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Robust Texture Analysis Using Multi-Resolution
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Abstract—Computer-aided diagnosis (CAD) systems in
gray-scale breast ultrasound images have the potential to re-
duce unnecessary biopsy of breast masses. The purpose of our
study is to develop a robust CAD system based on the texture
analysis. First, gray-scale invariant features are extracted from
ultrasound images via multi-resolution ranklet transform. Thus,
one can apply linear support vector machines (SVMs) on the
resulting gray-level co-occurrence matrix (GLCM)-based texture
features for discriminating the benign and malignant masses. To
verify the effectiveness and robustness of the proposed texture
analysis, breast ultrasound images obtained from three different
platforms are evaluated based on cross-platform training/testing
and leave-one-out cross-validation (LOO-CV) schemes. We
compare our proposed features with those extracted by wavelet
transform in terms of receiver operating characteristic (ROC)
analysis. The AUC values derived from the area under the curve
for the three databases via ranklet transform are 0.918 (95%
confidence interval [CI], 0.848 to 0.961), 0.943 (95% CI, 0.906
to 0.968), and 0.934 (95% CI, 0.883 to 0.961), respectively, while
those via wavelet transform are 0.847 (95% CI, 0.762 to 0.910),
0.922 (95% CI, 0.878 to 0.958), and 0.867 (95% CI, 0.798 to 0.914),
respectively. Experiments with cross-platform training/testing
scheme between each database reveal that the diagnostic per-
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formance of our texture analysis using ranklet transform is less
sensitive to the sonographic ultrasound platforms. Also, we adopt
several co-occurrence statistics in terms of quantization levels and
orientations (i.e., descriptor settings) for computing the co-occur-
rence matrices with 0.632+ bootstrap estimators to verify the use
of the proposed texture analysis. These experiments suggest that
the texture analysis using multi-resolution gray-scale invariant
features via ranklet transform is useful for designing a robust
CAD system.

Index Terms—Breast sonography, computer-aided tumor diag-
nosis, gray-scale invariant features, multi-resolution approach,
texture analysis, 0632+ bootstrap estimators.

I. INTRODUCTION

B REAST ultrasound (BUS) imaging is a useful tool for
early detection of breast cancer as well as diagnosing the

breast lesions [1], [2]. Stavros et al. [3] have reported the sensi-
tivity for tumor diagnosis can reach 98.4% by interpreting BUS.
Berg et al. [4] demonstrated supplemental screening ultrasound
can depict small, node-negative breast tumors not obviously
seen on mammography. In addition, the studies in [5], [6] have
reported BUS screening can yield an incremental detection rate
from 2.8 to 4.6 cancers per 1000 women with dense breasts and
negative mammograms.
Nonetheless, interpretation of BUS images for robust diag-

nosis requires experienced radiologists, and the diagnosis is
often subjective. Hence, recent studies advocate to investigate
and develop computer-aided diagnosis (CAD) [7]–[9] systems
for addressing this issue. Using extracted textural or morpho-
logical features [7], [10] from the located tumor regions [i.e.,
regions of interest (ROIs)]; the CAD system can automatically
interpret and classify the breast tumors into malignant and
benign ones. Several studies have shown the potential of BUS
CAD to reduce the unnecessary biopsy [11], [12].
Texture patterns in BUS have been deemed a useful charac-

teristic for distinguishing benign and malignant tumors [13],
[14]. Recently, several studies aim to extract useful texture
features for tumor diagnosis based on the gray-level co-oc-
currence matrix (GLCM) [15], [16]. Furthermore, Chen et al.
[17] dedicate to investigate useful texture features extracted
from wavelet transformed BUS images. Tsiaparas et al. [18]
advance to extract the textures using wavelet-based transform
with multi-resolution approach and SVM classifier [13], [19]
is adopted for discriminating the atherosclerotic tissue from
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TABLE I
TUMOR HISTOLOGICAL DISTRIBUTIONS OF THE COLLECTED DATABASES

