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Abstract

We address the problem of robust face recognition, in
which both training and test image data might be corrupted
due to occlusion and disguise. From standard face recog-
nition algorithms such as Eigenfaces to recently proposed
sparse representation-based classification (SRC) methods,
most prior works did not consider possible contamination of
data during training, and thus the associated performance
might be degraded. Based on the recent success of low-rank
matrix recovery, we propose a novel low-rank matrix ap-
proximation algorithm with structural incoherence for ro-
bust face recognition. Our method not only decomposes raw
training data into a set of representative basis with corre-
sponding sparse errors for better modeling the face images,
we further advocate the structural incoherence between the
basis learned from different classes. These basis are en-
couraged to be as independent as possible due to the regu-
larization on structural incoherence. We show that this pro-
vides additional discriminating ability to the original low-
rank models for improved performance. Experimental re-
sults on public face databases verify the effectiveness and
robustness of our method, which is also shown to outper-
form state-of-the-art SRC based approaches.

1. Introduction

Face recognition is among the most popular biometric
approaches due to its low intrusiveness and high unique-
ness. Unlike other physiological and behavioral biometric
techniques like fingerprint or gait recognition which typi-
cally require cooperative subjects, face images can be ac-
quired both actively or passively by surveillance cameras.
With the increasing need for security-related applications,
face recognition has been an active topic for researchers in
the areas of computer vision and image processing.

To design a face recognition system, given training face
image data, one typically focuses on the extraction of facial
features and the learning of classification models. Unseen
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Figure 1. Comparison between the standard SRC and our method.
Note that the standard SRC classifies the test input as the class with
most similar training images even if they are corrupted (e.g. due
to sunglasses), while our approach alleviates this problem and is
robust to such occlusions presented in both training and test data.

test data from the same subjects will be used to evaluate
the associated identification or verification performance. To
further assess the robustness of the designed face recogni-
tion algorithm, occlusion and disguise might be presented
in the test image data. We note that while the test data
might be corrupted, the training data is often assumed to be
taken under a well controlled setting (i.e., under reasonable
illumination, pose, etc. variations without occlusion or dis-
guise). As a result, when applying existing face recognition
methods for practical scenarios, we will need to discard cor-
rupted training images, and we might thus encounter small
sample size and over-fitting problems. Moreover, the disre-
gard of corrupted training face images might give up some
valuable information for recognition.

For face recognition, it is common to apply existing tech-
niques such as Eigenfaces [16], Fisherfaces [1], or Lapla-
cianfaces [9] to reduce the dimension of the face images.
As a result, the derived subspace is expected to achieve
improved recognition performance. However, these tech-
niques are not robust to outliers or sparse/extreme noise
such as occlusion and disguise [5]. Some recent works on
robust PCA have been proposed to alleviate the aforemen-
tioned problems [6, 11, 3]. Among them, low-rank matrix
recovery can be solved in polynomial-time and has been



shown to provide promising results [3]. While this type
of approach is able to identify a set of representative ba-
sis given corrupted training data, there is no guarantee that
such a basis set would serve for classification purposes.

Recently, sparse representation-based classification
(SRC) [19] has shown very promising results on face recog-
nition. It considers each test image as a sparse linear
combination of the training samples by solving an `1-
minimization problem. If the test image is corrupted, SRC
exhibits excellent robustness to face occlusion and corrup-
tion. Since SRC requires the training images to be well
aligned for reconstruction purposes, Wagner et al. [17] fur-
ther extends it to deal with face misalignment and illumina-
tion variations. Yang et al. [20, 21] also propose modified
SRC-based framework to handle outliers such as occlusions
in face images. However, the above methods might not gen-
eralize well if both training and test images are corrupted.

In this paper, we address the problem of robust face
recognition, in which both training and test image data are
corrupted, and we do not have the prior knowledge on the
type of corruptions. We will show that the direct use of di-
mension reduction techniques such as Eigenfaces for train-
ing and testing would degenerate the performance with the
presence of corrupted data (see the left half of Figure 1 for
example). To overcome this problem, we propose a novel
low-rank matrix approximation with structural incoherence.
While our method decomposes the raw face image data into
a set of representative basis and a sparse error matrix, we
regularize the structural incoherence of the derived repre-
sentative basis. The introduction of such incoherence be-
tween the basis extracted from different classes would pro-
vide additional discriminating ability to our framework. It is
worth noting that, we are among the first applying low-rank
techniques for face recognition problems, and our proposed
method is able to further improve the recognition perfor-
mance, as illustrated in the right half of Figure 1.

