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The increasing paradigm shift towards intermittent computing has made it possible to intermittently execute
deep neural network (DNN) inference on edge devices powered by ambient energy. Recently, neural architecture
search (NAS) techniques have achieved great success in automatically finding DNNs with high accuracy
and low inference latency on the deployed hardware. We make a key observation, where NAS attempts to
improve inference latency by primarily maximizing data reuse, but the derived solutions when deployed on
intermittently-powered systems may be inefficient, such that the inference may not satisfy an end-to-end
latency requirement and, more seriously, they may be unsafe given an insufficient energy budget.

This work proposes iNAS, which introduces intermittent execution behavior into NAS to find accurate
network architectures with corresponding execution designs, which can safely and efficiently execute under
intermittent power. An intermittent-aware execution design explorer is presented, which finds the right
balance between data reuse and the costs related to intermittent inference, and incorporates a preservation
design search space into NAS, while ensuring the power-cycle energy budget is not exceeded. To assess
an intermittent execution design, an intermittent-aware abstract performance model is presented, which
formulates the key costs related to progress preservation and recovery during intermittent inference. We
implement iNAS on top of an existing NAS framework and evaluate their respective solutions found for
various datasets, energy budgets and latency requirements, on a Texas Instruments device. Compared to those
NAS solutions that can safely complete the inference, the iNAS solutions reduce the intermittent inference
latency by 60% on average while achieving comparable accuracy, with an average 7% increase in search
overhead.
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1 INTRODUCTION
Energy harvesting has emerged as a sustainable and cost-effective solution for modern edge
devices by relying on ambient energy rather than battery-based power sources [48]. Applications
on these devices suffer from frequent power failure and thus execute intermittently, when energy is
available [13, 24]. These devices consume orders-of magnitude more energy to communicate with
a remote server than local computation or sensing [19]. Therefore, the need for responsive edge
applications with low communication bandwidth consumption has motivated the development
of on-device intelligence, focusing research efforts on how to execute deep neural network (DNN)
inference on intermittent systems, across power cycles [19, 36]. DNN models have an intractable
design space which makes it laborious to manually design models even with expert knowledge,
and hence neural architecture search (NAS) techniques were developed to automatically find highly
accurate neural networks that can efficiently execute on the deployed systems [34, 70]. With the
widespread automated development of deep neural networks and rising demand for deployment
on battery-less edge devices, intermittent-aware neural architecture search is emerging as a crucial
problem to solve.

DNN inference under intermittent power has recently been enabled, by accumulatively executing
inference across power cycles [19, 36]. As ambient power is typically unstable and too weak for
continuous execution [47], even extremely power-efficient hardware [10, 21], may take multiple
power-cycles to complete a full inference. Therefore, intermittent inference execution is necessary
on lightweight energy-harvesting devices, and in most cases it cannot be simply avoided by using
power efficient hardware. Intermittent execution behavior differs significantly from continuous
execution behavior. Inference must safely execute within an energy budget in each power cycle and
intermittent inference approaches ensure the overhead of progress preservation during inference
do not impede performance and guarantee correct progress recovery to resume inference upon
power resumption. Progress preservation includes backing up inference progress indicators along
with inference computation outputs from volatile memory (VM) to non-volatile memory (NVM).
Subsequently, during progress recovery, the progress indicators are fetched from NVM to VM,
following which the input data fetched into VM in the previous power cycle but lost due to power
loss are re-fetched, to resume the interrupted inference process. Intermittent inference approaches
may differ in terms of what data they preserve during inference and how much progress is re-
executed upon power resumption [19, 36], but all approaches simply take a given pre-trained DNN
model with a fixed architecture and execute it intermittently on edge devices.
Neural architecture search is a design-time process performed at the server-side that explores

the neural architecture space to find DNNs with high accuracy for a particular application/dataset
[70]. The derived DNNs are then deployed (e.g., onto edge devices) to perform inference, but there
is no guarantee that they will meet the required performance after being implemented on the target
hardware platform. To overcome this challenge, recent research has proposed hardware-aware NAS
(referred to as HW-NAS) approaches [22, 32, 34], which co-explore both the neural architecture
space and execution design space, to find DNNs with high accuracy and associated execution designs
that do not violate a target inference latency requirement. However, all NAS approaches assume
the deployed system executes under continuous power, i.e., without power failure.

