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Robust Face Recognition With Structurally
Incoherent Low-Rank Matrix Decomposition

Chia-Po Wei, Chih-Fan Chen, and Yu-Chiang Frank Wang

Abstract— For the task of robust face recognition, we partic-
ularly focus on the scenario in which training and test image
data are corrupted due to occlusion or disguise. Prior stan-
dard face recognition methods like Eigenfaces or state-of-the-art
approaches such as sparse representation-based classification did
not consider possible contamination of data during training, and
thus their recognition performance on corrupted test data would
be degraded. In this paper, we propose a novel face recognition
algorithm based on low-rank matrix decomposition to address the
aforementioned problem. Besides the capability of decomposing
raw training data into a set of representative bases for better
modeling the face images, we introduce a constraint of structural
incoherence into the proposed algorithm, which enforces the
bases learned for different classes to be as independent as
possible. As a result, additional discriminating ability is added to
the derived base matrices for improved recognition performance.
Experimental results on different face databases with a variety of
variations verify the effectiveness and robustness of our proposed
method.

Index Terms— Face recognition, low-rank matrix decomposi-
tion, structural incoherence.

I. INTRODUCTION

AMONG biometric approaches for identity recognition,
the use of face images can be considered as the most pop-

ular one due to its low intrusiveness and high uniqueness [1].
Other physiological or behavioral biometrics (e.g., fingerprint
or gait recognition) often require cooperative subjects, which
might not always be feasible for real-world applications.
Generally, face images can be acquired actively by the user, or
they can be captured passively by surveillance cameras. With
the increasing needs for security-related applications such as
computational forensics and anti-terrorism, face recognition
has been an active topic for researchers in the areas of
computer vision and image processing.

To address the problem of face recognition, one typically
focuses on the extraction of facial features from training image
data, and the learning of associated classification models.
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Unseen test data from the same subjects of interest will be used
to evaluate the recognition performance. It is worth noting
that, most prior works on face recognition assume that both
training and test image data are under pose, illumination,
or expression variations. To further assess the robustness of
the designed face recognition algorithm, only test images are
considered to be corrupted due to occlusion or disguise in
recent literatures [2] and [3]. In other words, while the test data
might be corrupted, most prior works consider the training face
images to be taken under a well controlled setting (i.e., under
reasonable illumination, pose, etc. variations without occlusion
or disguise). To apply these prior approaches for practical face
recognition scenarios, one will need to discard corrupted train-
ing images and thus inevitably encounter small sample size
and over-fitting problems. Moreover, the disregard of corrupted
training face images might give up some valuable information
for recognition. For example, in forensic identification, any
available information extracted from face images could be the
key to identification for forensic investigators [4].

Generally, Eigenfaces [5], Fisherfaces [6], or Laplacian-
faces [7] are common face recognition techniques which
aim at extracting proper features from face images for
recognition using nearest neighbor (NN) or support vector
machines (SVM). Although Fisherfaces can extract discrimi-
nating features for face recognition, limited number of training
data would cause problems when calculating the inverse of
the data matrices. To tackle this problem, Jiang et al. [8]
decompose the derived eigenspace and utilize an eigenspec-
trum model for improved recognition. Nevertheless, the above
approaches are not designed to deal with corrupted training
data, and thus their recognition results will be sensitive to
the presence of sparse/extreme noise such as occlusion and
disguise in face images. We note that, recent methods based
on robust PCA have been proposed to deal with data in which
sparse noise is presented [9]–[11]. Among them, low-rank
matrix recovery can be solved in polynomial-time and has
been shown to provide promising results [11]. Although such
methods have been shown to be capable of identifying a set of
representative bases from corrupted data, there is no guarantee
that such a basis set would serve for classification purposes.

Recently, sparse representation-based classification
(SRC) [2] has shown very promising results on face
recognition, which considers each test image as a sparse
linear combination of the training instances. SRC solves an
�1-minimization problem for a test input by deriving the sparse
coefficients for the training data, and recognition is achieved
based on the minimum class-wise reconstruction error.
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Fig. 1. Comparison between the standard SRC and our method. The standard
SRC classifies the test input as the class with most similar training images even
if they are occluded (e.g. due to sunglasses), while our approach alleviates
this problem and is robust to such occlusions presented in both training and
test data.

It has been shown in [2] that if the test image is corrupted
due to face occlusion, SRC is able to exhibit excellent
robustness and produces promising performance. However,
besides requiring the training images to be well aligned for
reconstruction purposes, SRC does not allow corrupted data
for training (otherwise the performance will be degraded as we
verify in our experiments). Inspired by SRC, Wagner et al. [3]
propose a sequential �1-minimization algorithm to deal with
face misalignment problems, and design a projector-based
illumination system to tackle illumination variations. To better
handle occlusion, Zhou et al. [12] integrate a Markov random
field for contiguous occlusion into SRC. Yang et al. [13], [14]
also modify the SRC framework for handling outliers such
as occlusions in face images. Unfortunately, the above SRC
based methods might not generalize well if both training and
test images are corrupted, since none of them consider the
possible corruption of training face images.

In this paper, we address the problem of robust face
recognition, in which both training and test image data are
corrupted. We do not have the prior knowledge on the type of
corruptions (e.g., due to sunglasses, scarf, etc.). We will show
that the direct use of dimension reduction techniques such as
Eigenfaces for training and testing would degenerate the per-
formance with the presence of corrupted data (see the left half
of Fig. 1 for example). To address this problem, we propose a
novel low-rank matrix decomposition algorithm with structural
incoherence, which allows us to convert raw face image data
into a set of representative bases with a corresponding sparse
error matrix. We further regularize the derived basis matrix
with a structural incoherence constraint. The introduction of
such incoherence between the basis extracted from different
classes would provide additional discriminating ability to our
framework. It is worth noting that we are among the first
applying low-rank techniques for face recognition problems.
More importantly, our proposed method particularly serves for
recognition purposes (not just for reconstruction), as illustrated
in the right half of Fig. 1. Our experiments will verify the
effectiveness and robustness of our method, and we will show
that our method outperforms existing SRC-based approaches
when both training and test image data are corrupted by a
variety of noise/variations.

The remaining of this paper is organized as follows.
Section II reviews related works on low-rank matrix recov-
ery, and discusses the use of SRC for face recognition.
In Section III, we present our proposed algorithm based on
low-rank matrix decomposition and structural incoherence,
including the optimization details. Experimental results on four
face image databases are presented in Section IV. Finally,
Section V concludes this paper.