The remaining of this paper is organized as follows. Sec-
tion 2 reviews related works on low-rank matrix recovery
and SRC for face recognition. In Section 3, we present our
face recognition algorithm based on low-rank matrix de-
composition and structural incoherence. Experimental re-
sults on real-world face image data are presented in Section
4. Finally, Section 5 concludes this paper.

2. Related Work

2.1. Robust PCA and Low-Rank Matrix Recovery

Principal component analysis (PCA) has been widely
used for data analysis and dimension reduction. In spite
of its effectiveness, PCA is known to be sensitive to sparse
errors with large magnitudes [5]. Aim at designing a ro-
bust PCA model while suppressing the effect of such sparse
noise, a number of approaches have been proposed in the

literatures, including the introduction of influence functions
[6], alternating minimization techniques [11], and low-rank
matrix recovery [3] (noted as LR in the remaining for this
paper for conciseness). Among these methods, LR has been
observed to be solved in polynomial time with performance
guarantees [3]. Since our proposed algorithm is based on
low-rank decomposition techniques, it is necessary for us to
briefly review its formulation.

Low-rank matrix recovery seeks to decompose a data
matrix D into A + E, where A is a low-rank matrix and
E is the associated sparse error. More precisely, given the
input data matrix D, LR minimizes the rank of matrix A
while reducing ‖E‖0 to derive the low-rank approximation
of D. Since the aforementioned optimization problem is
NP-hard, Candès et al. [3] solve the following formulation
to make the original LR tractable:

min
A,E
‖A‖∗ + λ ‖E‖1 s.t. D = A+E. (1)

In (1), the nuclear norm ‖A‖∗ (i.e., the sum of the singular
values) approximates the rank of A, and the `0-norm ‖E‖0
is replaced by the `1-norm ‖E‖1, which sums up the abso-
lute values of entries in E. It is shown in [3] that, solving
this convex relaxation version is equivalent to solving the
original low-rank matrix approximation problem, as long as
the rank of A to be recovered is not too large and the num-
ber of errors in E is small (sparse). To solve the optimiza-
tion problem of (1), the technique of inexact augmented La-
grange multipliers (ALM) [3, 13] has been applied due to its
computational efficiency.

2.2. Sparse Representation-based Classification

Recently, Wright et al. [19] proposed a sparse
representation-based classification (SRC) algorithm for face
recognition. SRC considers each test image as a sparse lin-
ear combination of training image data by solving an `1-
minimization problem, and very promising results were re-
ported in [19]. Several works have been proposed to fur-
ther extend SRC for improved performance. For example,
Yuan and Yan [22] utilized an `1,2 mixed-norm regulariza-
tion for computing the joint sparse representation of differ-
ent features for visual signals. Jenatton et al. [10] utilized a
tree-structured sparse regularization for hierarchical sparse
coding. Chao et al. [4] integrated the `1,2 norm with a data
locality constraint for improved face recognition.

Since our classification rule is based on SRC, we now
briefly review this algorithm for the sake of clarity. Sup-
pose that there exist NT training images from N ob-
ject classes, and each class j has Nj images. Let D =
[D1,D2, . . . ,DN ] ∈ Rd×NT be the training set, where
Dj ∈ Rd×Nj contains training images of the jth class as
its columns, and d is the dimension of each image. Given
a test image y ∈ Rd×1, the SRC algorithm calculates the
sparse representation α of y, which is computed via the
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`1 minimization process over the entire training image set.
More precisely, SRC solves

min
α
‖y −Dα‖22 + λ‖α‖1. (2)

Once (2) is solved, let αj ∈ RNj×1 be the entries of α
associated with class j, i.e., α = [α1;α2; . . . ;αN ], the test
input y will be recognized as class j if it satisfies

j∗ = argmin
j
‖y −Djαj‖22. (3)

In other words, the test image y will be assigned to the
class with the lowest reconstruction error. This is because
that, the test image y should lie in the space spanned by the
columns Dj of class j. As a result, most non-zero elements
of α will mainly be presented in αj , which results in the
minimum reconstruction error. The framework of SRC is
depicted by the red arrows in Figure 3.