B-mode ultrasound. Gómes et al. [20] devote to analyze the
gray-level co-occurrence statistics with six quantization levels
and select the effective texture descriptors (e.g., quantization
level, orientation, and distance) for BUS tumor diagnosis.
Nevertheless, a challenge task arises for conventional tex-

ture analyses [15]–[17], [20], [21] while the adjustable parame-
ters of the ultrasonic device [22] will introduce incoherent tex-
ture feature extraction from original BUS images or wavelet
transformed BUS images and lead to nonrobust diagnostic ca-
pability for tumor diagnosis. In this study, we refer the nonro-
bust diagnostic capability to variant texture analysis. Since the
invariant texture analysis is highly demanded for developing
clinical applications, more recent studies are directed to extract
the gray-scale invariant texture features for pattern recognition.
The local binary patterns (LBPs) [23] are firstly investigated to
deal with gray-scale and rotation invariant texture classification.
Masumoto et al. [24] aim to extract the textures based on local
binary patterns for classifying the solid masses in BUS images.
As firstly proposed to use the ranklets (i.e., ranklet transformed
images) for robust face recognition [25], several researches pay
more attention to ranklet transform which is adopted for ro-
bust texture classification and mass classification in the mam-
mograms [26], [27].
The ranklet transform is an image processing technique

characterized by a multi-resolution and orientation-selective
approach similar to that of the wavelet transform. Yet, differ-
ently from the latter, it deals with the rank of the pixels rather
than their gray-scale intensity values. Herein, we develop a
robust CAD system based on the gray-scale invariant features
via ranklet transform. GLCM textures are extracted from
multi-resolution ranklet transformed BUS images, which allow
standard linear support vector machines (SVMs) [13], [19]
for performing BUS tumor diagnosis. While performing on
three different BUS platforms, we carry out the experiments
concerning leave-one-out (LOO-CV) scheme and cross-plat-
form training/testing schemes for BUS texture analyses to
verify the robustness and stability of the proposed method.
The experiments reveal the texture analyses using ranklet
transform are less sensitive to different ultrasonic devices and
properly adopted for designing a robust CAD system for tumor
diagnosis.

II. MATERIALS

In this study, BUS images of three databases are used for
evaluation. Database A includes 116 subjects (78 benign and
38 malignant cases) which were obtained (from August 2003
to January 2004) with Acuson Sequoia (Acuson Siemens,
Mountain View, CA, USA) equipment, using an 8–15 MHz
linear-array 52-mm ultrasound probe. The ages of the subjects
were from 17 to 82 years (mean age years).
Database B includes 193 subjects (133 benign and 60 malig-
nant cases) which were obtained (from April 2003 to February
2004) with GE LOGIQ 7 (GE Medical Systems, Milwaukee,
WI, USA) equipment, using a 4.5–14 MHz linear-array 40-mm
ultrasound probe. The ages of the subjects were from 21 to
71 years (mean age years). Database C includes
161 subjects (104 benign and 57 malignant cases) which were
obtained (from August 2004 to March 2005) with Voluson 730
expert (GE Medical systems, Kretz Ultrasound, Zipf, Austria)
equipment, using a 4.0–10.5 MHz linear-array 38-mm ultra-
sound probe. The ages of the subjects were from 20 to 85 years
(mean age years). The image pixel resolution
of the three databases are 0.12 mm/pixel for database A, 0.10
mm/pixel for database B, and 0.11 mm/pixel for database C,
respectively. Note that all the BUS images are captured with
whole ultrasonic screen (640 480 pixels) and stored in 8-bit
pixel depth (i.e., 256 gray scales) with DICOM format. Detailed
tumor characteristics of the three databases are listed in Table I.
All breast tumors were histopathologically proven by means
of BUS-guided core needle biopsy or fine-needle aspiration
cytology (FNAC). The institutional review board approved this
retrospective study and informed consent was obtained from
each patient prior to performing the biopsy.
For effectively retrieving the representative image frames to

characterize the breast tumors, the images with largest diameters
of the tumors are selected and captured by the radiologists while
operating the whole breast examination. On the other hand, in
order to extract the tumor regions (i.e., ROIs), the tumor bound-
aries were manually demarcated by two experienced radiolo-
gists who have clinical experience of 6 and 13 years in BUS
screening respectively. Note that the sizes of the ROIs vary
from 724 (65 28) to 55 186 (340 207) pixels for Database
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Fig. 1. Framework of the proposed multi-resolution texture analysis via ranklet transform. (a) Database. (b) A BUS image is decomposed into multiple ranklet
images (i.e., ) using ranklet transform. (c) Multi-resolution texture features are extracted from the ranklets to form the compact
texture representation for each BUS image. (d) SVM classifier is adopted to classify each BUS image from collected database into a benign tumor or a malignant
one.

A. For Database B, the maximum and minimum ROI sizes are
788 (34 25) and 43 400 (325 197) pixels. As for Database
C, the sizes are between 543 (36 18) and 27 781 (213 193)
pixels.