II. RELATED WORK

A. Robust PCA and Low-Rank Matrix Recovery

Principal component analysis (PCA) is a popular dimension
reduction technique for data analysis applications such as
reconstruction and classification. In spite of its effectiveness,
PCA is known to be sensitive to sparse errors with large
magnitudes [15]. A number of approaches have been proposed
in literatures to address this problem, including the introduc-
tion of influence functions [9], alternating minimization tech-
niques [10], and low-rank matrix recovery [11] (noted as LR in
the remaining for this paper for conciseness). Among these
methods (known as robust PCA), LR has been observed to be
solved in polynomial time with performance guarantees [11].
Since our work in this paper is inspired by low-rank matrix
decomposition, we briefly review its formulation for the sake
of completeness.

Low-rank matrix recovery aims at decomposing a data
matrix D into A + E, in which A is a low-rank matrix and
E is the associated sparse error. More precisely, to derive the
low-rank approximation of the input data matrix D, LR mini-
mizes the rank of matrix A while reducing the �0-norm of E.
As a result, one will need to solve the following minimization
problem:

min
A,E

rank(A) + λ‖E‖0 s.t. D = A + E. (1)

From the above formulation, we note that ‖E‖0 calculates
the number of non-zero elements in E. Since solving (1)
involves the low-rank matrix completion and the �0-norm
minimization problems, it is NP-hard and thus is not easy
to solve. To convert (1) into a more tractable optimization
problem, Candès et al. [11] relax (1) by replacing rank(A)
with its nuclear norm ‖A‖∗ (i.e., the sum of the singular values
of A). Instead of solving the minimization of �0-norm ‖E‖0,
that of �1-norm ‖E‖1 is now considered (i.e., the sum of the
absolute values of each entry in E). Consequently, the convex
relaxation of (1) has the following form:

min
A,E

‖A‖∗ + λ‖E‖1 s.t. D = A + E. (2)

It is shown in [11] that solving this convex relaxation
version is equivalent to solving the original low-rank matrix
approximation problem, as long as the rank of A to be recov-
ered is not too large, and the number of non-zero elements in
E is reasonably small (i.e., to be sufficiently sparse). To solve
the optimization problem of (2), the technique of augmented
Lagrange multipliers (ALM) [16] has been applied due to its
computational efficiency. While many image processing appli-
cations can be casted as the low-rank matrix recovery prob-
lems (e.g., image alignment [17], subspace segmentation [18],
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collaborative filtering [11], and image tag transduction [19]),
we are among the first to apply LR-based techniques for
addressing the problem of robust face recognition.

B. Sparse Representation-Based Classification

Wright et al. [2] recently proposed a sparse representation-
based classification (SRC) algorithm for face recognition.
SRC considers each test image as a sparse linear combination
of training image data by solving an �1-minimization problem.
Very promising results were reported in [2], even if test
image data are corrupted due to occlusion or noise. Several
works have been proposed to further extend SRC for improved
performance. For example, Yuan and Yan [20] utilized
an �1,2 mixed-norm regularization for computing the joint
sparse representation of different features for visual signals.
Jenatton et al. [21] considered a tree-structured sparse reg-
ularization for hierarchical sparse coding. Chao et al. [22]
integrated the �1,2 norm with a data locality constraint for
improved face recognition.

Since we apply the SRC as our classification rule, we now
review this algorithm. Suppose that there exist m training
images from N object classes, and each class j has m j

images. Let D = [D1, D2, . . . , DN ] ∈ R
d×m be the training

set, where D j ∈ R
d×m j contains training images of the j th

class as its columns, and d is the dimension of each image.
Given a test image y ∈ R

d×1, the SRC algorithm calculates
the sparse representation α of y, which is computed via
the �1 minimization process over the entire training image
set. More precisely, SRC solves the following optimization
problem for deriving the sparse representation α:

min
α

‖y − Dα‖2
2 + λ‖α‖1. (3)

Let δi (α) be a vector in R
m×1 with nonzero entries as those

in α that are associated with class i . Once (3) is solved, the
test input y will be recognized as class j if it satisfies

j = arg min
i

‖y − D δi (α)‖2
2. (4)

In other words, the test image y will be assigned to the
class based on a class-wise minimum reconstruction error.
The motivation behind this classification strategy is that the
test image y should lie in the space spanned by the columns
D j of class j . As a result, most non-zero elements of α will
mainly be presented in the non-zero elements of δ j (α), which
results in the minimum reconstruction error. The framework
of SRC is depicted by the red arrows in Fig. 3.

Although impressive face recognition results were reported
by SRC [2], SRC still requires clean (i.e., unoccluded) face
images for training. In other words, it might not be preferable
for real-world scenarios when corrupted face images are
collected during training. As later verified by our experi-
ments, this practical training scenario would result in degraded
recognition performance for SRC due to the tendency of
recognizing test images as the training ones with the same
type of corruption presented. In the following section, we will
introduce our proposed algorithm for robust face recognition,
in which both training and test image data can be corrupted.

Fig. 2. Example results of low-rank matrix recovery. (a) Original images D.
(b) Low-rank and approximated images A of (a). (c) Sparse error images
E of (a).

III. LOW-RANK MATRIX RECOVERY WITH STRUCTURAL

INCOHERENCE FOR FACE RECOGNITION

A. Face Recognition With Low-Rank Matrix Recovery

For face recognition in real-world scenarios, we cannot
expect the training image data to be always collected under
a well-controlled setting. In addition to illumination, pose, or
expression variations, it is possible that one can be taking
a scarf, gauze mask, or sunglasses, when his/her face image
is taken by the camera. Using such images for training
would make the learned face recognition algorithm overfit the
extreme noise of occlusion, instead of modeling the face of
the subject. As a result, the resulting recognition performance
will be degraded.

As discussed earlier in Section II-A, we note that low-rank
matrix recovery (LR) can be applied to alleviate the aforemen-
tioned problem. Recall that LR decomposes the collected data
matrix into two different parts, one is a representative basis
matrix with a minimum rank and the other is the corresponding
sparse error matrix. It is worth noting that, in order to apply LR
for face recognition, the face image data needs to be registered
prior to the procedure of low-rank matrix decomposition.
In our work, we only consider face images of frontal views
(i.e., no pose variations), so that the extracted low-rank matrix
would preserve the structure of the face images.

When applying LR for face recognition with N subjects of
interest, one can collect training data D = [D1, D2, . . . , DN ],
where Di is the training data matrix (with the presence of
occlusion or disguise) for subject i , as shown in Fig. 2(a).
By performing low-rank matrix recovery, the data matrix
D = [D1, D2, . . . , DN ] will be decomposed into a low-
rank matrix A = [A1, A2, . . . , AN ] and the sparse error
matrix E = [E1, E2, . . . , EN ]. As shown in Fig. 2(b), the
representative images in A can be considered as preprocessed
data with sparse noise removed (see the corresponding images
in Fig. 2(c)). Comparing Figs. 2(a) and 2(b), we can see that
the low-rank matrix A has a better representative ability than
the original data D does in describing the face images of the
subject of interest.
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Fig. 3. Illustration of our proposed method. Note that we promote the
structural incoherence between low-rank matrices for better modeling and
recognizing face images.

