
HomeRun: HW/SW Co-Design for Program Atomicity
on Self-Powered Intermittent Systems

Chih-Kai Kang1,3, Chun-Han Lin2, Pi-Cheng Hsiu1, Ming-Syan Chen1,3
1Research Center for Information Technology Innovation, Academia Sinica, Taiwan

2Department of Computer Science and Information Engineering, National Taiwan Normal University, Taiwan
3Graduate Institute of Electrical Engineering, National Taiwan University, Taiwan

Email: akaikang@citi.sinica.edu.tw, chlin@csie.ntnu.edu.tw, pchsiu@citi.sinica.edu.tw, mschen@ntu.edu.tw

ABSTRACT
Self-powered intermittent systems featuring nonvolatile processors
(NVPs) allow for accumulative execution in unstable power environ-
ments. However, frequent power failures may cause incorrect NVP
execution results due to invalid data generated intermittently. This
paper presents a HW/SW co-design, called HomeRun, to guarantee
atomicity by ensuring that an uninterruptible program section can be
run through at one execution. We design a HW module to ensure that
a power pulse is sufficient for an atomic section, and develop a SW
mechanism for programmers to protect atomic sections. The proposed
design is validated through the development of a prototype pattern
locking system. Experimental results demonstrate that the proposed
design can completely guarantee atomicity and significantly improve
the energy utilization of self-powered intermittent systems.

CCS CONCEPTS
• Computer systems organization → Embedded systems; •
Software and its engineering→ Correctness;

KEYWORDS
Program atomicity, energy utilization, nonvolatile processors, intermit-
tent systems

1 INTRODUCTION
The popularity of internet of things (IoT) applications and wearable
devices is increasing exponentially, and the effective lifetime of such
devices is a crucial consideration for quality of user experience.
Most devices are powered by batteries which may incur expensive
maintenance costs and serious environmental pollution. To avoid these
problems, these devices use energy systems based on energy harvesting
units, allowing them to operate intermittently for long periods without
the use of external power sources. The power harvested from an
ambient source is fundamentally small and unstable, particularly in
self-powered intermittent systems, resulting in frequent power failures.
Nonvolatile processors (NVPs) are seen as a promising alternative
for use in self-powered intermittent systems. Compared to typical
micro controller units (MCUs), NVPs feature characteristics including

Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
ISLPED ’18, July 23–25, 2018, Seattle, WA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5704-3/18/07. . . $15.00
https://doi.org/10.1145/3218603.3218633

zero standby power and resilience to power failures, making them
appropriate for small and unstable energy systems [5, 19]. However, the
new NVP-based self-powered intermittent systems raise new problems
that do not exist in traditional MCU-based battery-powered systems [7].

Previous research on NVP-based systems can be categorized into
three classes, namely hardware circuits, system architecture, and
system software, according to design levels [5, 26]. Many researchers
have studied the hardware circuit level (e.g., flip-flop [13, 17] and
controller [6]) focusing on improving the efficiency of the backup
circuits for NVPs. Much work has also been done on the system
architecture level (e.g., processor architecture [2, 9, 19, 22] and power
supply architecture [1, 10, 14]), aiming to improve backup operations
efficiency. These efforts have led to the development of critical
components for NVP-based self-powered intermittent systems.

Recently, much attention has been devoted to the system software
level (e.g., scheduler [23, 24] and various design tools [11, 18, 21,
25]), which helps increase program developers’ productivity. Some
checkpointing [20] and versioning techniques [8] have been proposed
to avoid data inconsistency between different system snapshots in the
memory hierarchy. To consider program atomicity where some code
sections cannot be executed intermittently, a safe execution model has
been proposed to roll back partially executed code to avoid repeated
code execution [8]. However, program progress cannot be guaranteed
by repeatedly re-executing an atomic section until an execution attempt
eventually completes without interruption, and how to ensure that an
atomic section can be run through remains a challenge.

In this paper, we first show an example in which the execution result
of a program may be invalid if a code section is executed intermittently.
The functionality of the program is maintained correctly by the NVP,
but the data becomes invalid due to unexpected time difference caused
by a power failure. In the example, we show that a combined image is
invalid if a single image consists of data captured at a different time.
Therefore, in NVP-based self-powered intermittent systems, a power-
efficient mechanism that guarantees no intermittent execution in some
program sections is necessary to ensure program atomicity.