III. METHODS

This study focuses on robust texture analysis for tumor di-
agnosis using multi-resolution gray-scale invariant features via
ranklet transform [26], [28], [29]. Automatic texture analysis
involves three major procedures [26], [29], as drawn in Fig. 1.
First, we decompose each BUS image from the test database
[as shown in Fig. 1(a)] into ranklets (i.e., a series of images rep-
resented in the ranklet domain) in terms of multi-resolution and
orientation-selective properties of the ranklet transform [26], as
depicted in Fig. 1(b). Afterwards, the gray-scale invariant tex-
ture features based on GLCM [21], [30], [31] can be calculated
from each transformed image with regions of interest (ROIs), as
depicted in Fig. 1(c). In order to retrieve multi-resolution fea-
tures for texture analysis [23], the texture features derived from
different resolutions (scales) and orientations of original BUS
image can be combined into one compact texture features as the
image texture representation for each breast tumor. As a result,
the SVM [19], [41] classifier is adopted to distinguish a benign
tumor from a malignant one, as drawn in Fig. 1(d). Several ex-
periments are conducted using three different sonographic BUS
platforms (i.e., Databases A, B, and C) to evaluate the robust-
ness and effectiveness of the proposed texture analysis approach
for tumor diagnosis via ranklet transform.

A. Robust Gray-Scale Invariant Ranklet Transform

The ranklet transform involves nonparametric analysis, ori-
entation-selective and multi-resolution properties as analog to
Haar wavelets [32], which can be used as a rank descriptor of
the pixels within a local region [26]. Since the ranklet transform

considers the relative rank of the pixels [27] instead of corre-
sponding gray values, it can be defined as an invariant operator
to any monotonic changes of any arbitrary observed gray pixels.
For example, given an arbitrary matrix and an additive matrix
(all entries have the same value), the rank descriptive matrix
with ranklet transform of , or ( is a positive

scalar) can be described as follows:

(1)

In (1), the rank value of each entry of the matrix is started
with 1 and ended up with the number of the matrix size. Note
that the rank values in remain unchanged, since the trans-
form operation (e.g., or ) converts entries of monotoni-
cally. Thus, this study aims to extract the gray-scale invariant
features via ranklet transform for tumor diagnosis, which would
be less sensitive to the database collection with operator-depen-
dent issues. We refer ranklets to a series of transformed images
from an input BUS image based on the multi-resolution and
orientation-selective property of the ranklet transform and can
be derived using ranklet decomposition [26], [28], as drawn in
Fig. 1(b).
More specifically, for a clipping square crop, the multi-reso-

lution property of the ranklet decomposition can be described
by giving an arbitrary point and even resolutions of the clip-
ping crop, as drawn in Fig. 2(a). In the clipping crop, we sep-
arate the gray pixels into two clusters of pixels with the same
size (i.e., subset and ). The orientations of the two separated



YANG et al.: ROBUST TEXTURE ANALYSIS USING MULTI-RESOLUTION GRAY-SCALE INVARIANT FEATURES 2265

Fig. 2. (a) Diagram for determining the ranklet coefficient of an arbitrary point
and resolution in a moving square crop. (b) Geometrical representation of

the three orientations horizontal ( ), vertical ( ), and diagonal ( ) directions
of the square crop with subset and .

subsets and can be defined as horizontal ( ), vertical ( ),
and diagonal ( ) directions, as drawn in Fig. 2(b). To determine
the ranklet coefficient with an arbitrary point in ranklet image
with specified resolution and orientation , we firstly rank the
gray values of the pixels within the observed crop (i.e., all ob-
served gray points in ) via ranklet transform to obtain the
rank descriptive matrix ( ). Meanwhile, we
perform the sorting operation for subsets and in terms of
the rank numbers of to obtain the sorted rank descrip-
tive vectors and , respectively (i.e., the rank numbers
existed in sub-region or are rearranged in ascending order
to form the vectors, and ). Hence, the ranklet coefficient

can be defined as follows:

(2)

where and are the -th sorted rank number
in the respective subset while ( ) is the total pixels
of the clipping crop. We note that the dynamic range of the ran-
klet coefficient is and represents the contrast strength
between two sub-region and . In other words, if
the ranklet coefficient is approaching indicating the
gray pixels with higher gray-scales in original BUS image are
centralized at one subset [i.e., or ]. That is, the ran-
klet coefficient can be regarded as a directional gray-scale in-
variant gradient descriptor of a local region. The higher ranklet
coefficients (gradients) might represent edge or corner struc-
tures and the lower ones might represent some specific texture
patterns instead. Herein, we derive the ranklet coefficient for
each target point within the ROI of a BUS image. Thus, the ran-
klet image is composed of the ranklet coefficients derived for
this ROI, and this image will be applied for texture analysis.