This work ismotivated by our key findings related to the unsuitability of existingNAS approaches
(including hardware-aware variants) for intermittently-powered inference systems, that cannot be
resolved via straightforward extensions. We observe that NAS primarily seeks to maximize data
reuse without being aware of intermittent execution behavior, and therefore an optimal neural
network and associated execution design found by NAS may be inefficient and more seriously,
it may even be unsafe, when deployed on an intermittent inference system. Maximizing data
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reuse unavoidably leads to large, energy expensive inference execution designs that may fail to
safely execute within a power cycle, resulting in repeated re-execution of an inference, without
termination. In addition, solely maximizing data reuse without making appropriate trade-offs
between data reuse and additional costs such as data re-fetching cost, may lead to an increase
in the progress recovery cost. Moreover, enforcing hardware specification constraints without
considering crucial design spaces related to intermittent inference, such as batch preservation
(i.e., multiple computation outputs preserved together to reduce preservation overhead), leads to
severe energy budget underutilization. As a consequence, these factors may result in inefficient
execution designs that violate the end-to-end inference latency requirement. Therefore, as a general
principle, to generate and deploy neural networks on intermittent systems, an intermittent-aware
neural architecture search should find the right balance between data reuse and the costs related to
progress preservation and recovery, while ensuring the power-cycle energy budget is not exceeded.

In this work, we present iNAS (intermittent-aware neural architecture search), the first framework
which follows the general principle presented above, to find accurate neural networks that can
safely and efficiently execute under intermittent power. Introducing intermittent execution behavior
into NAS raises two key design challenges. The first challenge is how to define a feasible solution
space that captures intermittent execution behavior combined with existing NAS execution design.
To address this challenge, we present an intermittent-aware design space explorer that introduces
a new preservation design space unique to intermittent inference, which is parameterized and
co-searched with the conventional execution design space, while enforcing an energy budget
constraint at the power-cycle level, hardware constraints adapted to consider the joint design space,
and an inference latency constraint specified by the application. The second challenge is how to
analytically formulate the performance of an intermittent execution design that accurately captures
all necessary costs. To address this challenge, we present an intermittent-aware abstract performance
model, which formulates the intermittent inference costs related to progress preservation, recovery
and computation, using the tightly coupled parameters of the joint design space, and subsequently,
these costs considered across the multiple power-cycle execution of each network layer are
combined to derive the end-to-end intermittent inference latency.

We implemented iNAS on top of an existing HW-NAS framework [34], although the proposed
intermittent-aware co-exploration is sufficiently decoupled to allow easy integration with most
existing NAS frameworks. The solutions derived by iNAS and the aforementioned HW-NAS were
deployed and evaluated on a Texas Instruments MSP430FR5994 microcontroller unit (MCU), with
a low energy accelerator (LEA), 8KB SRAM (VM) and external 1MB FRAM (NVM). Experiments
were conducted under intermittent power with different capacitor (energy buffer) sizes and latency
requirements. Three datasets, representative of those typically generated by tiny machine learning
applications [6] were used for evaluation, with each dataset using a different model architecture
type with varied levels of search space complexity. Compared to the HW-NAS solutions that can
safely complete the inference, the iNAS solutions show a 16% to 87% reduction in intermittent
inference latency while maintaining a similar solution accuracy, at a cost of 0.1% to 17% additional
search overhead. The latency improvements are more obvious when it is particularly difficult for
HW-NAS to find feasible solutions, such as under a small capacitor, where the HW-NAS solutions
do not make forward progress, as well as under a high latency requirement, where more complex
network architectures are found. We also conduct secondary experiments which enabled us to
provide useful system design guidelines for configuring new intermittent inference platforms.
Specifically, we show how the relationship between the model architecture, VM size and capacitor
size has a significant impact on the end-to-end inference latency. This demonstrates the practicality
of iNAS as a tool to provide design considerations related to the target application requirements,
early in the design process.
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We summarize the contributions of this work as follows:

• We introduce the novel problem of intermittent-aware neural architecture search and present
our key findings on the unsuitability of HW-NAS for intermittent inference. Subsequently,
we provide a general principle that should be followed to find safe and efficient DNNs for
intermittent systems.