To address the issue, we present a hardware and software co-
design, called HomeRun, which allows developers to avoid invalid
data and improve energy utilization. First, we present an atomic-
aware software library to ensure program atomicity. We then present a
general structure of a hardware circuit to guarantee that a self-powered
intermittent system has sufficient energy to execute an atomic section.
By using HomeRun, we implement a pattern locking system with self-
powered photodiodes to control the lock state based on user input
without relying on external power sources. We conduct experiments
on the pattern locking system to evaluate the efficacy of the proposed

https://doi.org/10.1145/3218603.3218633

ISLPED ’18, July 23–25, 2018, Seattle, WA, USA C.-K. Kang et al.

design. The results show that HomeRun can significantly improve
energy utilization and increase the program completeness count.

The remainder of this paper is organized as follows. Section 2
provides background information and describes our motivation. In
Section 3, we present the hardware and software co-design of HomeRun
for NVP-based self-powered intermittent systems. Section 4 describes a
pattern locking system implemented with HomeRun. The experimental
results are reported in Section 5. Section 6 provides some concluding
remarks.

2 BACKGROUND AND MOTIVATION
This section presents a typical self-powered intermittent system
equipped with an emerging NVP. We then show that supporting atomic
operations on such systems are necessary to obtain valid program
results.

2.1 NVP-Based Self-Powered Intermittent
Systems

!"#$"%&'(%)*+,"-)..", +),(/0),&%

1#),23*4&,$).'(#2*

5&#&2)6)#'

1#),23*7"8,-)*

!"#$%&'()%*+,*&!)-(

!"#$%&./0012+,*&!)-(

3)-)&!)-(

9&'&*7"8,-)*

Figure 1: An NVP-based self-powered intermittent system

A typical NVP-based self-powered intermittent system consists of
an energy source, an energy harvesting management (EHM) unit, an
NVP, a data source, and peripherals, as shown in Figure 1. According to
the types of ambient sources, the energy source may be photovoltaic,
piezoelectric, or other harvesting devices [5, 12]. The energy source
harvests energy from the corresponding ambient source, and then
transmits the harvested energy to the EHM unit through a power
charging path. When the harvested energy is sufficient, the EHM unit
will supply power to the system, and store redundant energy to its
capacitors for spare usage as needed.When the NVP is woken up, it uses
the previous backup to restore the program state, and then continues
executing programs, collecting data from the data source, operating
peripherals, and backing up the program state. The NVP may support a
periodic or on-demand backup mechanism to handle the power failure
problem [16]. When a power failure occurs, the NVP suspends until
sufficient energy has been harvested and resumes instantly from where
it left off after the power is restored. Therefore, an NVP-based self-
powered system with an energy harvesting unit can intermittently
operate over long periods without any external power source.

2.2 Atomic Sections
A program section that must be executed as one uninterruptible
unit is called an atomic section. Figure 2 shows an example where
the execution result of an atomic section may be invalid if it is
executed intermittently. In the example, the NVP-based self-powered

!"#$%#&'(")'*+,-&.$

/%0'.%#'

Figure 2: An example of invalid data

intermittent system executes a program which contains one task
to capture images with an array of image sensors. The capturing
task sequentially scans every image sensor and combines all sensor
output into one image after completing the scanning task. If power
failure occurs in the middle of the scanning task, the NVP will backup
the current program state, to be restored and continued at the next
power pulse. Although the NVP can correctly maintain the program
functionality, the data may be invalid due to intermittent collection
caused by a power failure, because the scene may change while the
system is off. The combined image is clearly invalid because the
program developer does not anticipate a single image comprising
data captured at different times. However, programs may contain
some code sections that cannot be interrupted. Therefore, in NVP-
based self-powered intermittent systems, a power-efficient mechanism
that guarantees no intermittent execution in some program sections
is needed for program developers to designate and protect atomic
sections.

3 ATOMIC-AWARE HW/SW CO-DESIGN
This section presents an atomic-aware design with efficient energy
utilization on NVP-based self-powered intermittent systems. In Section
3.1, we give a design overview which contains functions based on an
atomic-aware software library and an energy guaranteed hardware
circuit. We then detail the software library and the hardware circuit in
Sections 3.2 and 3.3, respectively.