Although impressive face recognition results were re-
ported by SRC [19], and it has been shown to be able to
recognize occluded test images, SRC still requires clean
(i.e., un-occluded) face images for training and thus might
not be preferable for real-world scenarios. As later verified
by our experiments, if corrupted training data is presented,
SRC tends to recognize test images with the same type of
corruption and thus results in poorer performance. In the
following section, we will introduce our proposed method
for robust face recognition, in which both training and test
image data can be corrupted.

3. Low-Rank Matrix Recovery with Structural
Incoherence

3.1. Face recognition by low-rank matrix recovery

For real-world face recognition problems, we cannot ex-
pect that the training image data can be always collected
under a well-controlled setting. Besides illumination, pose,
and expression variations, it is possible that one can be tak-
ing a scarf, gauze mask, or sunglasses when his/her face
image is taken by the camera. When using such images for
training, the learned face recognition algorithm might over-
fit the extreme noise of occlusion instead of modeling the
face of the subject, and thus the performance will be de-
graded.

As discussed in Section 2.1, low-rank matrix recovery
(LR) can be applied to alleviate the aforementioned prob-
lem by decomposing the collected data matrix into two dif-
ferent parts, one is a representative basis matrix of low rank
and the other is the associated sparse error. It is worth not-
ing that the data needs to be registered prior to the pro-
cedure of low-rank matrix decomposition, so that the ex-
tracted low-rank matrix would preserve the structure of the
data (i.e., texture) and thus the corresponding error ma-
trix will be sparse. When applying LR for face recog-

(a) Original images D

(b) Low-rank and approximated images A of (a)

(c) Sparse error images E of (a)

Figure 2. Example results of low-rank matrix recovery.

nition with N subjects of interest, one can collect train-
ing data D = [D1,D2, . . . ,DN ], where Di is the train-
ing data matrix (with the presence of occlusion or dis-
guise) for subject i, as shown in Figure 2(a). By per-
forming low-rank matrix recovery, the data matrix data
D = [D1,D2, . . . ,DN ] will be decomposed into a low-
rank matrix A = [A1,A2, . . . ,AN ] and the sparse error
matrix E = [E1,E2, . . . ,EN ]. As shown in Figure 2(b),
the error images in A can be considered as preprocessed
data with sparse noise removed (see the corresponding im-
ages in Figure 2(c)). As a result, the low-rank matrix A has
a better representative ability than the original data D does
in describing the face images of the subject of interest.

Since the face images are typically with high dimension-
ality, standard dimension reduction techniques such as PCA
can be performed on the derived low-rank matrix A. As a
result, instead of using the Eigenfaces calculated by from
the original data matrix D, one can apply PCA on the low-
rank matrix A (as shown in Step 2 of Figure 3), and the
resulting subspace can be applied as the dictionary for train-
ing and testing purposes (see Step 3 in Figure 3). Finally,
one can apply SRC and the derived dictionary to classify
test inputs, which performs classification based on class-
wise minimum reconstruction error (as depicted by Step 4
in Figure 3). We will verify later that, compared with the
direct use of raw data D for subspace and dictionary learn-
ing (as standard SRC does), LR better handles the problem
in which the input training data is under severe illumination
variations or is corrupted by occlusion or disguise. Algo-
rithm 1 and Figure 3 sumamrize the procedure of integrat-
ing low-rank matrix recovery and SRC for face recognition.