• We present two key challenges that arise when realizing an intermittent-aware NAS, namely,
defining the feasible solution space and formulating the performance of an intermittent
execution design. To address these challenges, we propose an intermittent-aware design
space explorer and intermittent-aware abstract performance model.

• We make the developed iNAS framework publicly available [52], allowing AI practitioners
to automate the design and deployment of DNNs on energy harvesting edge devices. We
also demonstrate the practicality of iNAS as a tool to facilitate application specific, early
platform configuration decisions.

The remainder of this paper is organized as follows. Section 2 provides background information
and Section 3 explains the motivation for this work. Section 4 presents our iNAS design and
Section 5 gives implementation details. Experimental results are reported in Section 6 and Section 7
discusses the limitations in iNAS and future extensions. Section 8 provides a discussion on related
work and Section 9 presents some concluding remarks.

2 BACKGROUND
2.1 Deep Neural Network Design Space
DNNs consist of multiple sequential layers such as convolutional (CONV), pooling (POOL) and
fully connected (FC) layers, where one layer’s output is the subsequent layer’s input. A CONV
layer, for example, takes input feature maps (IFMs) with 𝑁 channels, each with a size 𝐻×𝑊 and
convolves them with𝑀 weight kernels of size 𝐾×𝐾×𝑁 , to produce𝑀 output feature maps (OFMs),
each with a size 𝑅×𝐶 [58]. The architecture of each layer directly affects the accuracy and inference
latency of a DNN model. DNN inference consists of loop-heavy and data intensive computations,
thus requiring execution design considerations such as data reuse to allow deployment on resource
constrained edge devices. Data reuse schemes primarily consider the loop tile size and loop order.

for (r=0; r<R; r+=Tr) do:
 for (c=0; c<C; c+=Tc) do:
  for (n=0; n<N; n+=Tn) do:

         --- Fetch IFM tile data ---
    for (m=0; m<M; m+=Tm) do:            

      --- Fetch Weight Kernel tile data ---
      if (n>0): 

              --- Fetch OFM tile data (partial sum) ---
        for (kh=0; kh<K; kh++) do:
             for (kw=0; kw<K; kw++) do:
               for (tr=r; tr<min(r+Tr, R); tr++) do:
                 for (tc=c; tc<min(c+Tc, C); tc++) do:
                   for (tm=m; tm<min(m+Tm, M); tm++) do:
                     for (tn=n; tn<min(n+Tn, N); tn++) do:
                       O[tm][tr][tc] += W[tm][tn][tc][kh][kw] * 
                                        I[tn][st*tr+kh][st*tc+kw]  

                            --- Save computed OFM tile ---

Inter-tile
execution

loops

Intra-tile
execution

loops

IFM data reuse

Output Feature Maps
(OFM)

M

C

Tm

Tr

Tc

R
M

K

K

N

Tm

Tn

* =

Weight Kernels

H

W

N Tw
Tn

Th

Input Feature Maps (IFM)