Since the face images are typically with high dimensionality,
standard dimension reduction techniques such as PCA are
typically applied to the face image data before training and
testing. Instead of using the Eigenfaces calculated by from the
original data matrix D as most prior works did, one can apply
PCA on the low-rank matrix A (as shown in Step 2 of Fig. 3),
and the resulting subspace can be applied as the dictionary for
training and testing purposes (see Step 3 in Fig. 3). Finally,
one can apply SRC and the derived dictionary to classify
test inputs, which performs classification based on class-wise
minimum reconstruction error (as depicted by Step 4 in Fig. 3).
Later in Section IV, in contrast to the direct use of raw data D
we will verify that LR better handles the problem in which
the input training data is under severe illumination variations
or is corrupted by occlusion or disguise. Algorithm 1 and
Fig. 3 summarize the procedure of integrating low-rank matrix
recovery and SRC for face recognition.

B. Low-Rank Matrix Decomposition With
Structural Incoherence

1) Proposed Formulation: Although we show that LR is
able to process the raw data matrix D and to produce a
low-rank matrix A for better representation ability, the face
images of different subjects might share common (correlated)
features (e.g., the locations of eyes, nose, etc.) and thus the
derived matrix A does not contain sufficient discriminating
information. Inspired by [23], we propose to promote the
incoherence between the derived low-rank matrices of dif-
ferent classes for classification purposes. The introduction of
such incoherence would prefer the resulting low-rank matri-
ces to be as independent as possible. Therefore, commonly
shared features across different classes will be suppressed
while the independent/discriminating ones will be preserved.

Algorithm 1 LR for Face Recognition

As illustrated in Step 1 of Fig. 3, our method aims at providing
additional discriminating ability to the original LR models
by promoting their structural incoherence, and the recognition
performance is expected to be improved.

Based on the LR formulation in (2), we add a regulariza-
tion term to the objective function and enforce the incoher-
ence between different low-rank matrices. We now solve the
following optimization problem:

min
A,E

N∑

i=1

{‖Ai‖∗ + λ‖Ei ‖1} + η
∑

j �=i

‖AT
j Ai‖2

F

s.t. Di = Ai + Ei for i = 1, 2, . . . , N. (5)

We note that the first term of the objective function in (5)
performs the standard low-rank decomposition of the data
matrix D. The second term promotes the structural incoherence
by summing up the Frobenius norms between different pairs
of low-rank matrices Ai and A j , which is penalized by the
parameter η balancing the low-rank matrix approximation
and structural incoherence. We refer to (5) as our proposed
low-rank matrix recovery with structural incoherence, which
will be utilized to provide improved discrimination ability to
the original LR model. Since the error matrix E in (5) is
sparse (the same as (2)) and represents extreme noise such
as occlusion and disguise presented in face images, we do not
enforce extra regularization on E.

While the minimization problem in (5) is nonconvex due
to the product term AT

j Ai , we do not solve all low-rank
matrices Ai at once and choose to solve class-wise optimiza-
tion problems across different classes. To be more specific,
we iteratively solve the following minimization problem across
different classes:

min
Ai ,Ei

‖Ai‖∗ + λ‖Ei‖1 + η
∑

j �=i

‖AT
j Ai‖2

F

s.t. Di = Ai + Ei . (6)
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For each iteration, we aim at solving the low-rank matrices
for each class. That is, for class i , we fix A j if j �= i , and
the variables to be minimized are Ai and Ei . As a result, (6)
turns into a convex optimization problem, and the solution
of (6) is guaranteed to be a global minimizer. From (6),
we see that the objective function includes the Frobenius
norms of product terms of different matrix pairs. To make the
optimization problem more tractable, our prior work in [24]
applied the Cauchy-Schwarz inequality and replaced the term
η

∑
j �=i ‖AT

j Ai‖2
F with η′‖Ai‖2

F , in which the influence of
low-rank matrices A j is absorbed into the parameter η′.
However, this relaxation only implicitly addresses the for-
mulation of structural incoherence, and does not guarantee
the resulting incoherence between A j and Ai . In this paper,
we propose to solve the optimization problem of (6) with-
out any relaxation or approximation. More specifically, we
introduce auxiliary variables Bi to (6) to tackle the term of
Frobenius norms of different matrix pairs, which leads to

min
Ai ,Bi ,Ei

‖Ai‖∗ + λ‖Ei ‖1 + η
∑

j �=i

‖AT
j Bi‖2

F

s.t. Di = Ai + Ei and Bi = Ai . (7)

From the above formulation, it is clear that the optimal
solutions of (6) and (7) are the effectively same, and hence
introducing auxiliary variables does not change the optimiza-
tion problem that we aim to solve. The strategy of introducing
auxiliary variables has been used in [18] for solving the
low-rank representation problem for subspace segmentation.

2) Structural Incoherence for Improved Recognition: In
our work, we add an additional regularization term
η

∑
j �=i ‖AT

j Ai‖2
F into the standard formulation of low-rank

matrix decomposition (LR). Thus, our proposed algorithm
aims at deriving low-rank representations for different classes
while minimizing the structural incoherence (SI) between
them. We note that, the proposed algorithm balances the
low-rank matrix decomposition and the associated structural
incoherence. While the former allows us to automatically
disregard undesirable noisy patterns from face images, the
latter introduces additional data separation between different
classes. As a result, the resulting low-rank matrices are not
only considered as features for describing face images, they
are also utilized for recognizing faces of different subjects due
to improved discriminating capabilities.

When addressing pattern recognition problems, it is always
desirable to extract features which can be applied to solve
the associated recognition task. While we advocate the struc-
tural incoherence between the derived low-rank matrices by
minimizing their similarities (i.e., correlation), our algorithm
effectively searches for data representations of different classes
as distinct as possible. The introduced structural incoherence
term is regularized by η, which balances between the represen-
tation and discrimination capabilities of the derived low-rank
matrices for each class. As verified by our experiments, setting
η = 0 would turn the proposed algorithm into the standard
LR formulation, and it cannot achieve satisfactory recognition
results as ours does.

It is worth noting that, the idea of introducing a regular-
ization term on structural incoherence also appears in recent

works on dictionary learning algorithms for image classifica-
tion (e.g., digit [23], scene [25], or action recognition [26]
problems). While aiming at observing dictionaries for solv-
ing the associated classification tasks, these approaches also
enforce the structure incoherence between the dictionary atoms
of different classes in the learning process. In other words, the
structural incoherence between the derived dictionaries would
imply and thus produce coefficients of different classes as
different as possible. When applying the encoded coefficients
as features for performing recognition, improved recognition
performance have been reported in [23], [25], and [26].