B. Multi-Resolution Gray-Scale Invariant GLCM Texture
Extraction

Conventional texture analyses measures the local texture in-
formation as the histograms to characterize the histological tex-

tures for B-mode BUS diagnosis [33]. Nevertheless, regarding
the related position between the pixels within a local region
might offer more geometry information for feature representa-
tion [23]. GLCM textures [21], [30], [31] are proposed to calcu-
late the texture feature depends on the spatial dependence of the
gray values, which have shown the success in the image classi-
fication [30] and tumor diagnosis [15], [20].
The GLCM characterizes all the joint frequencies between

the quantized level and by given a distance and rotation
angle between two arbitrary pixels and within the
region of interest . Herein, we can define the multi-resolution
ranklet GLCMs as [20], [30]

(3)

where denotes the joint frequency of the entry within
the ranklet co-occurrence matrix and is the number of
quantization levels.
As previously studied in [21], [30], [31], we adopt twelve

GLCM-based texture features (codes) as given in Appendix I for
texture extraction. After we quantized the ranklet coefficients
into levels, each texture code can be calculated from the nor-
malized ranklet GLCMs ( ); besides,
1-pixel displacement distance (i.e., ) between two points
as used in [26], [34] within ROIs is adopted for computing the
co-occurrence matrices. Previously, Masotti et al. [26] proposed
to calculate the mean of these invariant angular features for tex-
ture classification. Therefore, we would derive each representa-
tive texture code by averaging the angular features, which can
be defined as [30]

(4)
After we derived the feature codes for each BUS image, the
multi-resolution feature extraction approach is applied to dif-
ferent resolution of ranklet image and the calculated texture
codes are merged to produce the representative compact tex-
tures for further texture analysis. In this paper, we adopt 1-pixel
displacement ( ), averaged angular feature (i.e., averaged
four canonical angles) and 256 quantization levels ( )
as our default texture descriptor. Also, we would adopt several
texture descriptors as suggested in [20] to verify the diagnostic
capability of the remarkable texture analyses [20], [26], [34].

C. Detailed Implementations of the Texture Analyses

To evaluate the stability and robustness of the texture
analyses using ranklet transform for breast sonographic di-
agnoses, the GLCM-based textural features using original
image (origin), multi-resolution wavelet images (wavelets)
and multi-resolution ranklet images (ranklets) are extracted for
texture analyses in this study, respectively.
In our proposed texture analysis based on ranklets, we de-

compose each BUS image into four ranklet resolutions (i.e.,
) and corresponding three orientations (i.e.,
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Fig. 3. The ranklets ( ) and wavelets ( ) with corresponding three orientations horizontal ( ), vertical ( ), and diagonal ( ) are derived from an input
BUS image , filtered by histogram equalization and gamma correction, respectively. Note that the coefficients of the wavelet and ranklet images are scaled for
clear visualization.

) to produce 12 ranklet transformed images (ran-
klets). After computing the ranklet GLCMs for deriving the tex-
ture codes, we will produce 144 (i.e., 4 resolutions 3 orienta-
tions 12 texture codes) texture features to form the compact
image texture representation for a BUS image.
Similarly, we also apply the multi-resolution approach based

on wavelets [17], [32], [34], [35] for texture analysis as well.
Since we apply multi-resolution (multi-scale) wavelet decom-
position for an input BUS image via Haar wavelet transform
[17], we can generate wavelet transformed images (wavelets)
for further GLCMs texture extraction. To objectively compare
the diagnostic performance with the ranklets, we decompose
the BUS images into four scales while the image size in spe-
cific scale would shrink into the quarter of that in scale

( , , , . indicates the original image and
lower-resolution images while ). Instead of particularly
choosing specific subband for extracting the textures [17], we
derive three frequency subbands in each scale; namely,HH (Di-
agonal subband, ), HL (Horizontal subband, ), LH (Vertical
subband, ) to generate 12 wavelet transformed images (i.e.,
, , ) and 144 texture features as

those of the ranklets. We note that the derived image with low
frequency LL subband in scale is the down-sampled version
of that in scale from which we cannot derive the wavelet
coefficients.
Conventional GLCM-based texture analyses extracted tex-

tures from original BUS images for tumor diagnosis [20], [21],
[30], [31]. Since merely one image scale is used for feature ex-
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traction, we can derive twelve texture features from each BUS
image for training the classifier. Compared to texture analyses
via multi-resolution wavelet transform and ranklet transform,
the diagnostic performance can be regarded as the performance
baseline. Particularly, we note the coefficients within the ex-
tracted ROIs for the three compared texture analyses are scaled
to the same range [0, 1] (which is also adopted in [20]).
Ultimately, we clarify the gray-scale invariant property of the