RCNM 
loop order

Fig. 1. Tiled convolution execution design

Tiled DNN computation is a common strategy used to overcome limited local memory. Due to
their large size, a layer’s IFMs, weights and OFMs are stored in NVM, and are logically partitioned
into tiles as shown in Figure 1, according to the tile size parameters <𝑇𝑟 ,𝑇𝑐 ,𝑇𝑛,𝑇𝑚 >. Although NVM
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is typically larger than VM, for performance and energy concerns, tiles are generally processed
in VM. A tile can be computed either using a hardware accelerator or CPU. To compute an OFM
tile, tile input data, consisting of an IFM tile, weight kernel tile and OFM tile are first fetched from
NVM to VM. An IFM tile is of size 𝑇ℎ×𝑇𝑤×𝑇𝑛 (where, 𝑇ℎ = 𝑠𝑡×𝑇𝑟 + 𝐾 − 𝑠𝑡 , 𝑇𝑤 = 𝑠𝑡×𝑇𝑐 + 𝐾 − 𝑠𝑡 ), a
weight kernel tile has 𝑇𝑚 kernels, each with size 𝐾×𝐾×𝑇𝑛 and stride 𝑠𝑡 , and an OFM tile is of size
𝑇𝑟×𝑇𝑐×𝑇𝑚 consisting of previously computed partial sums. The intra-tile execution loops (Figure 1 -
bottom) compute the partial sums of the current tile and accumulate the result onto the previously
computed partial sums. Energy harvesting, intermittent inference systems typically favor ultra-low
power off-the-shelf MCUs, with lightweight hardware accelerators that can only support simple
vector math operations [17, 26, 28, 37]. However, depending on the resources available on the
hardware accelerator, one or more of the intra-tile loops can be unrolled and executed as a single
accelerator operation, performing many multiply-accumulate (MAC) computations in parallel
[34, 56, 68]. Lastly, the tile output data (i.e., computed OFM tile) are written back to an OFM buffer in
NVM. This process is repeated for all tiles in a layer, where a layer has ⌈ 𝑅

𝑇𝑟
⌉ ⌈ 𝐶

𝑇𝑐
⌉ ⌈ 𝑁

𝑇𝑛
⌉ ⌈ 𝑀

𝑇𝑚
⌉ number

of tiles.
The loop order is typically selected tomaximize data reuse, so that the amount of data movement

between NVM and VM when the system is processing successive tiles can be minimized, thus
reducing the inference latency [40, 49]. A loop order can be largely classified as being an IFM,
weight or OFM reuse order, where the corresponding IFM, weight or OFM tile data fetched at the
start of a particular inter-tile loop are reused in all iterations of that loop. For example, Figure 1
shows the IFM reuse order (i.e.,

−−−−−→
𝑅𝐶𝑁𝑀 inter-tile loop order), where the IFM tile data are fetched

only once at the start of the𝑚 inter-tile loop and reused in all ⌈ 𝑀
𝑇𝑚

⌉ iterations, while the weight
and OFM tile data are fetched in each iteration. Similarly, weight and OFM reuse can be exploited
by respectively using the

−−−−−→
𝑀𝑁𝑅𝐶 loop order across the 𝑟 and 𝑐 inter-tile loops and the

−−−−−→
𝑅𝐶𝑀𝑁

loop order across the 𝑛 inter-tile loop. The loop order that maximizes data reuse for a DNN layer
depends heavily on the layer type and its dimensions.

2.2 Intermittent Deep Inference
Intermittent systems harvest and accumulate energy into an energy buffer (e.g., a capacitor)
[13, 31]. The system is powered ON when the buffered energy reaches a preset threshold (𝑉𝑜𝑛),
and subsequently powered OFF when the energy buffer is depleted or reaches a low threshold
(𝑉𝑜 𝑓 𝑓 ). Hence, the buffered energy defines the available energy budget (denoted 𝐸𝑎𝑣) in a power
cycle. The power ON duration is largely determined by both the energy budget and the energy
consumption of the system, and the power OFF duration is related to the energy buffer recharge
time, which depends on the energy buffer size and strength of the power supply.
Intermittent execution performs progress preservation during execution and progress recovery

upon power resumption to overcome execution state and data loss due to power failure. Progress
preservation involves backing up progress indicators along with computation outputs in NVM.
Progress recovery involves system reboot (i.e., MCU cold-start and peripheral initialization), restor-
ing the executing state using the preserved progress indicators and re-fetching the input data for
computation, allowing the interrupted execution to be resumed. Power loss halts execution, so
interrupted atomic (i.e., power uninterruptible) operations are re-executed upon power resumption,
wasting energy and increasing the execution latency. For example, task-based intermittent exe-
cution models [13, 50] partition an application into atomic tasks, where the energy budget must
satisfy the energy consumption of each task and progress preservation is performed after task com-
pletion. Upon power resumption, the interrupted task is recovered and re-executed. Alternatively,
expensive re-execution can be avoided when the system is proactively shut down after completing
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an atomic operation (e.g., a task) and before the system completely loses power [31, 35]. Here, as
the energy buffer is not completely depleted, the recharge time required to charge the energy buffer
back to the system power ON voltage threshold is reduced. However, the atomic operations need
to be suitably sized to execute safely within the energy budget while avoiding underutilization.
Prior work in intermittent DNN inference has adopted a task-based execution model, where