3.1 Design Overview

!"#$"%&'(%)*+,"-)..",

/&0&-('",

1#),23*4&,$).'(#2*5&#&2)6)#'

+"7),*/"#',"%*87('-9

8)#.",*!":)

;"%'&2)*

/"#$),'),

!"#$%&

'()$*#

+,(-.*/0#*,.("/

1$(%$2-

#",#$+034

#5.,+034

6#-2."7#$/0#*,.("/

6#-2."7#$/0#*,.("/

Figure 3: An overview of our atomic-aware HW/SW co-design
The proposed atomic-aware HW/SW co-design, HomeRun, consists

of an atomic-aware library and a hardware circuit, as shown in Figure 3.
For program developers, handling the invalid-data problems caused
by intermittent executions is difficult because of the potential for

HomeRun: HW/SW Co-Design for Program Atomicity
on Self-Powered Intermittent Systems ISLPED ’18, July 23–25, 2018, Seattle, WA, USA

unexpected power failures, and it may reduce developers’ productivity.
We propose a software library that can be integrated into the system
software on the NVP to address the issue. The library provides
convenient functions for program developers to protect atomic sections.
Developers only have to designate an atomic section by adding an
entry function and an exit function respectively before and after the
atomic section. However, if the energy provided from the EHM unit is
insufficient to finish an atomic section, the program will be jammed
in the atomic section. To meet the energy requirements of atomic
sections, we then propose a hardware circuit that can be integrated in
the EHM unit to ensure program progress by providing the minimum
energy sufficient to complete the sections. To further avoid possible
energy wastage in the first execution of each atomic section, HomeRun
automatically stops program execution if the remaining energy is
insufficient. Consequently, HomeRun efficiently guarantees program
atomicity by ensuring that an atomic section can be run through at one
execution.

3.2 Software Library
Power failures may result in partial task execution, resulting in invalid
data. To maximize the energy utilization and program correctness,
an atomic-aware library is proposed to guarantee that atomic sections
which contain continuous code must be executed as one uninterruptible
unit. Prior to entering an atomic section, a program must ask the
system to enter the section in an entry section. The atomic section then
is followed by an exit section. The program’s remaining code is the
remainder section. Assume that the energy of a power pulse from the
EHM unit is sufficient for an atomic section. The proposed atomic-
aware library contains two functions to allow developers to easily
construct an atomic section in a program.

The function designed for the entry section is defined in pseudo
code as follows.

1 enterAS(Vd , *stopAutoBackup ()){

2 stopAutoBackup (); // save the backup energy

3 backup (); // save the program progress

4 // save the remaining energy

5 if(current energy ≤ Vd)

6 switch the power supplying path off;

7 }

The NVP automatically triggers backup and restore operations, so
a program is able to continue from its last backup position in the
previous power pulse. Continuing a program in the middle of an
atomic section is a potential risk, so a backup operation executed
in an atomic section shall not be used to continue a program and
is viewed as an energy waste operation. Therefore, an essential task of
the entry section is using the function, stopAutoBackup(), provided
by developers, to disable relevant interrupt signals1 to prevent the
NVP from automatically triggering a backup operation. However, a
subsequent power pulse may proceed from the same position of the
previous one, and there is a high probability of a power failure occurring
at a similar position, so the program will fail to progress and the energy
of the following power pulse is wasted as well. Therefore, the entry
section executes a backup operation to allow the program to continue

1Typically, an NVP automatically triggers a backup operation via an interrupt from a
periodic timer or a low-voltage warning signal.

from here if intermitted, thereby preserving program progress to
increase the probability of finishing an atomic section in the following
power pulse. Furthermore, the remaining energy of the current power
pulse may be insufficient to complete the atomic section. If the program
begins the atomic section with insufficient energy, the NVP will stop in
middle of the atomic section and restart at Line 5 in the entry section,
so the energy used in the previous execution is wasted. Therefore, the
entry section checks the amount of remaining energy with a developer-
defined threshold Vd , and only continues execution when the amount
is higher than Vd . Otherwise, the entry section switches off the power
supply path to preserve the remaining energy, and switches the power
supply path on until sufficient energy is available.

The function designed for the exit section is defined in pseudo code
as follows.
exitAS (* startAutoBackup ()){

startAutoBackup ();

}

After finishing an atomic section, the exit section must use the
function, startAutoBackup(), provided by developers, to enable
relevant interrupt signals to turn on the automatic backup mechanism.
The NVP will then backup automatically if necessary, so a backup
operation is unnecessary in the exit section. This software library is
currently designed for single-thread applications, and it can be extended
to multi-thread applications by wrapping all enterAS() and exitAS()
function pairs in a mutex lock to avoid a race condition [15].