BUS image preprocessed with varied contrast settings. Thus,
two nonlinear monotonic gray-scale transformation filters;
namely, gamma correction and histogram equalization [36] are
applied to produce those enhanced images. The ranklets and
wavelets are derived from an input image or filtered
by three different nonlinear monotonic transformations (i.e., the
histogram equalization and the gamma correction with gamma
value set to 0.5 and 1.5, respectively). As depicted in Fig. 3, the
ranklets derived from original input image or enhanced images
are gray-scale invariant as compared to those of wavelets. In
other words, we can further extract the gray-scale invariant
texture features from input BUS images for robust tumor
diagnoses whether which distribution of texture representation
collected from BUS databases are addressed. The experiments
would demonstrate the effectiveness of the tumor diagnosis via
robust GLCM texture extraction from the ranklets.

D. Texture Analysis for Breast Ultrasound Diagnosis Using
Support Vector Machine

The support vector machines (SVMs) have been widely used
for pattern recognition research fields [13], [26], [37]–[39] due
to the high classification accuracy and capability in dealing
with high dimensional data [39], [40]. In SVM model training,
we aim to solve the following convex quadratic optimization
problem:

(5)

In (5), the parameter is the offset of the constructed hyperplane
and is the number of training tumor cases. Furthermore, the
parameter is the class label and is the multi-resolution tex-
ture features of the training sample, respectively. is the
multi-resolution texture features represented in the transformed
space (if linear kernel is adopted, is the identity transfor-
mation to ), is the derived normal vector to classification
hyperplane of the objective quadratic function and controls
the tradeoff between the model complexity and training error.
Before training the SVM classifier, we perform feature normal-
ization which scales each feature dimension to the same range
of [0, 1] as suggested in [19]. To effectively deal with the pa-
rameter selection problem, we apply the grid search on the pa-
rameter selection [19] for constructing the SVM models. The
parameter of the model can be determined by performing the
-fold cross-validation ( ) using the training data with
varied input parameters; the model parameter with the best clas-
sification performance would be chosen as the model parameter
[19], [41]. To clarify the kernel selection issue for SVM clas-

sifier, we carry out the experiments using linear and nonlinear
kernel (RBF kernel) for texture analysis. We use the parameter
settings for linear and RBF kernels: 1) automatically selected
by the -fold cross validation (for linear SVMs); 2)
and (default setting for non-
linear SVM in [19]); 3) ( , gamma) automatically selected by
the -fold cross validation (nonlinear). It is worth noting that,
we do not limit using specific kernel for data discrimination.
Nevertheless, the experiments have shown the effectiveness of
adopting linear SVM model for tumor classification in terms
of the promising diagnostic performances and the efficiency of
that which only requires one to train and store the SVM solution
vector [i.e., in (5)] for future classification.

E. Statistical Analysis

The binary SVM [19] is used to classify the tumors as a
malignant case or a benign one based on the proposed GLCM
texture features. The probability of each tumor sample predicted
by the SVM model lies between 0 and 1. We choose a threshold
of 0.5 to classify the benign and malignant tumors while con-
ducting the experiments. A tumor is classified as a malignant
case if the predicted probability is equal to or larger than 0.5;
otherwise, the tumor is regarded as a benign case. Furthermore,
we adopt two evaluation schemes for performance comparison,
namely, LOO-CV and cross-platform training/testing schemes.
If the training set and testing set are the same database, then
the leave-one-out cross-validation (LOO-CV) method (i.e.,
LOO-CV scheme) [42] is adopted for objective performance
evaluation. Contrarily, the classifier trained from the training
database is used to evaluate the diagnostic performance of the
testing database (i.e., cross-platform training/testing scheme).
Diagnostic performance of the binary SVM model based on

the proposed texture features for classifying the breast tumors
is evaluated with accuracy (ACC), sensitivity (SENS), speci-
ficity (SPEC), positive and negative predictive values (PPV and
NPV). Moreover, the receiver operating characteristic (ROC)
curves are obtained by using ROCKIT software (C. Metz; Uni-
versity of Chicago, Chicago, IL, USA) and the area under the
ROC curve (AUC) is adopted as one of the indicator of diag-
nostic performance. The AUC value can be derived by adjusting
different thresholds of the class probability and can be generated
by the ROCKIT software. In addition, statistical analyses except
ROC (AUC) are performed by using the software (SPSS, ver-
sion 16 for Windows; SPSS, Chicago, IL, USA).