one or more output features or a complete layer tile (Section 2.1) are computed within a task [19].
Here, the inter-tile loop indices represent progress indicators, which are preserved along with tile
output data as part of progress preservation during inference. Upon power resumption, the system
is rebooted, the inter-tile loop indices are fetched and restored from NVM and the tile input data
are re-fetched to resume the inference process from the interrupted inter-tile loop iteration. Batch
preservation is used to reduce the progress preservation overhead [36], by retaining a batch of 𝑆
inference computation outputs (e.g., a batch of partial sums, output features or tile outputs) in VM
and preserving the 𝑆 inference outputs together. The batch size 𝑆 , needs to be appropriately set
to balance preservation overhead and progress loss due to power failure, as a small 𝑆 may incur
unnecessary preservation overhead under a relatively large energy budget and, contrarily, a large
𝑆 may not be able to make progress if the energy budget is too small. Moreover, additional VM
may be required to retain 𝑆 computation outputs.

2.3 Neural Architecture Search
NAS finds the DNN architecture which maximizes the accuracy for a particular dataset [70]. The
DNN architecture with the highest accuracy found by the NAS is then directly deployed on a
hardware platform without any guarantee to its timing behavior, which may be problematic if
inference latency is a critical factor. To overcome this issue, hardware-aware NAS (HW-NAS)
frameworks co-explore both the neural architecture and execution design spaces [22, 32, 34] to find
DNN architectures with high accuracy as well as feasible execution designs that do not violate a
target latency requirement (𝐿𝑎𝑡𝑟𝑒𝑞).
A typical NAS framework consists of a NAS controller and a DNN trainer. The NAS controller

searches the neural architecture space and is commonly implemented as a recurrent neural network
and updated using reinforcement learning [70]. It iteratively generates child networkswith predicted
DNN hyper-parameters (e.g., kernel size 𝐾 and number of filters𝑀 in a CONV layer), improving
the network architecture in each iteration, based on a reward signal. Conventionally, the reward is
solely accuracy, obtained by an expensive training process carried out by the DNN trainer.

NAS Controller

DNN Trainer

Explore execution design space

Enforce HW constraints

Inference
latency

Hardware-aware Design Space Exploration

Reward Calculation

Lat < Latreq
No

Execution Design
Explorer

Child
network

Yes

Hardware 

Specification

e.g., memory capacity,
processing resources

Consider computation
and data access cost

Abstract
Performance Model

Explore architecture space

Latency requirement

Fig. 2. A typical hardware-aware NAS framework

HW-NAS introduces an execution design explorer, an abstract performance model and a hardware
specification, to a typical NAS framework, as shown in Figure 2. The execution design explorer
takes a generated child network and the hardware specification (e.g., available VM and processing
resources) as inputs to find the combination of execution design parameters (e.g., tile size and loop
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order) that maximizes data reuse in order to minimize the inference latency (𝐿𝑎𝑡 ) on the target
platform [56, 68]. We refer to a specific combination of execution design parameters as a candidate
design. Hardware specification constraints ensure a candidate design can be feasibly implemented
on the target platform (e.g., tile memory requirement does not exceed the available VM capacity).
An abstract performance model (e.g., [68]) is used to analytically estimate the inference latency
of a candidate design without requiring real deployment on the target platform, considering the
computation and data access costs related to inference execution. Note that different candidate
designs impact inference latency, while accuracy is unaffected. A candidate design is considered
feasible if it satisfies both the hardware specification and the latency requirement constraints (i.e.,
𝐿𝑎𝑡 <𝐿𝑎𝑡𝑟𝑒𝑞). Once the feasible candidate designs have been found, the child network is trained on
the target dataset. The achieved accuracy is combined with the lowest inference latency found by
any of the feasible candidate designs and returned as a reward to the NAS controller. The child
network is not trained if no feasible candidate designs can be found, and instead a negative reward
is returned to the NAS controller to guide the search away from such infeasible networks.