Generally, challenges of face recognition lie in the need
to handle image variants due to illumination and expression
changes, plus the possible presence of corruptions. There-
fore, our proposed low-rank based algorithm with introduced
structural incoherence term would produce preferable image
features for solving the recognition task.

C. Probabilistic Point of View

We now provide theoretical analysis for supporting our
LRSI over the standard LR from probabilistic point of view.
We have the training image data as D = [D1, D2, . . . , DN ],
where N is the number of classes. For each class i , we decom-
pose Di into Ai + Ei , where Ai and Ei represent the low-
rank structure and the corresponding sparse errors of Di ,
respectively. Using the Bayes’ rule, we have

log P(A, E | D) + log P(D)

= log P(D | A, E) + log P(A, E), (8)

in which A and E denote the collections of all Ai and Ei ,
respectively. In (8), P(A, E | D) is the posterior probability
given the input training data, and P(D | A, E) is the likelihood
function. We consider P(D) as the evidence of D, and P(A, E)
reflects the prior of (A, E). Based on the maximum a-posteriori
(MAP) estimates (see [27, Sec. 1.2.3]), we aim at solving the
following optimization problem:

(AM AP , EM AP )

= arg max
A,E

log P(D | A, E) + log P(A, E)

= arg min
A,E

− log P(D | A, E) − log P(A, E). (9)

Note that log P(D) is disregarded in (9) since it is indepen-
dent of (A, E). The posterior probability log P(A, E | D) is
related to the augmented Lagrange function in (17), and is
defined as the summation of the terms with Di in (17) over
i = 1, 2, . . . , N . Since A and E are meant to describe distinct
characteristics of D, A and E will be independent to each
other. In other words, we have

log P(A, E) = log P(A)P(E) = log P(A) + log P(E). (10)

Since the sparse error matrices of each class have random
distributions, we further derive log P(E) as follows:

log P(E) = log P(E1)P(E2) · · · P(EN )

=
N∑

i=1

log P(Ei ) := −λ

N∑

i=1

‖Ei‖1. (11)
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Note that the smaller the value of ‖Ei‖1, the larger the
probability of Ei . Hence, solving the above optimization
problem would result in a minimized EM AP , which represents
the sparse error components of D.

It is worth noting that, the difference between LR
and our LRSI lies in the statistical assumption on the
observed low-rank matrices. More specifically, LR assumes
that A1, A2, . . . , AN are independent, and thus

log P(A) = log P(A1)P(A2) · · · P(AN )

=
N∑

i=1

log P(Ai ) := −
N∑

i=1

‖Ai‖∗. (12)

Note that smaller ‖Ai‖∗, implying Ai with a lower rank,
would correspond to larger P(Ai ). In contrast to LR, our LRSI
relaxes the above assumption and allows A1, A2, . . . , AN to
be dependent. This is practical for face recognition, since in
addition to the low-rank constraint, our goal is to observe
the low-rank representations of different classes which are
as distinct (but not necessarily independent) to each other as
possible. Therefore, we rewrite log P(A) as:

log P(A) = log P({A j , j �= i} | Ai) + log P(Ai ), (13)

which holds for i = 1, 2, . . . , N . We note that, equation (13)
would reduce to the first equality in (12) if A1, A2, . . . , AN are
independent. In view of (13), we can further rewrite log P(A)
as:

log P(A) = N log P(A)

N

= 1

N

N∑

i=1

log P(Ai ) + log P({A j , j �= i} | Ai)

:=
N∑

i=1

⎡

⎣−‖Ai‖∗ − η
∑

j �=i

‖AT
j Ai‖2

F

⎤

⎦ , (14)

in which the term −‖Ai‖∗ corresponds to 1
N log P(Ai ),

and the term −η
∑

j �=i ‖AT
j Ai‖2

F corresponds to 1
N log

P({A j , j �= i} | Ai). The conditional probability log
P({A j , j �= i} | Ai) determines the degree of the incoherence
between low-rank matrices A1, A2, . . . , AN , and the parame-
ter η is the weight (or penalty) for the conditional probability
(see Section IV-C.3). When setting the value of η to zero,
the conditional probability log P({A j , j �= i} | Ai) vanishes,
and our definition of log P(A) reduces to the case of the
standard LR.

Since the choice of the prior belief on A (i.e., log P(A))
affects the MAP solution, the design of log P(A) is the key to
achieving satisfactory recognition results. To be more precise,
better recognition performance can be expected, if log P(A)
is properly designed for the task of face recognition. Because
the standard LR was not proposed/designed to address pattern
recognition problems, it does not take the dependency between
the low-rank matrices A1, A2, . . . , AN of different classes
into consideration (i.e., LR simply assumes that such low-
rank matrices are independent). To improve LR, we consider
the relationship between the observed low-rank matrices by
introducing the structural incoherence regularization term,

Algorithm 2 Solving LR With Structural Incoherence

which not only corresponds to the conditional probability term
in (14) but also addresses the recognition task. With this
regularization term, our algorithm is able to obtain better MAP
estimates than the standard LR does on recognition problems,
and this has been successfully verified by our experiments.

D. Optimization via ALM

Augmented Lagrange multipliers (ALM) have been applied
to solve the standard LR problem [11], [16]. In this subsection,
we will detail how we extend ALM to solve our proposed LR
formulation with regularization on structural incoherence.

Denote the objective function in (7) and the equality
constraints in (7) as

f (X) = ‖Ai‖∗ + λ‖Ei ‖1 + η
∑

j �=i

‖AT
j Bi‖2

F ,

h1(X) = Di − Ai − Ei , h2(X) = Bi − Ai ,

h(X) = [h1(X); h2(X)], (15)

and let X = (Ai , Bi , Ei ). For an optimization problem in
which f (X) is to be minimized with the constraint h(X) = 0,
its ALM function is formulated as follows:

L(X, Y, μ) = f (X) + 〈�, h(X)〉 + μ

2
‖h(X)‖2

F , (16)

where � = (Yi , Zi ) is a Lagrange multiplier, and μ is
a penalty parameter. After substituting (15) into (16), the
augmented Lagrangian function for (7) has the form

L(Ai , Bi , Ei , Yi , Zi , μ)

= ‖Ai‖∗ + λ‖Ei‖1 + η
∑

j �=i

‖AT
j Bi‖2

F

+〈Zi , Bi − Ai 〉 + μ

2
‖Bi − Ai‖2

F

+〈Yi , Di − Ai − Ei 〉 + μ

2
‖Di − Ai − Ei‖2

F . (17)

We apply the alternating direction algorithm [28] to find the
minimizer of (17). The pseudo code of our proposed algorithm
is shown in Algorithm 2. We now discuss how we update/solve
the above variables in each iteration.
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1) Updating Ai : To update Ak+1
i for class i at the (k +1)th

iteration in Algorithm 2, we have fixed variables other than
Ai and solve the following problem accordingly:

Ak+1
i = arg min

Ai
L(Ai , Bk

i , Ek
i , Yk

i , Zk
i , μ

k)

= arg min
Ai

‖Ai‖∗ + 〈Zk
i , Bk

i − Ai 〉 + μk

2
‖Bk

i − Ai‖2
F

+〈Yk
i , Di − Ai − Ek

i 〉 + μk

2
‖Di − Ai − Ek

i ‖2
F

= arg min
Ai

ε‖Ai‖∗ + 1

2
‖Xa − Ai‖2

F ,

where ε = (2μk)−1 and Xa = 0.5(Di − Ek
i + (1/μk)Yk

i +
Bk

i + (1/μk)Zk
i ). As shown in [16, Sec. 2.1], the closed-form

solution to the above problem is given by

Ak+1
i = U Tε[S]VT , (18)

where USVT is the singular value decomposition of Xa ,
and the operator Tε[S] in (18) is defined by element-wise ε
thresholding of S, i.e., Tε[S](i, j) = tε[S(i, j)], where tε[s] is
defined as

tε [s] =

⎧
⎪⎨

⎪⎩

s − ε, if s > ε,

s + ε, if s < −ε,

0, otherwise.

(19)

2) Updating Ei : To update the error matrix Ei for class i ,
we minimize (17) and fix variables other than Ei , which leads
to

Ek+1
i = arg min

Ei
L(Ak+1

i , Bk
i , Ei , Yk

i , Zk
i , μ

k)

= arg min
Ei

λ‖Ei ‖1 + 〈Yk
i ,−Ak+1

i − Ei + Di 〉

+ μk

2
‖ − Ak+1

i − Ei + Di‖2
F

= arg min
Ei

ε′‖Ei ‖1 + 1

2
‖Xe − Ei‖2

F ,

where ε′ = (λ/μk) and Xe = Di − Ak+1
i + (1/μk)Yk

i .
As shown in [16, Sec. 2.1], the closed-form solution of the
above optimization problem is given by Ek+1

i = Tε′ [Xe].
3) Updating Bi : To update the auxiliary variable Bi ,

consider minimizing (17) with variables other than Bi fixed:

Bk+1
i = arg min

Bi
L(Ak+1

i , Bi , Ek+1
i , Yk

i , Zk
i , μ

k)

= arg min
Bi

η
∑

j �=i

‖(Ak+1
j )T Bi‖2

F

+ 〈Zk
i , Bi − Ak+1

i 〉 + μk

2
‖Bi − Ak+1

i ‖2
F .

Setting the partial derivative of L with respect to Bi equal to
zero gives

2η
∑

j �=i

Ak+1
j (Ak+1

j )T Bi + Zk
i + μk(Bi − Ak+1

i ) = 0,

and we obtain

Bk+1
i = (2η

∑

j �=i

Ak+1
j (Ak+1

j )T + μkI)−1(μkAk+1
i − Zk

i ).

Fig. 4. Example training images randomly selected from the Extended
Yale B database.

Once Ai , Ei , and Bi are obtained, the Lagrange multipliers Yi

and Zi can be simply updated by the corresponding equations
in Algorithm 2. The convergence of the variables indicates
the termination of the optimization process for our proposed
LR algorithm.

E. Convergence Analysis

It can be seen that, the minimization of (5) is non-convex
and non-smooth due to the presence of the product term AT

j Ai

and the �1-norm of Ei , respectively. To derive the solution
for (5), we iteratively solve (6) across different classes i .
During each iteration of minimizing (6), the variables to be
minimized are Ai and Ei , while the remaining variables {A j :
j �= i} are fixed. This strategy is known as the block coordinate
descent method ([29, p. 267]). As a result, the objective
function in (5) would satisfy the block multiconvex property
defined in [30], i.e., the objective function is a convex function
of (Ai , Ei ) with all the other block variables {(A j , E j ) :
j �= i} remained fixed. We note that, the convergence and
global optimization for the block multiconvex function like (5)
has been established and verified in [30], which advances a
sophisticated update rule for the block variables under the
Kurdyka-Łojasiewicz condition. For the ease of presentation,
we choose to update the block variables (Ai , Ei ) via (6)
without introducing additional regularization terms.

We now discuss the convergence rate when solving (6).
Note that (6) is now a convex optimization problem with only
Ai and Ei as variables, and thus a global minimizer can be
expected. There exist several approaches which can be uti-
lized to solve (6), including iterative thresholding, accelerated
proximal gradient (APG), and augmented Lagrange multiplier
(ALM) methods. We adopt the ALM method because of
its excellent convergence property (as suggested in [16]).
Following the same arguments as in the proof of Theorem 1
in [16], one can prove that the convergence rate of the ALM
method is at least O(μ−1

k ), where μk is the penalty parameter
in Algorithm 2. This implies that if μk grows geometrically,
the ALM algorithm will converge Q-linearly.

IV. EXPERIMENTS

A. Extended Yale B Database

We first conduct experiments on the Extended Yale B
database [31], which consists of 2,414 frontal-face images of
38 subjects (around 59–64 images for each person). The face
images are taken under various laboratory-controlled lighting
conditions (see Fig. 4 for example) [32]. All images are down-
sampled to 64×56 = 3,584 pixels and are converted to gray
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Fig. 5. Data distributions for 2 classes (in blue and red colors ones). The 2D subspace is spanned by the first two eigenvectors of the covariance matrices of
(a) the original data matrix D, (b) the LR matrix A without structural incoherence, and (c) the LR matrix A with structural incoherence. The corresponding
plots for (a), (b), and (c) when the 2D subspace is spanned by the fifth and sixth eigenvectors are shown in (d), (e), and (f), respectively. Note that training
and test instances are denoted as (∗) and (•), respectively.

scale images prior to our experiments. Besides the standard
LR (without structural incoherence) and our proposed method,
we also consider Eigenfaces [5], SRC [2], and LLC [33] for
comparisons. Note that LLC is a coding scheme extended
from SRC, and it exploits data locality for improved sparse
coding. For LLC we use the same classification rule (4)
as in the SRC algorithm. In our experiments, we apply the
Homotopy method [34] to solve the �1 minimization prob-
lem (3) with λ = 0.001, which is observed to be accurate and
efficient among various �1 minimization techniques as reported
in [34]. For all experiments in this paper, we considered
η ∈ [10−2, 102] and selected the one with the best recognition
performance.

To evaluate our recognition performance using data with
different dimensions, we project the data onto the eigenspace
derived PCA using our LR models (as shown in Fig. 3). For the
standard LR approach, the eigenspace spanned by LR matrices
without structural incoherence is considered, while those of
other SRC-based methods are derived by the data matrix D
directly. We vary the dimension of the eigenspace and compare
the results in this section.