IV. EXPERIMENTS

Experiments are conducted using three different breast sono-
graphic platforms for performance comparisons based on the
proposed texture analyses (i.e., origin, wavelets and ranklets).
To clarify the issues about the selection of scales for the pro-
posed multi-resolution features and that of SVM kernels, we
carry out the experiments with aforementioned parameter set-
tings for building the SVMmodels. Furthermore, the texture de-
scriptor as used in [26] (i.e., 1-pixel displacement and averaged
angular feature) with 256 quantization levels (default texture
descriptor) is adopted. As shown in Fig. 4, we observed using
two resolutions (or image scales) for wavelets and ranklets with
linear SVM kernel can produce promising diagnostic perfor-
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Fig. 4. Diagnostic performance (AUC) of origin, wavelets and ranklets using different number of scales (features) for training the SVM classifiers of each data-
base. The selected parameter for linear SVMs of the three databases are (a) {2, 2, 32}, (b) {16, 16, 8}, (c) {8, 8, 8}, respectively. Note that the parameter set for
the three methods is expressed as {origin, wavelets, ranklets}.

mance for tumor classification (i.e., the first two scales are used
for wavelets while resolutions {4, 8} are adopted for ranklets).
Though we can use more training features for objects classifi-
cation to increase the model complexity and simultaneously de-
crease the training errors [28], [29]. Nevertheless, the training
linear SVMmodels would over-fit the training data with limited
observed samples while using too much features for training the
classifier [43]. For objectively comparing the diagnostic per-
formance, we adopt two resolutions (i.e., 72 texture features)
for feature extraction and linear SVM kernel for building the
training models to verify the stability and robustness of the pro-
posed texture analysis via ranklet transform. Note that all al-
gorithms except SVM classifiers (LIBSVM package [19]) were
implemented in MATLAB R2010a on an Intel quad-core PC
with 2.23-GHz processor and 2G RAM.We also list the compu-
tation time for deriving a ranklet pixel with specific resolutions
in Appendix II.

A. Stability of the Texture Analysis via Ranklet Transform

To verify the stability of the proposed texture analysis, we
derived the area under the ROC curve (i.e., AUC values) to
demonstrate the stable diagnostic performances of ranklets. In
Fig. 4, AUC values for the three databases via ranklet trans-
form are 0.918 (95% confidence interval [CI], 0.848 to 0.961),
0.943 (95% CI, 0.906 to 0.968), and 0.934 (95% CI, 0.883 to
0.961), respectively; whereas for texture analysis via wavelet
transform are 0.847 (95% CI, 0.762 to 0.910), 0.922 (95% CI,
0.878 to 0.958), and 0.867 (95% CI, 0.798 to 0.914), respec-
tively. The experiments demonstrate the stability of the texture
analysis via ranklets, which is observed to be less sensitive to
the breast sonographic platforms.

Considering the performance evaluation with LOO-CV boot-
strap scheme might be upward bias [44], we adopt 0.632+ boot-
strap estimators [45] (as also used in [20]) with 500 indepen-
dent bootstrap samples to evaluate the diagnostic performance.
To build each independent bootstrap sample, we randomly re-
sample the training dataset with replacement, and the test sam-
ples are selected which are not included in the training set. Fur-
thermore, we consider the combination of rotation angle (i.e.,
averaged angular feature and 90 rotation angle) and quantization
level (i.e., 32, 64, and 256) as suggested in [20], [26] for com-
puting the co-occurrence matrices. The average AUC values
calculated from the 500 bootstrap samples for the three texture
analyses of each database are shown in Fig. 5. The experiments
show that texture analysis using original images (origin) are ba-
sically consistent with those reported in [20] and the best diag-
nostic performances ofwavelets and ranklets are obtained while
default texture descriptor is adopted (as also used in [26]). To
be more specific, we list the detailed diagnostic performance
using default texture descriptor for the three texture analyses in
Table II.
To the best of our knowledge, there is no study aiming at

searching for the optimal GLCM texture descriptors using
wavelets or ranklets for BUS tumor classification. The aver-
aged angular feature of texture descriptor as used in [26], [30]
seems to perform well for rotation-invariant ranklet transform
instead of merely considering specific rotation angle for texture
analysis. Moreover, [20], [46] have shown the effectiveness
of coefficients quantization for improving the classification
performance, the ranklet transform quantizes (decomposes) the
gray values of the BUS images into ranklet coefficients which
is robust to the speckle noise existed in BUS images [20].
There is worth to note, we do not assume the default texture
descriptor adopted in this paper would be the optimal.
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Fig. 5. Average AUC values calculated from 500 bootstrap samples of each database for the three texture analyses. (a) Origin. (b) Wavelets. (c) Ranklets.