3.3 Hardware Circuit
A program will be jammed in an entry section if the energy of the
subsequent power pulse is insufficient to finish an atomic section, so
a design which is purely based on the software library cannot ensure
program progress. Therefore, the characteristics of the EHM unit shall
be designed properly based on the characteristics of the hardware and
software of the NVP-based self-powered intermittent system. Figure 4
shows the general structure of the energy storage and the power control
switch to accumulate harvested energy and generate power pulses
to meet the energy requirements of atomic sections. The EHM unit
normally uses capacitors to store harvested energy, and the energy in a
capacitor with capacitance C and current voltage Vc is equal to 1

2CVc
2.

In the hardware circuit, as the switch we use a Schmitt trigger, which
only changes its switch state when the voltage crosses one of the two
predefined thresholds. The switch will toggle the power supply path
on when the capacitor voltage exceeds the operating threshold Vo and
off when it is lower than the cutting threshold Vh . Generally, Vo and
Vh are specified by the hardware vendor. Therefore, the energy of a
power pulse from the power control switch is equal to 1

2C (V
2
o −V

2
h). In

addition, the NVP can send a signal to switch the power supply path
off if the entry section finds that the amount of remaining energy is
insufficient to complete an atomic section. The remaining energy is
equal to 1

2C (V
2
c − V

2
h), which is dependent on the current capacitor

voltage Vc , so we can determine whether the remaining energy is
sufficient to pass an atomic section by checking the current capacitor
voltage.

The energy of a power pulse has to be equal to or greater than the
energy required for finishing any atomic section, because all atomic
sections must be executed without interruption. According to the
atomic-aware library, the minimum energy requirement of an atomic

ISLPED ’18, July 23–25, 2018, Seattle, WA, USA C.-K. Kang et al.

Power source
To NVP

From NVP

!"

!#

!$

!"
!#

!$

Accumulate Energy Generate Power PulseHarvest

Figure 4: An illustration of energy storage and control switch

section happens when the entire energy of a power pulse is used to
complete the whole atomic section, so its minimum energy is equal
to the sum of the energy consumption of a restore operation RE, the
atomic section, and a backup operation BK . The energy used to start
and stop the auto backup mechanisms is usually negligible. Figure 5
shows the power distribution of a typical program. A program can
complete its functions correctly if the energy of a power pulse satisfies
the minimum energy requirements of all atomic sections. The energy Ei
required for the ith atomic section is equal to E (RE) + E (ASi) + E (BK),
where E () and ASi respectively represent the energy function and the
atomic section. Accordingly, the minimum energy requirement Emin
with n atomic sections can be expressed as Emin = maxni=1 Ei , where
the energy requirement Ei and the corresponding voltage threshold
Vd,i can be derived based on the methods presented in [3, 4].

Based on Vd,i , the system could determine whether the remaining
energy is sufficient to completeASi . Note that ifVd,i is underestimated
so that the system runs the atomic section with insufficient energy,
the section will be run through in the next fully-charged power pulse.
Therefore, the proposed hardware circuit can satisfy the minimum
energy requirement by adjusting the three values, C , Vo , and Vh .
Specifically, the energy of a power pulse, 12C (V

2
o −V

2
h), must be equal

to or greater than Emin to meet the minimum energy requirement.

!"#$%&'()&"%#*'

+

!"#$%&'()&"%#*'

,

!"#$%&'()&"%#*'

*

-.#/.0$ -#1).

22

3)$0%*4).'

()&"%#*

Figure 5: Power distribution of a typical program

4 A PATTERN LOCKING SYSTEM
As a pedagogical example, we develop a pattern locking system based
on the proposed HW/SW co-design, HomeRun. Figure 6(a) shows the
pattern locking platform composed of a self-powered intermittent
system and an activator. Two operation modes, HomeRun and Native,
are implemented in the pattern locker, and the operation mode of the
activator can be toggled with a button. The self-power system collects
data from the sensors intermittently (depending on the power source
that may vary over time), and then sends a signal to the activator
according to the results of the pattern matching process. Some system

information, such as the lock status or program completeness count,
will be computed and displayed on the activator’s LCD.

The pattern locking system controls its locking state based on the
collected data without any external power, as shown in Figure 6(b).
Its self-powered sensors are implemented as an array of 6×6 BPW34
photodiodes to harvest light energy and collect light data. The EHM
unit consists of a BQ25504 low-power boost converter, capacitors, and a
switch to store the harvested energy and toggle the power supply path.
The converter provides power management capability to operate as the
required Schmitt trigger. To execute the pattern matching programs,
the NVP is implemented as a MSP430FR series micro controller which
integrates a nonvolatile Ferroelectric RAM. Peripherals consist of a
timer, an analog-to-digital converter (ADC), and 83 general-purpose
input/output (GPIO) pins to trigger the automatic backup mechanism,
collect lighting data, and show the locking state.