1) Visualization of The Discrimination Ability: To visualize
the effectiveness of our proposed method in recognizing
images from different classes, we show the distributions of
training and test data from two classes in Fig. 5(a), in which
the data are projected onto the first two eigenvectors of
the covariance matrix of data matrix D (as Eigenfaces and
SRC-based approaches do). Moreover, we project the same
data onto the subspace derived by the low-rank matrices A
with and without structural incoherence, and the results are
shown in Figs. 5(b) and 5(c), respectively. Compared to
Figs. 5(c) and 5(a) (or 5(b)), it is clear that the separation

between the two classes (in red and blue colors) is significantly
improved, and thus a better recognition rate can be expected
using our approach.

Compared to Figs. 5(a), 5(b), and 5(c), we also plot their
corresponding 2D subspaces spanned by the fifth and sixth
eigenvectors in Figs. 5(d), 5(e), and 5(f), respectively. It can be
seen that the same data projected onto the original data matrix
D (i.e., Fig. 5(d)) still does not exhibit sufficient discrimination
property, while the separation between the data projected onto
the LR matrices A with and without structural incoherence
(Figs. 5(e) and 5(f)) are observed to be improved (especially
for Fig. 5(e) vs. Fig. 5(b)). However, it is worth noting that
our LR matrix A with structural incoherence is able to pro-
vide better data discrimination at more dominant eigenvectors
(see Fig. 5(c)), and thus the use of our derived LR matrix
will be expected to achieve better recognition results. The
following experiments will confirm this observation.

2) Performance Comparison: To evaluate the recognition
performance, we first randomly select 16 images from each
class for training and the remaining for test. Therefore, differ-
ent subjects have training images subject to different lighting
conditions, which are close to the cases in practical applica-
tions. We vary the dimension of the eigenspace as 25, 50, 75,
100, 200, and 300 to compare the recognition performance
between different methods, which are shown in Fig. 6(a). It is
clear that while the two LR methods consistently produced
higher recognition rates than other Eigenfaces and SRC-based
approaches did, our proposed LR method was the best among
all. For example, at feature dimension 50, our method achieved
a high recognition rate at 89.2%, and those for LR, SRC,
LLC, and Eigenfaces were 86.3%, 82.3%, 72.3%, and 45.5%,
respectively (see Fig. 6(a)). We repeat the above experiments
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Fig. 6. Performance comparisons on the Extended Yale B database with
different numbers m̄ of training images per person. (a) m̄ = 16. (b) m̄ = 32.

using 32 training images per person (as shown in Fig. 6(b)),
and we observe the same advantages using our proposed
method. From these empirical results, we confirm that the use
of our LR method alleviates the problem of severe illumination
variations even when such noise is presented in both training
and test data. More importantly, due to the enforcement of
structural incoherence between the derived LR matrices, our
method exhibits additional classification capability and thus
outperforms the standard LR approach.

B. CMU Multi-PIE Database

The CMU Multi-PIE database [35] contains face images
of 337 subjects recorded in four different sessions. In each
session, every subject has images of two or three facial expres-
sions with 20 different illuminations. In our experiments,
we consider the training set of all 249 subjects in Session 1.
For each of the 249 subjects, we select face images with
the frontal pose, and have illuminations {1, 2, 8, 14} of the
neutral expression, and illuminations {15, 17, 19} of the smile
expression as training images. Thus, the training set has a
total of 7 × 249 = 1, 743 images. The test set includes the
subjects from Sessions 2, 3, and 4 that present in Session 1.
For every subject in each session during testing, we use all
20 illuminations of two facial expressions as test images, and
thus each session contains about 6,400–7,000 test images.
All face images are manually cropped and downsampled into
40 × 32 = 1, 280 pixels. Example test images from the CMU
Multi-PIE database are shown in Fig. 7.

We compare our method with Eigenfaces [5], Fisher-
faces [6], standard low-rank matrix recovery (LR), SRC [2],

Fig. 7. Example test images from the CMU Multi-PIE database, where
the first, second, and third rows are selected from Sessions 2, 3, and 4,
respectively.

and LRSI-approx [24]. Table I lists and compares the recogni-
tion results. From Table I, it can be seen that while SRC-based
approaches obtained improved results than baseline methods
did (e.g., Eigenfaces and Fisherfaces), our proposed method
achieved the highest recognition rates and outperformed all
other approaches in all sessions. From our experimental results
on the CMU Mult-PIE database, the effectiveness of our pro-
posed algorithm can be verified. In the following subsections,
we will consider more challenging datasets with occluded face
images for training and testing.

C. AR Database

The AR database [36] contains over 4,000 frontal images for
126 individuals. For each subject, twenty-six face images are
taken under different variations in two separate sessions. There
are thirteen images for each session, in which three images
with sunglasses, another three with scarfs, and the remaining
seven are with illumination and expression variations and thus
are considered as clean/neutral images (see Fig. 8 for exam-
ple). All images are downsampled to 55 × 40 = 2,200 pixels
and converted to gray scale. In our experiments, we choose a
subset of the AR database consisting of 50 men and 50 women
(as [2] did). It is worth noting that, most prior works using
this database only considered the use of neutral images for
training. To show the effectiveness of our results, we conduct
experiments where the training images are corrupted due to
occlusion or random pixel noise.

1) Training Images With Disguise: In this part of the
experiments, we consider the scenario in which the training
set has both neutral and occluded images taken at Session 1
(of a portion of it). There are three cases to be evaluated:

Sunglasses: We first consider occluded training images due
to the presence of sunglasses, which occlude about 20% of
the face image. We have a total nc neutral images (randomly
chosen) plus no image(s) with sunglasses at Session 1 for
training (we fix nc + no = 7), and 7 neutral images plus 3
images with sunglasses at Session 2 for testing. To assess the
influence of the ratio no/(nc + no) = no/7 for robust face
recognition, we vary the number of no from 0 up to 3.

Scarf : We consider occluded training images occluded by
disguise due to the presence of scarfs, which occlude about
40% of the face image. The choice of training and test set
data is similar to that for the above (Sunglasses) case.
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TABLE I

PERFORMANCE COMPARISONS ON THE CMU MULTI-PIE DATABASE. THE FEATURE DIMENSION IS SET AS 300

FOR ALL METHODS EXCEPT FOR FISHERFACES (WHOSE FEATURE DIMENSION IS 248)

Fig. 8. Example images from Session 1 of the AR database.

Sunglasses+Scarf : In this most challenging case, the train-
ing images are occluded due to sunglasses or scarfs. From
Session 1, we choose 7 neutral images, nsg images with
sunglasses, and nsc images with scarfs for training. The
numbers of nsg and nsc are set to be the same, and they range
from 0 to 3. The test set consists of 7 neutral images, 3 images
with sunglasses, and 3 images with scarfs (all from Session 2).
Note that the setting of this scenario is different from those in
Sunglasses and Scarf. The number of training images in the
previous two cases is fixed at 7, while the number of training
images in this scenario varies with nsg and nsc.