TABLE II
ROC TEXTURE ANALYSES (MEAN STANDARD DEVIATION) FOR ORIGIN, WAVELETS AND RANKLETS WITH DEFAULT TEXTURE DESCRIPTOR

AS WELL AS MINIMUM PREDICTION ERROR ( ) CALCULATED FROM 500 INDEPENDENT BOOTSTRAP SAMPLES

Particularly, we aim to examine how the variant textures would
influence the diagnostic performance while applying varied tex-
ture representations of collected BUS data for texture analyses.
Our experiments show the usefulness of extracting invariant
textures for developing a stable CAD system.

B. Robustness of the Texture Analysis via Ranklet Transform

To verify the robustness of the texture analyses using ran-
klets for tumor diagnosis, we conduct the experiments to de-
rive the AUC values of cross-platform training/testing combi-
nation between each database. There is worth noting that, we re-
size the BUS images using bicubic interpolation down-sampling
from different databases into the same pixel resolution before
texture feature extraction to validate the correctness of cross-
platform training/testing scheme. More specifically, all images
from the two databases (i.e., Database B and C) are resized to
a lower image resolution (0.12 mm/pixel) as Database A. The
robust texture analysis for breast sonographic tumor diagnosis
concerns one of the possible scenarios while the training data
of new BUS platform are unavailable and patient cases need
to be recollected for months for training a new SVM model.

We have to note that the parameter of the training linear SVM
model with input data from the training platform is tuned as sug-
gested in [19]. Afterward, the trained SVM model is adopted
to evaluate the test data from the testing platform. As shown in
Table III, the diagnostic performances (i.e., AUC values) of ran-
klets outperform those of origin and wavelets whenever which
combinations of training/testing platforms are performed. Fur-
thermore, we observed that the diagnostic performance would
suffer from performance degradation while the cross-platform
training/testing scheme is applied (LOO-CV scheme is the per-
formance baseline). The percentages of the performance degra-
dation (based on AUC values) of the test databases for ranklets
are between 0.93% and 6.50% ( ), for wavelets
are between 2.90% and 21.74% ( ), and for
origin are between 1.92% and 10.28% ( ). We
note that the texture analysis using ranklets presents a better
generalization of SVM model in classifying BUS images col-
lected from different sonographic platforms.
To clarify the issue about the performance degradation while

comparing the two adopted evaluation schemes (i.e., cross-plat-
form training/testing and LOO-CV schemes). One of the pos-
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TABLE III
DIAGNOSTIC PERFORMANCE EVALUATION (AUC VALUES AND 95% CI
ARE LISTED) OF CROSS-PLATFORM TRAINING/TESTING COMBINATION

BETWEEN EACH COLLECTED DATABASE

TABLE IV
MEAN (MEANS) AND STANDARD DEVIATION (SDS) FOR EACH DATABASE
WITH INTENSITY MEAN AND STANDARD DEVIATION CALCULATED

FROM EACH TUMOR ROI

sible reasons might be related to the different gray-scale distri-
bution between two databases. Thus, we further calculate the in-
tensity mean and standard deviation for each tumor within ROI.
And then, themean and standard deviation (i.e., Means and SDs,
as shown in Table IV) for the intensity mean and standard de-
viation calculated from tumor ROI can be obtained. Table IV
demonstrates that if the cross-platform training/testing scheme
is applied, the trained SVMmodel is not properly for evaluating
the test database with differentiable Means and SDs between

TABLE V
THE -VALUE OF THE -TEST ON THE AUC VALUE WHILE APPLYING

CROSS-PLATFORM TRAINING/TESTING OR LOO-CV SCHEME
BETWEENRANKLETS ANDWAVELETS, RANKLETS AND ORIGIN

TABLE VI
THE -VALUE OF THE WELCH’S -TEST ON THE DISTRIBUTION OF THE AUC
VALUES BETWEEN RANKLETS AND WAVELETS, RANKLETS AND ORIGIN.

training and testing database, which results in significant perfor-
mance degradation (especially for wavelets which particularly
consider the frequency information existed in the BUS image).
Since there are no researches aiming to investigate the rela-
tionship between varied texture patterns and diagnostic perfor-
mance using BUS images, our experiments obviously demon-
strate that the diagnostic performances using invariant texture
from ranklets are less sensitive to the breast sonographic plat-
forms, which is relatively robust to address the BUS databases
with different distributions of texture representation.

