sub-vector taken from x. The central
element of xk maps to the kth element of x. Corresponding
to xk, zk and Hk denotes the (2Q+1) sub-vector and (2Q+
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1)× (2Q+1) sub-block of H(Q), respectively. The Nk equals
to 2Q + 1 and γ denotes SINR of the systems.

Thanks to the property of ICI power behaving as additive
zero-mean Gaussian noise [26], [27], we handle ε in the
systems in (24) as the Gaussian interference of the variance
equal to σB

2(Q). Hence, we obtain SINR in (35) as

γ =
(
σn

2 + σB
2(Q)

)−1
(36)

where σn
2 denotes the variance of the Gaussian noise in the

channels.
In next section, we examine the application with the BER

performance for the block MMSE banded equalizers [17] and
the block turbo MMSE banded equalizers [18], respectively.

IV. SIMULATION

In this section, we consider an OFDM system with N =
256 subcarriers, a CP of length equal to the maximum channel
delay spreads L = 8 and QPSK modulation. The Rayleigh
fading channels with Jakes Doppler spectrum and the expo-
nential delay profile σt

2(l) = e−0.3l/
∑L−1

l=0 e−0.3l for l =
0,1,· · · , L−1 are employed to generate contiguous realizations
for the time-varying channels. In all of the instances, we
assume the perfect channel knowledge is available.

In the first set of simulations, we compute the ideal channel
matrices H in (2) for individual symbol durations. With
the statistics of the ideal channel matrices, we examine the
variances of the off-diagonal coefficients in (23) and the
banded approximation errors in (31), respectively.
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Fig. 4. Comparisons of the variances of the off-diagonal
coefficients derived from the exact evaluations, the simple

lower bounds and simulations.

Fig. 4 depicts the variances of the off-diagonal coefficients,
σF

2(p), with the mean squares (MS) of the coefficients of
the same Doppler index (p) for 1 ≤ p ≤ 7 in the ideal
channel matrices. The variances σF

2(p) are evaluated by (8),
and approximated with both the simple lower bound (SLB) in
(23) and the simple lower bound (SLB+) enhanced in (42),
respectively. As shown, the exact evaluation (EV) and the
SLB+ can precisely predict the mean squares (MS) of the

pth off-diagonal coefficients, p ≥ 2, through a wide range of
fD. The presence of the errors εF (p) is apparent only in the
curves for σF

2(1) because εF (p) decreases with 1/p4 as given
in Appendix B. For fD ≤ 30%, the SLB is a good substitute
for SLB+, for the purpose of simplicity.
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Fig. 5. Comparisons of the banded approximation errors
derived from the exact evaluations, the simple lower bounds

and simulations.

Fig. 5 illustrates the banded approximation errors versus
the normalized maximum Doppler frequency for the bands
in 0 ≤ Q ≤ 6. Employing the ideal channel matrices, we
derive the banded approximation errors (BAE) with σB

2(Q) =
E{‖H(Q) −H‖2}/E{‖H‖2}. The exact evaluation (EV) of
the banded approximation errors is derived as σB

2(Q) =
2

∑N/2−1
p=Q+1 σF

2(p) where σF
2(p) are evaluated with (8). The

SLB is derived from (31), and the enhanced simple lower
bound SLB+ is derived from (43) for 1 ≤ Q ≤ 6. For
Q = 0, both of the SLB and the SLB+ are derived from the
lower bound of PICI in (12). As shown, the SLB approaches
σB

2(Q) with accuracy and simplicity for fD ≤ 30% at the
least, and the SLB+ approaches σB

2(Q) through the whole
range of fD. The most accumulated error εB(0) is eliminated
by substituting PICI in (12) for σB

2(0). As a consequence,
the accumulated errors εB(Q), 0 ≤ Q ≤ 6 can be seen to be
insignificant. The curves of the banded approximation errors
gradually become closer to each other with the increasing band
Q. Therefore, the gains in ICI suppression diminish with the
increasing bands, as those depicted in Fig. 3.

In the second set of simulations, we examine the application
of the acquisition of the banded approximation errors with
the BER performance of the block MMSE banded equalizers.
The standard block MMSE banded equalizer in [17] and the
block turbo MMSE banded equalizer [18] running 5 iterations
are used in the tests. Seven instances of the block MMSE
banded equalizers with the MMSE estimation core in (35) are
considered respectively: 1) The block least square (LS) banded
equalizer, i.e., inserting γ−1 = 0 into (35) to degrade the
MMSE estimation to the LS estimation. 2) The standard block
MMSE banded equalizer that ignores the banded approxima-
tion errors, i.e., γ−1 = σn

2. 3) The standard block MMSE



0018−9545 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVT.2014.2359233, IEEE Transactions on Vehicular Technology

banded equalizer that overestimates the banded approximation
error to the total ICI power, i.e., γ−1 = σn

2 + PICI . 4)
The standard block MMSE banded equalizer that employs
the SINR given in (36). 5) The block turbo MMSE banded
equalizer that ignores the banded approximation errors. 6) The
block turbo MMSE banded equalizer that overestimates the
banded approximation error to the total ICI power. 7) The
block turbo MMSE banded equalizer that employs the SINR
given in (36).
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Fig. 6. The BER performance of the instances of the block
MMSE banded equalizers with the 2nd banded channel

matrix.

In Fig. 6, we examine the BER performance of the seven
instances of the block MMSE banded equalizers manipulating
a Q = 2 banded approximation to the ideal channel matrix.
The normalized maximum Doppler frequency of the LTV
channels is set to fD = 15%. On the comparisons with
the error floors, Fig. 6 depicts both of the standard block
MMSE banded equalizers and the block turbo MMSE banded
equalizers are suboptimal if the banded approximation errors
are ignored to zeros. The benefits from inputs of the banded
approximation errors (or the total ICI power) to the MMSE
estimation core are twofold: the lower error floors to the
standard block MMSE banded equalizers and the enhanced
gains from the iterations of the block turbo MMSE banded
equalizers. Provided the total ICI power PICI is known with
some methods, we easily estimate the banded approximation
errors with (34) to improve the BER performance of the block
MMSE banded equalizers.