3.2. Low-rank and structurally incoherent matrix
decomposition

Although LR processes the original data D and produces
a low-rank matrix A for better representation ability (with
sparse noise removed), the face images from different sub-
jects typically share common (correlated) features (e.g., the
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Algorithm 1 LR for Face Recognition
Input: Training data D = [D1,D2, . . . ,DN ] fromN sub-

jects and the test input y
Step 1 : Perform LR on D
( to be replaced by Algorithm 2 in Section 3.2)
for i = 1 : N do
minAi,Ei

‖Ai‖∗ + λ ‖Ei‖1 s.t. Di = Ai +Ei
end for
Step 2: Calculate principal components W of A
W← PCA(A)
Step 3: Project D and y onto W
Dp = W(D) , and yp = W(y)
Step 4: Perform SRC to classify yp
minα ‖yp −Dpα‖22 + λ ‖α‖1 .
for i = 1 : N do
e(i) = ‖y −Dpiαi‖22

end for
Output: y ← argmini e(i)

locations of eyes, nose, etc.), and thus the derived matrix
A might not contain sufficient discriminating information.
Inspired by [15], we propose to promote the incoherence
between different low-rank matrices. The introduction of
such incoherence would prefer the resulting low-rank ma-
trices to be as independent as possible. As a result, com-
monly shared features across difference classes will be sup-
pressed while the independent/discriminating ones will be
preserved. As illustrated in Step 1 of Figure 3, our meth-
ods aims at providing additional discriminating ability to
the original LR models by promoting their structural inco-
herence, and the recognition performance is expected to be
improved.

Based on the LR formulation in (1), we add a regular-
ization term to this objective function to enforce the inco-
herence between the low-rank matrices. We now solve the
following optimization problem:

min
A,E

N∑
i=1

{‖Ai‖∗ + λ ‖Ei‖1}+ η
∑
j 6=i

∥∥∥AT
j Ai

∥∥∥2
F

s.t. Di = Ai +Ei.

(4)

In (4), the first term performs the standard low-rank decom-
position of the data matrix D. The second term sums up the
Frobenius norms between each pair of the low-rank matri-
ces Ai and Aj , which is penalized by the parameter η bal-
ancing the low-rank matrix approximation and matrix inco-
herence. We refer to (4) as low-rank matrix recovery with
structural incoherence, aiming at providing improved dis-
crimination ability to the original LR model. Since the er-
ror matrix E in (4) is sparse (the same as (1)) and represents
extreme noise such as occlusion and disguise presented in
face images, we do not enforce extra regularization on E.
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Figure 3. Illustration of our proposed method. Note that we pro-
mote the structural incoherence between low-rank matrices for
better modeling and recognizing face images.

Instead of solving (4) directly, we solve the following
class-wise optimization problem across different classes:

min
Ai,Ei

‖Ai‖∗ + λ ‖Ei‖1 + η
∑
j 6=i

∥∥∥AT
j Ai

∥∥∥2
F

s.t. Di = Ai +Ei.

(5)

In other words, we iteratively solve the above formulation
for each class until the derived low-rank matrices converge.
We note that, however, the above optimization problem is
involved with Frobenius norms of different matrix pairs. To
make the above problem more tractable, we advance the
property that

∥∥∥AT
j Ai

∥∥∥2
F
≤ ‖Aj‖2F ‖Ai‖2F and relax (5) into

the following formulation:

min
Ai,Ei

‖Ai‖∗ + λ ‖Ei‖1 + η′ ‖Ai‖2F

s.t. Di = Ai +Ei.
(6)

where η′ = η
∑
j 6=i ‖Aj‖2F is a constant when deriving Ai

and Ei. We note that, from the above derivation, solving (6)
will address low-rank matrix approximation with implica-
tion of structural incoherence between the derived low-rank
matrices. In our proposed method, we choose to iteratively
solve (6) for each class, as we discuss later in the following
subsection and Algorithm 2.

3.3. Optimization via ALM

Augmented Lagrange multipliers (ALM) have been ap-
plied to solve the standard LR problem [3, 13]. In this sub-
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section, we will detail how we extend ALM to solve our
proposed LR formulation with regularization on structural
incoherence.

For an optimization problem in which f(X) is to be min-
imized with the constraint h(X) = 0, its ALM function can
be formulated as follows:

L(X,Y, µ) = f(X) + 〈Y, h(X)〉+ µ

2
‖h(X)‖2F , (7)

where each element of Y indicates a Lagrange multiplier.
Let X = (Ai,Ei) in (7), we redefine f(X) and h(X) as

f(X) = ‖Ai‖∗ + λ ‖Ei‖1 + η′ ‖Ai‖2F and
h(X) = Di −Ai −Ei.