We implement a periodic backup mechanism with a backup()
function and a periodic timer, because theMSP430FR series MCU has no
automatic backup mechanism2. The function sequentially backs up the
system stack and the stack pointer to the FRAM. Note that the registers
like the program counter are not backed up, because the register
data, including the returned address which represents the program
counter in the pattern locking system, have been pushed into the
system stack when the backup() function is called. After implementing
the function, we implement an auto backup mechanism by setting
a periodic timer to trigger the function periodically. Therefore, the
functions to start and stop the auto backup mechanism are respectively
implemented by enabling and disabling the periodic timer. The restore
operation is implemented as a restore() function whose main steps
are symmetrical to the backup() one. The restore function is added
in a boot hook function which is invoked for system pre-initialization
when the MCU is activated each time.

We use the software library in HomeRun to implement the atomic-
aware pattern matching program, as shown in Figure 6(c). By default,
the program keeps the system in the locked state, and then unlock
the system when the collected data matches a default pattern. The
program repeatedly collects data from the photodiodes. Whenever all
the photodiodes are scanned, the collected raw data is first normalized
to a standard format, and then compared against every default pattern.
If a match is found, the system is temporarily unlocked, then relocks
immediately after the system cleans all its status and returns to the
initial state, and the process repeats. In contrast, if a mismatch is
found, the system scans the next pattern input while keeping locked.
The combined raw data collected during different time periods may
be invalid and cannot be used as an input pattern. Therefore, the
pattern matching process requires uninterrupted scanning of the 6×6
photodiodes, and the scanned photodiode block should be protected as
an atomic section. Therefore, the enterAS() and exitAS() functions
in HomeRun are respectively added before the first photodiode and
after the last photodiode are scanned.

We use the hardware circuit in HomeRun to design the EHM unit
of the pattern locking system. To prevent the supplied voltage from
exceeding the NVP’s operating voltages due to the response delay of the
converter, the operating thresholdVo is set to be slightly lower than the
NVP’s maximum operating voltage, and the harvesting threshold Vh is
set slightly higher than the NVP’s minimum operating voltage. We then
2The implementation of backup and restore mechanisms is unnecessary on system testbeds
equipped with NVPs, e.g., the NVP chip developed in [19].

HomeRun: HW/SW Co-Design for Program Atomicity
on Self-Powered Intermittent Systems ISLPED ’18, July 23–25, 2018, Seattle, WA, USA

!"#$%&'(")"* &+),-.,/0+,')

!"#

$%& $'()*+,-./)/'0((1

234056

#73() 27.)5(

8 2('94'* :/'(;

(a) System platform

!"#$"%&'(%)*

+,"-)..",

!" #$%&'()*+$,-"./0

/&0&-('",

1#2(-&'",

3#),45*6&,$).'(#4*7&#&4)8)#'

+"9),*/"#',"%*

:9('-;

3#),45*:"<,-)*

=&'&*:"<,-)

%12,-+34.-5"65+%.74

%12,-+$899/:"65+%.74

;.7.+%.74

:)%>?0"9),)2*

+;"'"2("2)

@,,&5
<=<+>%?@'&

A"%'&4)

/"#$),'),
!" >ABCC(&

@=/

B(8),

(b) Hardware architecture

!"#$#%&#'%$#("

)*%"

+,($(-#(-./

0$(1#* 2"$34

0$(1#* 25#$

6"&(*7

+%$$.3"

8%$*,

9%$%

+3.:+3(*.//#";

!

"

(c) Software flowchart

Figure 6: A pattern locking system

adjust the capacitor’s capacitance C to satisfy the energy requirement
of the atomic-aware pattern matching program.

5 PERFORMANCE EVALUATION
5.1 Experimental Setup
To evaluate the performance and better understand the properties of
our atomic-aware design, we conducted a series of experiments on the
pattern locking system presented in the previous section. The related
system specifications are detailed in Table 1. The proposed design,
HomeRun, aims to improve energy utilization and ensure program
correctness. Therefore, its performance is evaluated in terms of the
number of times the programs are completed, and the correctness ratio
of the collected data. If a power failure causes an interruption in middle
of an atomic section, the collected data is invalid, and the correctness
ratio is the ratio of the number of valid data to the total number of
data collected. We compare HomeRun with the native system, denoted
as Native, under strong and weak power sources. Native is an NVP-
based system having the same hardware architecture and automatic
backup/resotre mechanisms, but it does not use the proposed atomic-
aware software design. We use the Keithley 2280S DC power supply to
generate reproducible power traces.