C. Statistical Analysis for the Texture Analyses

We conduct a -test [47], [48] on the AUC values of the ex-
periments for the two aforementioned evaluation schemes to
prove whether the diagnostic performance of ranklets statis-
tically outperform the other two methods. The difference of
the diagnostic performance between two methods is statistically
significant if the -value is less than 0.05. Table V indicates the
diagnostic performance of ranklets outperforms the other two
methods in most of the evaluations which shows the efficacy
for tumor diagnosis while applying texture analysis via ranklet
transform.
Moreover, we use AUC values generated by the 0.632+ boot-

strap estimators with default texture descriptor to perform the
statistical analysis for comparing the three texture analyses. Be-
fore we perform the significance test between the methods, the
Kolmogorov–Smirnov test is applied to test the normality of
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TABLE VII
TEXTURE FEATURES EXTRACTED FROM RANKLET GLCMS

the distribution of the AUC values generated by each evalu-
ated group. Due to all the methods of each database present
normal distribution, the -test is further used for verifying the
equality of variances between two groups. The Welch’s -test
( ) is substituted for the Student’s test when the
hypothesis of equal variances is rejected, which all the com-
pared groups present unequal variance. Based on the 0.632+
bootstrap estimators, Table VI states the texture analysis using
ranklets statistically outperform that using wavelets and origin,
respectively.

V. DISCUSSION AND CONCLUSION

Conventional texture analyses for tumor diagnosis aim at
extracting textural features from gray-scale BUS images [13],
[15], [16], [20], [21], or gray-scale images represented in the
frequency domain [17]. However, most prior work did not
consider the stability and robustness when designing CAD for
practical tumor diagnosis applications. Gomez-Flores et al.

[20] dedicated the selection of effective texture descriptors for
deriving informative GLCM texture features for classifying
the BUS images, and their best AUC performance can achieve

using 0.632+ bootstrap estimators. In this paper,
our experiments demonstrated that the GLCM-based texture
analysis using multi-resolution features via wavelet transform
[17], [32] further improved the diagnostic performance. Nev-
ertheless, addressing varied texture representations of BUS
images from different sonographic platforms would produce
gray-scale variant features and affect the consistency of the
diagnostic performance. While the robust and stable properties
are desired for texture analyses, we developed a robust feature
extraction scheme via ranklet transform [26], [29] to derive the
gray-scale invariant features for this purpose.
Different from wavelet transform, the ranklet transform of

BUS images merely consider the corresponding ranks of the
gray values and the gray-scale invariant texture features can be
extracted to train the robust classifier for classifying the masses.
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TABLE VIII
DESCRIPTION OF THE SYMBOLS USED IN THIS PAPER

Our experiments show the diagnostic performances of the
texture analysis via ranklet transform can achieve best and
consistent performance using the LOO-CV scheme and without
significant performance variations for cross-platform train/test
scheme. We also observed that the diagnostic performance
would degrade remarkably using wavelets and origin. In addi-
tion, due to the operator-dependent issue in BUS, it is not clear
whether training a classifier using data with varied texture rep-
resentations collected by different operators on a sonographic
platform is applicable. That is, the parameters of BUS systems
would lead to increased difficulties in providing quantitative
and qualitative tumor diagnosis. Since some studies [22], [49]
proposed to enhance the texture patterns existing in BUS via
fuzzy logic or to estimate the parameters of the ultrasonic
devices with log-compressed K-distribution, texture analyses
with gray-scale variant feature for these methods via original
images or wavelet transform cannot be guaranteed to achieve
robust and stable tumor diagnoses in different BUS platforms
as well.
In this paper, we proposed to extract gray-scale invariant fea-

tures via ranklet transform for designing a cross-platform and
practical CAD application. Our experiments confirmed that we
produced stable and robust tumor diagnosis while GLCM-based
texture analysis using multi-resolution ranklet transform was
applied. For improving BUS tumor classification, more effec-
tive GLCM-based textures as used in [20] and the range of an-
gular features as suggested in [30] will be introduced in our fur-
ther works. On the other hand, texture analysis using local bi-
nary patterns (LBPs) [23], [24] based on multi-resolution ap-
proach is known to result in gray-scale invariant features as
well, which will also be considered and compared in our on-
going study. Finally, our future research directions also include
the investigation of feature selection techniques, which have
been widely used in pattern recognition for improving recogni-
tion performance based on robustness requirement assumption

Fig. 6. Computation time ( ) of the ranklet transform with specific reso-
lution .

(i.e., the selected features set are useful across different ultra-
sonic devices).

APPENDIX I

Twelve texture features adopted in this work are extracted
from the GLCMs as described in Table VII. The symbols used
in this paper and detailed description are listed in Table VIII.

APPENDIX II

We test our proposed ranklet transform to derive the com-
putation time with various input ranklet resolutions (i.e.,

). The computation time is expressed in mi-
crosecond ( ) per ranklet point (rp), which is shown in Fig. 6.
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