We compare our method with the approaches of Eigen-
faces [5], Fisherfaces [6], standard low-rank matrix recov-
ery (LR), SRC [2], and LRSI-approx [24]. Tables II and III
show the recognition results of the above three scenarios using
different approaches.1 From these two tables, we see that
our method generally outperforms all other approaches across
different settings. In Table II, we observe that the recognition
rates of SRC are sensitive to the type of occlusions. For
example, the difference in recognition rates is 9.6% when the
percentage of occluded training images is 14%. Compared to
SRC, our method has much smaller performance gap between
the two scenarios, and thus our method is much less sensitive
to the type of occluded images in the training set.

In Table II, when only neutral images were considered as
training images D, the recognition rates were inferior to those
using a number of occluded training images. The reason for
this is due to the way SRC performs recognition. Recall that
in Section II, SRC solves the �1-minimization problem (3)

1The feature dimension is set as 300 for all methods except for Fisherfaces.
Since the maximal number of valid Fisherfaces is N − 1, where N is the
number of subjects, the feature dimension of Fisherfaces is fixed at N − 1.

and determines the identity of the test image y based on
the class-wise reconstruction error (4). In other words, SRC
assumes that the test input y can be well approximated by Dα.
Given an occluded image y, the reconstruction error ‖y−Dα‖2

2
in (3) will not be negligible if D contains only neutral training
images (i.e., the unoccluded ones), and large reconstruction
errors often lead to inferior recognition performance.

It can be seen from Table III that, although LR outperforms
SRC for all tests, the difference between their recognition rates
becomes smaller when the number of occluded training images
increases. This is because that the low-rank matrix A extracted
by standard LR does not contain sufficient discriminating
information (as discussed in Section III-B). Unlike LR, our
method does not suffer from this due to the enforcement of
structural incoherence.

Besides the above experiments, we also vary the feature
dimension (via PCA) from 25 up to 500 under (a) Sunglasses
with no/7 = 14%, (b) Scarf with no/7 = 14%, and
(c) Sunglasses+Scarf with (nsg +nsc)/(7+nsg +nsc) = 22%.
We compare the recognition performance of different methods
in Fig. 9. From this figure, we see that our approach out-
performed all other methods for the three cases. At dimen-
sion 100, our approach achieved the best recognition rate
85.1% for Sunglasses, 82.4% for Scarf, and 80.7% for Sun-
glasses+Scarf. We observe that, since our formulation (5) aims
at minimizing the nuclear norm of Ai and thus reducing the
rank of Ai , the first few eigenvalues of the covariance matrix
of [A1, A2, . . . , AN ] will be the most dominant ones. Since the
introduced structural incoherence term

∑
j �=i ‖AT

j Ai‖2
F in (5)

encourages the incoherence between different Ai and A j ,
this further suppresses the dominant eigenvalues and makes
them even sparser. In the above case, we observe that the
rank of the derived matrices Ai is about 100. This explains
why the proposed method favors lower dimensionality while
achieving the best recognition performance. From the above
experimental results and discussions, we confirm that our
method outperformed other state-of-the-art algorithms over a
variety of scenarios.

2) Training Images With Random Pixel Corruption: In the
second part of the experiments, we consider the training
images which are corrupted due to the presence of random
noise. We first choose 7 neutral images (without occlusion)
from Session 1 for training and 7 neutral images from
Session 2 for testing. Next, we randomly choose pixels (and
vary the percentages) of training and test images, and those
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TABLE II

COMPARISONS OF RECOGNITION RATES WITH DIFFERENT PERCENTAGES OF OCCLUDED IMAGES (no/7) PRESENTED IN THE

TRAINING SET. THE FEATURE DIMENSION IS SET AS 300 FOR ALL METHODS EXCEPT FOR FISHERFACES

TABLE III

COMPARISONS OF RECOGNITION RATES WITH DIFFERENT PERCENTAGE

OF OCCLUDED IMAGES PRESENTED IN THE TRAINING SET.

THE FEATURE DIMENSION IS SET AS 300 FOR ALL

METHODS EXCEPT FOR FISHERFACES

pixels are replaced by 0 or 255. The percentage of corrupted
pixels ranges from 0 to 40%, as shown in Fig. 10.

Table IV lists the recognition rates with feature dimen-
sion set as 300 for all methods except for Fisherfaces.
From this table we see that our method again outperformed
state-of-the-art algorithms on most cases. Among different
methods, we observe that Eigenfaces, Fisherfaces, and SRC
degraded significantly as the percentage of corrupted pixels
increased. As can be expected, the performance drop for meth-
ods utilizing low-rank decomposition (i.e., LR, LRSI-approx,
and ours) is less than those using standard subspace learning
techniques (i.e., Eigenfaces, Fisherfaces, and SRC), since
LR-based approaches exhibit better ability in removing sparse
noise.

It is worth noting that, although Fisherfaces [6] also
promotes the separation between classes during its learning
process, it does not achieve comparable performance as we do.
With the percentage of corruption increases, it can be seen
that the recognition rate of Fisherfaces was severely degraded.
For example, the recognition rate of Fisherfaces decreased
from 84.4% to 45.7% when the percentages of random pixel
corruption increased from 0% to 10%. This is because of its
direct use of corrupted training image data for data separation.
As a result, the performance of Fisherfaces will be remarkably
degraded due to overfitting the noise presented in training data.

3) Selection of Parameters η and ρ: We now discuss how
we determine the parameter η. Similar to SVM or other
regularized optimization problems, the introduced regularizer
typically solves a particular task, while its weight/penalty

balances between the regularizer itself and the original objec-
tive function. As can be seen in (5), the parameter η regularizes
the incoherence between the low-rank representations of dif-
ferent classes A1, A2, · · · , AN , and such incoherence brings
additional discriminating capabilities into the derived solutions
as discussed in Section III-B.2.

If the value of η is too small, solving the problem of (5)
will focus on minimizing the first term (i.e., the standard low-
rank matrix decomposition), and thus there is no guarantee
for sufficient incoherence/separation between different classes.
However, if the value of η is too large, one would overem-
phasize the discrimination between difference classes, even
such information comes from undesirable patterns or corrupted
image regions (e.g., sunglasses or scarves). Since our paper
addresses robust face recognition problems, our goal is to
select a proper η which ensures sufficient incoherence being
introduced for the derived low-rank representations of different
subjects. As a result, improved recognition can be achieved.

In our experiments, we considered a range of possible values
for η, and we selected the one with the best recognition
performance. Take the AR database for example, we plot
the recognition rates with η ∈ [10−2, 102] in Fig. 11, in
which the settings were the same as those of the fourth and
fifth columns in Table II. For comparison purposes, we also
plot the recognition rates using the standard low-rank matrix
recovery (LR), which only solved the first term of (5) and
directly applied the resulting representations for recognition.