As a result, our proposed LR problem in (6) can be refor-
mulated as follows:

L(Ai,Ei,Yi, µ, η
′) = ‖Ai‖∗ + λ ‖Ei‖1 + η′ ‖Ai‖2F

+〈Yi,Di −Ai −Ei〉 (8)

+
µ

2
‖Di −Ai −Ei‖2F

To solve (8), we search for the optimal Ai, Ei, and Y
iteratively. The pseudo code of our proposed algorithm
is shown in Algorithm 2. We now discuss how we up-
date/solve the above variables in each iteration.

Algorithm 2 Solving LR with Structural Incoherence
Input: Data matrix D and parameters η and ρ (ρ > 1)

Use Step1 in Alg. 1 to initialize A0, E0, Y0, µ0 > 0
for i = 1 to N do
η′ ← η

∑
j 6=i ‖Aj‖2F

while not converged do
Ak+1
i = argminAi

L(Ai,E
k
i ,Y

k
i , µ

k, η′)
Ek+1
i = argminEi

L(Ak+1
i ,Ei,Y

k
i , µ

k, η′)
Yk+1
i = Yk

i + µk(Di −Ak+1
i −Ek+1

i )
µk+1 = ρµk

end while
end for

Output: A and E

3.3.1 Updating Ai

To update Ak+1
i for class i at the (k + 1)th iteration in Al-

gorithm 2, we have fixed Ei and Yi and solve the following
problem accordingly:

Ak+1
i = argmin

Ai

L(Ai,E
k
i ,Y

k
i , µ

k, η′)

= argmin
Ai

‖Ai‖∗ + η′ ‖Ai‖2F + 〈Yk
i ,Di −Ai −Eki 〉

+
µk

2

∥∥∥Di −Ai −Eki

∥∥∥2
F

= argmin
Ai

‖Ai‖∗ + (η′ +
µk

2
)〈Ai,Ai〉

− µk〈Di −Eki + (1/µ)kYk
i ,Ai〉

= argmin
Ai

ε ‖Ai‖∗ +
1

2
‖Xa −Ai‖2F ,

where ε = (2η′ + µk)−1 and Xa = µkε(Di − Ei +
(1/µk)Yi). As suggested by [2], the solution to the above
problem can be solved as

Ak+1
i = USεV

T = UTε[S]V
T

where (U,S,VT ) = SVD(Xa).
(9)

Note that S is the singular value matrix of Xa. The operator
Tε[S] in (9) is defined by element-wise ε thresholding of S,
i.e., diag(Tε[S]) = [tε[s1], tε[s2], . . . , tε[sr]] for rank(S) =
r, and each tε[s] is determined as

tε[s] =


s− ε, if s > ε,
s+ ε, if s < −ε,
0, otherwise.

(10)

3.3.2 Updating Ei

To update the error matrix Ei for class i, we derive (8) with
fixed Ai and Yi and obtain the following form:

Ek+1
i = argmin

Ei

L(Ak+1
i ,Ei,Y

k
i , µ

k, η′)

= argmin
Ei

‖Ei‖1 + 〈Y
k
i ,A

k+1
i +Ei −Di〉

+
µk

2

∥∥∥Ak+1
i +Ei −Di

∥∥∥2
F

= argmin
Ei

ε′ ‖Ei‖1 +
1

2
‖Xe −Ei‖2F .

where ε′ = (1/µk) and Xe = Di − Ak+1
i + (1/µk)Yk

i .
The above optimization problem can be solved by `1-
minimization techniques such as [8].

Once both Ai and Ei are obtained, the matrix Yi can
be simply updated by the last equation in Algorithm 2. The
convergence of the three matrices indicates the termination
of the optimization process for our proposed LR algorithm.