Table 1: System specifications

Item descriptions Values
Average power consumption 1.6 mW
Task execution time 50 ms
Execution time of atomic section 22 ms
Operating threshold (Vo) 2.8 V
Cutting threshold (Vh) 2.2 V
Strong power source 1 mW (1 V, 1 mA)
Weak power source 500 uW (0.5 V, 1 mA)

We conducted two sets of experiments to evaluate HomeRun from
different perspectives. First, we investigated the impact of voltage
threshold Vd in the range 2.0 V to 2.5 V with a 300 uF capacitor. This
set of experiments provides some insights for developers to understand
the effects of a parameter in the entry section. In the second set of
experiments, we investigated the impact of various capacitance levels
of energy storage ranging from 100 uF to 900 uF. This set of experiments
compares HomeRun and Native under different conditions. All of
the experiments were tested under strong and weak power source
conditions. Note that the system runs the program intermittently
because the power from the power source is less than total system
power consumption.

5.2 Impact of Different Voltage Thresholds
Figure 7 shows the impact of different voltage thresholds Vd on the
program completeness count. The number of times the programs are
completed is maximized for both power conditions when the threshold
equals 2.2 V. When Vd is too small, the remaining energy after passing
the entry section may be insufficient to complete the atomic section.
As a result, the system needs to rerun the atomic section once (and
only once), requiring one additional retry to pass through the section
in the next fully-charged power pulse. In contrast, when the Vd is too
large, the energy between the operating voltage and the threshold may
be too small to complete a restore operation. Therefore, when system
wakes up, the remaining energy after a restore operation may not be
sufficient to pass the check in an entry section, and the entry section
will switch off the power supply path. Based on these observations, the
default setting of the voltage threshold is set at 2.2 V.

 0

 100

 200

 300

 400

 500

2 2.1 2.2 2.3 2.4 2.5C
om

pl
et

en
es

s
pe

r
m

in
ut

e

Voltage Threshold Vd (V)

Strong
Weak

51 61 68 54 53 47

347
377

439 438

320

95

Figure 7: Impact of different voltage thresholds Vd

5.3 Impact of Various Capacitance Levels
Table 2 shows the impact of various capacitance levels on program
completeness per minute. In all cases, the program completion rate
increases with capacitance because a large capacitance level can provide
a large amount of energy, and thus can provide much program progress.
However, program completeness decreases after the capacitance
exceeds 500 uF because larger capacitance requires greater charging
time. In most cases, the program completeness count in HomeRun is
higher than that in Native because HomeRun stops the auto backup
mechanism in the atomic sections, and this design saves energy from
useless backup operations in middle of atomic sections. Compared
with Native, on average HomeRun respectively improves the program
completeness count by 39% and 20% for strong and weak power sources.

Table 3 shows the impact of various capacitance levels on the
correctness ratio of the collected data. The correctness ratio in
HomeRun is always 100% because HomeRun prevents programs
from stopping in the middle of atomic sections. The correctness

ISLPED ’18, July 23–25, 2018, Seattle, WA, USA C.-K. Kang et al.

Table 2: Program completeness per minute
❵❵❵❵❵❵❵❵❵❵❵Capacitance

Power Strong (1mW) Weak (500uW)
Native HomeRun Native HomeRun

100 uF 249 332 35 35
200 uF 284 385 43 44
300 uF 305 439 49 62
400 uF 314 447 53 68
500 uF 339 489 58 78
600 uF 349 475 59 75
700 uF 311 431 60 71
800 uF 309 422 59 71
900 uF 292 416 52 66

ratio achieved by Native increases with capacitance because high
capacitance provides a large amount of energy in each power pulse,
and this increases the probability of completing an atomic section
without interruption. However, the correctness ratio is saturated when
capacitance exceeds 500 uF because a single power pulse provided by a
large capacitance can complete the whole program multiple times, and
each power pulse can only cause invalid data once, so the increasing
slope of the correctness ratio will become saturated. In summary, both
program completeness count and correctness ratio in HomeRun is
higher than in Native. The correctness ratio represents total energy
utilization because a program execution containing invalid data shall be
considered to be incorrect and the energy used in execution is a waste.
Therefore, HomeRun can provide 100% energy utilization, considerably
outperforming Native. This characteristic is very useful given a weak
power source and small energy storage, because less than 10% of the
data collected by Native is valid. Overall, compared with Native, on
average HomeRun respectively improves the program completeness
count and correctness ratio by 29% and 39%.