Fig. 7 depicts the BER performance of the seven instances
of the block MMSE banded equalizers which employ a Q =
6 banded channel matrix. As compared to Fig. 6, the benefits
from inputs of the banded approximation errors to the MMSE
estimation core become more significant in spite of the smaller
amount of the banded approximation errors. As a consequence,
the knowledge of the banded approximation errors are essential
to the block (turbo) MMSE banded equalizers seeking for
precise detections with large-tap (i.e., a big Q) equalizations.

Fig. 8 depicts the error floors of the seven instances of
the block MMSE banded equalizers through the bands in 0
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Fig. 7. The BER performance of the instances of the block
MMSE banded equalizers with the 6th banded channel

matrix.
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Fig. 8. The error floors of the block MMSE banded
equalizers in the channels of high mobility and very high

mobility, respectively.

≤ Q ≤ 24 for the high-mobility channels (fD = 10%) and
the very-high-mobility channel (fD = 20%) [11], respectively.
Inserting a sufficiently low variance of the Gaussian noise
σn

2 = –55 dB, we derive the error floors for the seven
instances. We do not plot for the block LS banded equalizer
because it shares the same error floors with the standard block
MMSE banded equalizer that sets the banded approximation
errors to zeros. As shown, the efficient bands selected in
2 ≤ Q ≤ 6 reach appropriate tradeoffs between the BER
performance and the computational complexity for the block
(turbo) MMSE banded equalizers in the channels of different
levels of mobilities. By comprehensive comparisons in Fig.
8, the block MMSE banded equalizer, with more powerful
detections (e.g., with iterations or/and large-tap equalizations)
and with the channels of the higher mobility, gains more
error rate improvements from the acquisition of the banded
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approximation errors.

V. CONCLUSION

This paper investigates the banded approximation of the
frequency-domain channel matrix of the OFDM systems in
time-varying channels. We derive the simple lower bounds
on the variance of the coefficients in the channel matrix, the
banded approximation errors and the ICI-mitigation gains of
the banded equalizers, respectively. We provide perspectives
inside the channel matrix, measure the side effects to ma-
nipulate the banded approximation on the channel matrix,
and herewith provide a guideline to select an efficient band
for the banded equalizers. By using the variances of the
banded approximation errors in the MMSE estimation, both
the standard block MMSE banded equalizers and the block
turbo MMSE banded equalizers generate significantly lower
error floors than those ignoring the presence of the banded
approximation errors.

APPENDIX A
Letting α denote πp

N and β denote πf
N , we aim to prove

sin−2(α− β) + sin−2(α + β) ≥ 2 sin−2 α with the condition
0 ≤ β ≤ α < π

2 . Considering

1
sin2(α− β)

+
1

sin2(α + β)

=
2

(
(sinα cosβ)2 + (sin β cosα)2

)

(
(sin α cos β)2 − (sinβ cos α)2

)2

(37)

and 0 ≤ (sin β cos α)2 < (sinα cosβ)2, we obtain

1
sin2(α− β)

+
1

sin2(α + β)
≥ 2

sin2 α cos2 β
≥ 2

sin2 α
(38)

by dropping (sin β cos α)2 from the numerator and the denom-
inator in (37).

APPENDIX B
Assuming the channel model is with symmetric Doppler

spectrum, we intend to approximate the difference between
the simple lower bound in (23) and the exact valuation of (8).
Considering N →∞, we obtain

1
N2

(
sin−2

( π

N
(p− f)

)
+ sin−2

( π

N
(p + f)

))

= π−2 (p− f)−2 + π−2(p + f)−2

=
2

(
p2 + f2

)

π2 (p2 − f2)2
= 2

(
1

π2p2
+

3f2

π2p4
+ · · ·

)
.

(39)

Inserting (39) into (20), we derive

σF
2(p) =

∫ fD

−fD

s (f) sin2 (πf)
(

1
π2p2

+
3f2

π2p4
+ · · ·

)
df

=
∫ fD

−fD

s (f)
(

π2f2 − 1
3
π4f4 + · · ·

)

×
(

1
π2p2

+
3f2

π2p4
+ · · ·

)
df.

(40)

In the approximations of the 4th-order Taylor expansions, we
convert (40) to

σF
2(p) =

1
p2

(
α1fD

2 − α2

3
π2fD

4
)

+
3α2fD

4

p4
. (41)

Consequently, the difference between σF
2(p) and its simple

lower bound in (23) is derived as εF (p) = 3α2fD
4

p4 .

APPENDIX C

Here we consider the systems with relatively high Doppler
frequencies where the approximations by the 4th-order Taylor
expansions are insufficient. By using the 8th-order Taylor
expansions, we improve (23) to

σF
2(p) ≥ 1

p2

(
α1fD

2 − α2
3 π2fD

4 + 2α3
45 π4fD

6 − α4
315π6fD

8
)
,

(42)
and (31) to

σB
2(Q) ≥

(
π2

3 − 2
∑Q

p=1
1
p2

)

× (
α1fD

2 − α2
3 π2fD

4 + 2α3
45 π4fD

6 − α4
315π6fD

8
)
,

(43)

where α3 and α4 for the channel models of interest are
supplemented in Table III.

TABLE III. The α3 and α4 for the channel models of
interest.

Models Two-path Jakes Uniform
α3, α4 1, 1 5

16 , 35
128

1
7 , 1

9
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