4. Experiments
4.1. Extended Yale B Database

The extended Yale B database [7] consists of 2,414
frontal-face images of 38 subjects (around 59-64 images for
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(a) Extended Yale B

(b) AR face databases

Figure 4. Example training and test images for our experiments.

each person). The cropped and normalized face images are
of size 192×168 = 32,256 pixels, while each image is taken
under various laboratory-controlled lighting conditions (see
Figure 4(a) for example) [12]. Besides the standard LR
(without structural incoherence) and our proposed method,
we also consider nearest neighbor (NN), SRC [19], and
LLC [18] for comparisons. Note that LLC is an extended
version of SRC exploiting data locality for improved sparse
coding, and the classification rule is also based on (3). To
evaluate our recognition performance using data with dif-
ferent dimensions, we project the data onto the eigenspace
derived PCA using our LR models (as shown in Figure 3).
For the standard LR approach, the eigenspace spanned by
LR matrices without structural incoherence is considered,
while those of other SRC-based methods are derived by
the data matrix D directly. We vary the dimension of the
eigenspace and compare the results in this section.

We first visualize the effect of our proposed LR method
with structural incoherence on the projected data. Figure
5(a) shows the distributions of training and test data from
two classes, which are projected onto the first two eigen-
vectors determined by the data matrix D (as NN and SRC-
based approaches do). On the other hand, we project the
same data onto the subspace derived by our low-rank ma-
trices, as shown in Figure 5(b). It is clear that the sepa-
ration between the two classes (in red and blue colors) is
significantly improved. More importantly, we see that the
training data points (denoted as (∗)) within the same class
become closer to each other, while the separation between
those from different classes becomes larger. This observa-
tion is consistent with our expectation that promoting struc-
tural incoherence on low-rank matrices will result in im-
proved classification.

We first randomly select eight images for training and
the remaining for test (per person). We vary the dimen-
sion of the eigenspace as 25, 50, 75, 100, 200, and 300
to compare the recognition performance between different
methods. Since the total number of training image is 8 ×
38 = 304, we do not consider higher dimensional space for
evaluation. All experiments run ten times and the average
results are shown in Figure 6(a). It is clear that, while the
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Figure 5. Data distributions for 2 classes (in blue and red col-
ors)ones). The 2D subspace is spanned by the first two eigen-
vectors derived by (a) the original data matrix D and (b) the LR
matrices A with structural incoherence. Note that training and test
instances are denoted as (∗) and (•), respectively.

two LR methods consistently produced higher recognition
rates than other NN and SRC-based approaches did, our
proposed LR method was the best among all. For example,
at dimension = 50, our method achieved a high recognition
rate at 82.1%, and those for LR, SRC, LLC, and NN were
73.6%, 68.2%, 59.5%, and 32.5%, respectively (see Fig-
ure 6(a)). We repeat the above experiments using thirty-two
training images per person. We compare the performance
of different approaches in Figure 6(b) and observe the same
advantages using our proposed method. From these empir-
ical results, we confirm the use of our LR method alleviates
the problem of severe illumination variations even when
such noise is presented in both training and test data. And,
due to the enforcement of structural incoherence between
our LR matrices, our method exhibits additional classifica-
tion capability and thus outperforms the standard LR algo-
rithm. In the following subsection, in which sparse noise
such as occlusion is presented in face images, we expect the
improvement using our method will be more significant.
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(a) N = 8
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(b) N = 32

Figure 6. Performance comparisons on the Extended Yale B
database with different numbers N of training images per person.

4.2. AR Database

The AR database [14] contains over 4,000 frontal images
for 126 individuals. There are 26 face images available for
each person, and the images are taken under different vari-
ations, including illumination, expression, and facial occlu-
sion/disguise in two separate sessions. More specifically,
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(a) Sunglasses
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(b) Scarf
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(c) Sunglasses+Scarf

Figure 7. Performance comparisons on AR database for different scenarios.

there are thirteen images for each session, in which three
images with sunglasses, another three with scarfs, and the
remaining seven are simply with illumination and expres-
sions variations (and thus are considered as clean/neutral
images). All images are with 165×120 = 19800 pixels and
converted to gray scale (see Figure 4(b) for example). We
note that, most prior works using this database only consid-
ered the use of neutral images for training. In our experi-
ments, we choose a subset of the AR database consisting of
50 men and 50 women (as [19] did), and both neutral and
corrupted images taken at session 1 (of a portion of it) are
used for training. We consider the following scenarios:

Sunglasses: We consider corrupted training images due
to the occlusion of sunglasses. We use seven neutral im-
ages plus one image with sunglasses (randomly chosen) at
session 1 for training, and the remaining neutral images (all
from session 2) plus the rest of the images with sunglasses
(two taken at session 1 and three at session 2) for testing.
In other words, we have a total of eight training images and
twelve test images per person. Note that the presence of
sunglasses occludes about 20% of the face image.