Table 3: Correctness ratio of collected data
❵❵❵❵❵❵❵❵❵❵❵Capacitance

Power Strong (1mW) Weak (500uW)
Native HomeRun Native HomeRun

100 uF 47 % 100 % 7.3 % 100 %
200 uF 54.9 % 100 % 23.3 % 100 %
300 uF 68.5 % 100 % 40.8 % 100 %
400 uF 70.7 % 100 % 47.2 % 100 %
500 uF 76.1 % 100 % 62.1 % 100 %
600 uF 79.4 % 100 % 66.1 % 100 %
700 uF 80.4 % 100 % 68.3 % 100 %
800 uF 84.5 % 100 % 69.5 % 100 %
900 uF 84.9 % 100 % 71.2 % 100 %

6 CONCLUSION
We have presented HomeRun, a hardware/software co-design for
atomicity on self-powered intermittent systems containing an atomic-
aware software library and an energy guaranteed hardware circuit.
HomeRun eases the protection of atomic sections by allowing
developers to simply designate those uninterruptable code segments
in their programs. Experimental results conducted on a real-world
platform show that the proposed design improves energy utilization
by increasing the program completeness count and ensuring the
generation of valid data. The count of program completeness achieved
with HomeRun is improved by up to 44%. Moreover, the ratio of valid
data is always 100%, while the ratio without HomeRun is averagely 61%
and decreases to only 7.3% when the capacitance is small. These lead to

an average improvement of 39% in energy utilization. Future work will
focus on the continued development of the atomic-aware design and
developing a toolkit by which developers can further optimize energy
efficiency through adjusting hardware and software characteristics.

REFERENCES
[1] V. A. Boicea. Energy storage technologies: The past and the present. Procs. of the IEEE,

102(11):1777–1794, 2014.
[2] H. Jayakumar, A. Raha, and V. Raghunathan. Quickrecall: A low overhead hw/sw

approach for enabling computations across power cycles in transiently powered
computers. In Proc. of IEEE VLSI, pages 330–335, 2014.

[3] H. Jayakumar, A. Raha, J. R. Stevens, and V. Raghunathan. Energy-aware memory
mapping for hybrid fram-sram mcus in intermittently-powered iot devices. ACM
TECS, 16(3):65:1–65:23, 2017.

[4] Z. Li, Y. Liu, D. Zhang, C. J. Xue, Z. Wang, X. Shi, W. Sun, J. Shu, and H. Yang. Hw/sw
co-design of nonvolatile io system in energy harvesting sensor nodes for optimal data
acquisition. In Proceedings of the 53rd Annual Design Automation Conference, pages
154:1–154:6, 2016.

[5] Y. Liu, Z. Li, H. Li, Y. Wang, X. Li, K. Ma, S. Li, M.-F. Chang, S. John, Y. Xie, J. Shu, and
H. Yang. Ambient Energy Harvesting Nonvolatile Processors: From Circuit to System.
In Proc. of ACM/IEEE DAC, pages 1–6, 2015.

[6] Y. Liu, F. Suy, Z. Wangy, and H. Yang. Design exploration of inrush current aware
controller for nonvolatile processor. In Procs. of IEEE NVMSA, pages 1–6, 2015.

[7] B. Lucia, V. Balaji, A. Colin, K. Maeng, and E. Ruppel. Intermittent Computing:
Challenges and Opportunities. In Proc. of SNAPL, pages 8:1–8:14, 2017.

[8] B. Lucia and B. Ransford. A simpler, safer programming and execution model for
intermittent systems. In Proc. of ACM PLDI, pages 575–585, 2015.

[9] K. Ma, X. Li, S. Li, Y. Liu, J. J. Sampson, Y. Xie, and V. Narayanan. Nonvolatile processor
architecture exploration for energy-harvesting applications. IEEE Micro, 35(5):32–40,
2015.

[10] D. Porcarelli, D. Brunelli, M. Magno, and L. Benini. A multi-harvester architecture
with hybrid storage devices and smart capabilities for low power systems. In Procs. of
IEEE SPEEDAM, pages 946–951, 2012.