From Fig. 11, it can be seen that our method with proper
η choices would consistently outperformed LR. As expected,
its performance decreased and was comparable to that of LR
when η became small. On the other hand, the recognition per-
formance also degraded if we overemphasized the structured
incoherence with a much larger η, which resulted in the lack
of the capability of disregarding undesirable noisy patterns for
face images. We note that, since there were only few corrupted
images available for the databases considered, they were either
treated as training or test data for verifying the effectiveness
of our proposed algorithm. In other words, we did not select
η by performing cross-validation on such a small amount of
corrupted data.

As for the parameter ρ in Algorithm 2, it controls the
increasing/convergence rate of the augmented Lagrange mul-
tiplier μ. In general, the inner while loop in Algorithm 2
converges faster if μ is updated with a larger increas-
ing rate. However, it is also more likely to encounter the
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Fig. 9. The recognition rate across different feature dimensions for various algorithms under (a) Sunglasses with no/7 = 14%, (b) Scarf with no/7 = 14%,
and (c) Sunglasses+Scarf with (nsg + nsc)/(7 + nsg + nsc) = 22%.

Fig. 10. Example training images under different percentages of random
pixel corruption.

TABLE IV

COMPARISONS OF RECOGNITION RATES WITH DIFFERENT

PERCENTAGES OF RANDOM PIXEL CORRUPTION

Fig. 11. Recognition rates with different η for the AR database.
(a) Sunglasses. (b) Scarf.

ill-condition problem, which prevents one from reaching
the optimal solution for the associated Lagrange function.
Therefore, there is a tradeoff between fast convergence and
the optimum of the solution when solving the optimization
problem. We set ρ = 1.5 for all experiments in this paper, and
this choice always allowed our algorithm to converge within
30 iterations. More discussions on the increasing rate ρ can
be found in [29, Sec. 4.2].

Fig. 12. Example images of the CAS-PEAL database.

TABLE V

PERFORMANCE COMPARISONS ON THE CAS-PEAL DATABASE

D. CAS-PEAL Database

The CAS-PEAL database [37], to the best of our knowledge,
is the currently largest public face database with corrupted
face images available. To conduct the experiments, we select
all 434 subjects from the normal and the accessory categories
of CAS-PEAL for training and testing (recall that AR only
has face images of 100 subjects). Each subject in CAS-PEAL
has 1 neutral image, 3 images with hats, and 3 images with
glasses/sunglasses. We select one image with glasses and one
image with hats as test images, and the rest for training
(including those with sunglasses). Since we only consider
recognition of frontal faces in this work, we manually crop
out and downsample face images into 40×32 = 1, 280 pixels.
Example training and test images are shown in Fig. 12.

Similar to our prior experiments, we compare our method
with Eigenfaces [5], Fisherfaces [6], standard low-rank matrix
recovery (LR), SRC [2], and LRSI-approx [24]. Table V
lists the recognition results. From Table V, we see that
our method achieved the highest recognition rate among all
methods. Similar to our experiments on the prior two datasets,
LR-based approaches (LR, LRSI-approx, and ours) outper-
formed baseline methods due to the ability of disregard-
ing noisy patterns. It is worth repeating that, our method
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TABLE VI

COMPUTATIONAL TIME OF THE TRAINING STAGE

OF LOW-RANK BASED ALGORITHMS

outperformed standard LR and LRSI-approx because of the
advance of structural incoherence, which confirms the use of
the proposed algorithm for solving (5) (and thus (7)) in this
paper.

E. Runtime Complexity

We now analyze the runtime complexity of our pro-
posed method (i.e., Algorithm 2). The dominant cost of our
Algorithm 2 is the inner while loop which updates variables Ai

and Bi at each iteration. Recall that matrices Ai and Bi both
are of size d × mi with d 	 mi . For updating Ai , the SVD
operation in Section III-D.1 has the complexity of O(dm2

i ).
To update Bi , we solve the linear equation in Section III-D.3,
which requires 1

3 d3 flops (floating-point operations) for the
Cholesky factorization, and 2d2mi flops for forward and back-
ward substitutions. As a result, the complexity for updating Bi

is O(d3). Since d 	 mi , updating Bi dominates the compu-
tation complexity, and thus the complexity of the inner while
loop of Algorithm 2 is O(d3). Given the above observations,
we conclude that the runtime complexity of Algorithm 2 is
O(d3 N pq), where N is the number of classes, and p and q
are the numbers of iterations for inner and outer while loops
of Algorithm 2, respectively.

In view of the fact that the dominant cost of performing
LR is the SVD operation for each of the N classes, the
runtime complexity of LR is O(dm2 N p), where m = maxi mi .
Table VI compares the computational time of the training stage
of LR, LRSI-approx [24], and our method (i.e., Algorithm 2).
Note that the runtime estimates are performed on a PC with
Intel Core 2 Quad CPU 2.33 GHz and 4G RAM under the
MATLAB environment. We note that, LRSI-approx [24] is
the prior version of our current approach, which solves a
relaxed version of the optimization problem of (5). Although
LR requires the least amount of training time, both our
Algorithm 2 and LRSI-approx achieved improved recognition
performance than LR as shown in our experiments. It is also
noting that, the training stages of all low-rank based algorithms
can be done offline. As for the testing time, since all low-rank
based algorithms utilize the same classification technique of
SRC, the computation time of all the above approaches are
comparable (e.g., one generally required only 0.5 seconds for
classifying an input face image using SRC in our experiments).

F. Limitations and Applications

The same as SRC and most of dictionary learning or
reconstruction-based approaches for face recognition, we need
registered face images for training and testing. In other words,

such approaches cannot directly applied to recognized face
images with pose variations (to be more specific, they are
not able to recognize face images with out-of-plane rotations).
As a result, this type of recognition methods are particularly
favorable for applications of access control, automatic teller
machine, or other security facilities. In such scenarios, one typ-
ically is able to collect controlled (registered) training images
in advance, and the test image will be captured under the same
(or very similar) environments. Nevertheless, if registered face
images are not available for either training or testing (but only
shift and in-plane rotation variations are presented), one can
apply existing image registration techniques like RASL [17]
or IntraFace [38], which would alleviate the above limitations
for SRC, etc. approaches.

V. CONCLUSION

We presented a low-rank matrix approximation algorithm
with structural incoherence for robust face recognition. The
introduction of structural incoherence between low-rank matri-
ces promotes the discrimination between different classes, and
thus the associated models exhibit excellent discriminating
ability. We provided detailed derivations and showed that the
proposed optimization problem can be solved by advancing
augmented Lagrange multipliers. Our experiments on four face
databases confirmed that our proposed methods is robust to
severe illumination variations, occlusion, and random pixel
noise corruptions, while our method has been shown to
outperform state-of-the-art face recognition algorithms.
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