Scarf: We consider the training images are corrupted by
disguise due to scarf, which occludes about 40% of the face
image. We apply a similar training/test set choice, and have
a total of eight training images (seven neutral plus one ran-
domly selected image with scarf at session 1) and twelve
test images (seven neutral images plus five images with
scarfs) per person for this scenario.

Sunglasses+Scarf: Finally, we consider the case where
images with sunglasses and scarfs are presented during
training. We choose all seven neutral images at session
1 and two corrupted images (one with sunglasses and the
other with scarf) for training. A total of nineteen test im-
ages (seven neutral images at session 2 plus the remaining
ten occluded images) are available for this case.

Since there are at most three occluded images for each
type of corruption available in session 1, we repeat our ex-
periment for each scenario three times (i.e., randomly se-
lect one corrupted image with the remaining neural ones for
training), and we report the averaged performance. Sim-

ilar to the experiments on the Extended Yale B database,
we vary the dimension of the face data from 25 up to
500, and we compare our method with the approaches of
LR, NN, Fisherface, SRC, and LLC. Figures 7(a) and 7(b)
show recognition results of scenarios Sunglasses and Scarf.
From these two figures, we see that our method outperforms
all other approaches across different dimensions. It is worth
noting that, although Fisherfaces [1] also promote the sep-
aration between classes during its learning process, it did
not achieve comparable performance as we did. For exam-
ple, the recognition rates of Fisherfaces for Sunglasses and
Scarf were only 72.5% and 57.7% at dimension d = 99, re-
spectively. With the increase of occlusion (from sunglasses
to scarf), it is observed that the recognition rate of Fisher-
faces is severely degraded. This is because its direct use
of corrupted training image data, and thus the associated
performance is remarkably degraded due to the presence of
occlusion and disguise. We achieved over 80% recognition
rates at a comparable dimension at 100 for both cases. As
for the last scenario in which the training data are corrupted
by sunglasses and scarfs, we again confirm the robustness of
our proposed method by performance comparisons shown
in Figure 7(c).

Table 1 summarizes the performance comparisons with
different approaches under three different scenarios. At
lower dimensions, our approach significantly outperforms
other baseline and state-of-the-art methods, especially when
the percentage of occlusion increases. For example, when
the data dimension is equal to 50, we achieve recognition
rates at 77.41% and 80.27% for the scenarios of Scarf (40%
occlusion) and Sunglasses (20% occlusion), respectively.
Using LR, which is among the state-of-the-art and the most
relevant method to ours, it obtains 70.81% and 77.41% for
the above two cases. In other words, we improve the method
of LR by about 3 to 7%, depending on the percentage of
occlusion. We observe the same conclusion when larger di-
mensionality is of interest, and we still obtain comparable
improvements over different scenarios. From both Figure
7 and Table 1, we successfully verify the effectiveness and
robustness of our proposed method.
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Table 1. Comparisons of recognition rates between our and other face recognition methods. (* : the dimension of Fisherfases is fixed at
N − 1 = 100− 1 = 99, where N is the number of subjects in AR database).

Methods
Dimension = 500 Dimension = 100 Dimension = 50

Sunglasses Scarf
Sunglasses

Sunglasses Scarf
Sunglasses

Sunglasses Scarf
Sunglasses

+Scarf +Scarf +Scarf
Fisherfaces [1]* −− −− −− 72.50 57.67 61.80 −− −− −−

NN 66.47 56.53 57.55 65.06 54.56 55.41 60.89 51.25 51.15
LLC+SRC [18] 84.47 76.61 79.03 79.14 70.08 72.04 74.06 63.25 65.10

SRC [19] 84.22 76.25 78.00 79.92 71.70 71.59 73.68 64.05 64.51
LR 84.58 77.00 78.92 82.61 76.39 77.23 77.41 70.81 71.10

Ours 85.42 84.36 81.62 85.27 81.67 81.37 80.27 77.41 74.96

5. Conclusions

We presented a low-rank matrix approximation algo-
rithm with structural incoherence for robust face recogni-
tion. The introduction of structural incoherence between
low-rank matrices promotes the discrimination between dif-
ferent classes, and thus the associated models exhibit excel-
lent discriminating ability. We showed that the proposed
optimization problem can be easily solved by advancing
augmented Lagrange multipliers. Our experiments con-
firmed that our proposed LR approach is robust to severe
illumination variations or corruptions such as occlusion and
disguise, while our method has been shown to outperform
state-of-the-art face recognition algorithms.