[11] B. Ransford, J. Sorber, and K. Fu. Mementos: System support for long-running
computation on RFID-scale devices. In Proc. of ACM ASPLOS, pages 159–170, 2011.

[12] S. Roundy, D. Steingart, L. Frechette, P. Wright, and J. Rabaey. Power Sources for
Wireless Sensor Networks. In Proc. of IEEE EWSN, pages 1–17, 2004.

[13] N. Sakimura, T. Sugibayashi, R. Nebashi, and N. Kasai. Nonvolatile Magnetic Flip-Flop
for Standby-Power-Free SoCs. IEEE J. Solid-State Circuits, (8):2244–2250, 2009.

[14] X. Sheng, C. Wang, Y. Liu, H. G. Lee, N. Chang, and H. Yang. A high-efficiency
dual-channel photovoltaic power system for nonvolatile sensor nodes. In Procs. of
IEEE NVMSA, pages 1–2, 2014.

[15] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System Concepts. Wiley
Publishing, 8th edition, 2008.

[16] F. Su, Z. Wang, J. Li, M.-F. Chang, and Y. Liu. Design of Nonvolatile Processors and
Applications. In Proc. of IEEE VLSI-SoC, pages 1–6, 2016.

[17] J. Wang, Y. Liu, H. Yang, and H.Wang. A Compare-and-Write Ferroelectric Nonvolatile
Flip-Flop for Energy-Harvesting Applications. In Proc. of IEEE ICGCS, pages 646–650,
2010.

[18] Y. Wang, H. Jia, Y. Liu, Q. Li, C. J. Xue, and H. Yang. Register allocation for hybrid
register architecture in nonvolatile processors. In Procs. of IEEE ISCAS, pages 1050–
1053, 2014.

[19] Y. Wang, Y. Liu, S. Li, D. Zhang, B. Zhao, M. F. Chiang, Y. Yan, B. Sai, and H. Yang. A
3us wake-up time nonvolatile processor based on ferroelectric flip-flops. In Procs. of
IEEE ESSCIRC, pages 149–152, 2012.

[20] M. Xie, M. Zhao, C. Pan, J. Hu, Y. Liu, and C. J. Xue. Fixing the broken time
machine: Consistency-aware checkpointing for energy harvesting powered non-
volatile processor. In Proc. of ACM/IEEE DAC, pages 1–6, 2015.

[21] Yizi Gu, Y. Liu, Y. Wang, H. Li, and H. Yang. NVPsim: A simulator for architecture
explorations of nonvolatile processors. In Proc. of ACM/IEEE ASP-DAC, pages 147–152,
2016.

[22] W.-k. Yu, S. Rajwade, S.-E. Wang, B. Lian, G. E. Suh, and E. Kan. A non-volatile
microcontroller with integrated floating-gate transistors. In Procs. of IEEE/IFIP DSN-W,
pages 75–80, 2011.

[23] D. Zhang, S. Li, A. Li, Y. Liu, X. S. Hu, and H. Yang. Intra-task scheduling for storage-
less and converter-less solar-powered nonvolatile sensor nodes. In Procs. of IEEE
ICCD, pages 348–354, 2014.

[24] D. Zhang, Y. Liu, X. Sheng, J. Li, T. Wu, C. J. Xue, and H. Yang. Deadline-aware task
scheduling for solar-powered nonvolatile sensor nodes with global energy migration.
In Procs. of ACM/IEEE DAC, pages 1–6, 2015.

[25] M. Zhao, L. Qingan, X. Mimi, Y. Liu, J. Hu, and C. J. Xue. Software assisted non-volatile
register reduction for energy harvesting based cyber-physical system. In Procs. of
ACM DATE, pages 567–572, 2015.

[26] M. Zhao, K. Qiu, Y. Xie, J. Hu, and C. J. Xue. Redesigning Software and Systems for
Non-Volatile Processors on Self-Powered Devices. In Proc. of IEEE VLSI, pages 1–6,
2016.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 NVP-Based Self-Powered Intermittent Systems
	2.2 Atomic Sections

	3 Atomic-Aware HW/SW Co-Design
	3.1 Design Overview
	3.2 Software Library
	3.3 Hardware Circuit

	4 A Pattern Locking System
	5 Performance Evaluation
	5.1 Experimental Setup
	5.2 Impact of Different Voltage Thresholds
	5.3 Impact of Various Capacitance Levels

	6 Conclusion
	References