Acknowledgement

This work is supported in part by the National Sci-
ence Council of Taiwan via NSC101-2631-H-001-007 and
NSC100-2221-E-001-018-MY2.

References
[1] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. Eigen-

faces vs. Fisherfaces: Recognition using class specific linear
projection. PAMI, 19(7):711–720, 1997.

[2] J. Cai, E. Candès, and Z. Shen. A singular value thresholding
algorithm for matrix completion. SIAM Journal of Optimiza-
tion, 20(4):1956–1982, 2010.

[3] E. Candès, X. Li, Y. Ma, and J. Wright. Robust principal
component analysis? Journal of the ACM, 58, 2011.

[4] Y.-W. Chao, Y.-R. Yeh, Y.-W. Chen, Y.-J. Lee, and Y.-C. F.
Wang. Locality-constrained group sparse representation for
robust face recognition. In ICIP, 2011.

[5] F. De la Torre and M. Black. Robust principal component
analysis for computer vision. In ICCV, 2001.

[6] F. De la Torre and M. Black. A framework for robust sub-
space learning. International Journal of Computer Vision,
54(1):117–142, 2003.

[7] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman.
From few to many: Illumination cone models for face recog-
nition under variable lighting and pose. PAMI, 23(6):643–
660, 2001.

[8] E. T. Hale, W. Yin, and Y. Zhang. Fixed-point continuation
for `1-minimization: Methodology and convergence. SIAM
Journal on Optimization, 19:1107–1130, 2008.

[9] X. He, S. Yan, Y. Hu, P. Niyogi, and H. Zhang. Face recog-
nition using Laplacianfaces. PAMI, 2005.

[10] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal
methods for hierarchical sparse coding. Journal of Machine
Learning Research, 12:2297–2334, 2011.

[11] Q. Ke and T. Kanade. Robust L1 norm factorization in the
presence of outliers and missing data by alternative convex
programming. In CVPR, pages 739–746, 2005.

[12] K.-C. Lee, J. Ho, and D. J. Kriegman. Acquiring linear sub-
spaces for face recognition under variable lighting. PAMI,
27(5):684–698, 2005.

[13] Z. Lin, M. Chen, and Y. Ma. The augmented lagrange mul-
tiplier method for exact recovery of corrupted low-rank ma-
trices. UIUC Tech. Rep. UILU-ENG-09-2214, 2010.

[14] A. Martinez and R. Benavente. The AR face database. CVC
Technical Report, 24, 1998.

[15] I. Ramirez, P. Sprechmann, and G. Sapiro. Classification
and clustering via dictionary learning with structured inco-
herence and shared features. In CVPR, pages 3501–3508,
2010.

[16] M. Turk and A. Pentland. Face recognition using Eigenfaces.
In CVPR, pages 586–591, 1991.

[17] A. Wagner, J. Wright, A. Ganesh, Z. Zhou, and Y. Ma. To-
wards a practical face recognition system: Robust registra-
tion and illumination by sparse representation. In CVPR,
pages 597–604, 2009.

[18] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong.
Locality-constrained linear coding for image classification.
In CVPR, pages 3360–3367, 2010.

[19] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma. Robust
face recognition via sparse representation. PAMI, 31(2):210–
227, 2009.

[20] M. Yang and L. Zhang. Gabor feature based sparse represen-
tation for face recognition with Gabor occlusion dictionary.
In ECCV, pages 448–461, 2010.

[21] M. Yang, L. Zhang, J. Yang, and D. Zhang. Robust sparse
coding for face recognition. In CVPR, 2011.

[22] X. Yuan and S. Yan. Visual classification with multi-task
joint sparse representation. In CVPR, 2010.

8