3 NAS FOR INTERMITTENT SYSTEMS: OBSERVATIONS AND LIMITATIONS
Fundamentally, NAS assumes DNNs are deployed on continuously-powered systems. As such,
it does not consider the characteristics of intermittent inference execution, such as execution
across multiple power cycles, an energy budget in each power cycle and the progress preservation
and recovery costs incurred in each power cycle. Therefore, we observe that an optimal neural
network and inference execution design found by any NAS framework may be inefficient and,
more seriously, unsafe when deployed on intermittently-powered systems.
Consider an example scenario where the NAS controller generates a child network consisting

of a single CONV layer with an IFM of size 𝐻 =𝑊 =16, 𝑁 =16 input channels and𝑀 =32 weight
kernels each of size𝐾 =5, resulting in an OFM of size 𝑅=𝐶 =12 and𝑀 =32 output channels. Assume
the hardware specification includes VM with 4 KB capacity and a computational accelerator that
performs 𝑇𝑛 MACs per operation. Accordingly, the combination of execution parameters (i.e.,
candidate design) that minimizes the inference latency (as discussed in Section 2.3) consists of the
tile size parameters 𝑇𝑟 =4,𝑇𝑐 =6,𝑇𝑚 =1,𝑇𝑛 =16 and the 𝐼𝐹𝑀 reuse loop order. The rationale behind
this parameter selection is that NAS attempts to maximize data reuse to improve inference latency.
As the CONV layer in the child network has a relatively large IFM and output channel size, large
𝑇𝑟 ,𝑇𝑐 and 𝑇𝑛 tile parameters along with the IFM reuse order can maximize IFM tile data reuse. In
this example, we refer to this specific candidate design found by a HW-NAS as the baseline design.

We consider the performance of the baseline design under intermittent power, using a task-based
intermittent inference approach combined with a proactive shutdown strategy as discussed in
Section 2.2. A task fetches the tile input data and computes the tile. After task completion, progress
preservation is performed and the system is proactively shut down. Upon power resumption,
progress recovery is performed and the inference is resumed from the subsequent task. Considering
the intermittent execution costs related to tile processing, progress preservation and recovery, the
energy consumption per power cycle (denoted 𝐸𝑝𝑐 ) of the baseline can be estimated as 𝐸𝑝𝑐 =0.3mJ.
The candidate design derived by NAS may be unsafe under intermittent power; that is, the

inference execution may fail if the energy consumed within a power cycle exceeds the energy
budget. This is primarily because NAS strives to maximize data reuse, resulting in large tile sizes
with higher energy cost, yet NAS does not consider the energy budget of a power cycle. Figure 3(a)
provides an illustrative example where the relatively small energy budget is insufficient for the
tile processing energy cost (i.e., 𝐸𝑎𝑣 =0.2 mJ, where 𝐸𝑎𝑣 <𝐸𝑝𝑐 ), so the baseline design cannot safely
make forward progress and will repeatedly re-execute without successful completion.
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Fig. 3. A motivating example

Although forward progress is possible under a sufficiently large energy budget, the derived
candidate design may be inefficient; that is, the end-to-end inference latency requirement may
not be satisfied (i.e., 𝐿𝑎𝑡 > 𝐿𝑎𝑡𝑟𝑒𝑞). This inefficiency is primarily because NAS does not make
appropriate trade-offs between data reuse and intermittent execution costs (such as those incurred
by progress preservation and recovery), and also because NAS does not consider the characteristics
of intermittent inference (such as batch preservation) and related key design spaces. Solely maxi-
mizing data reuse may be disadvantageous because VM suffers from data loss upon power failure,
which results in more data being re-fetched during progress recovery in the next power cycle,
to process the subsequent tiles (Section 2.2). Similarly, solely considering hardware constraints
such as the VM capacity size, without considering characteristics such as batch preservation (i.e.,
assuming a fixed preservation batch size of 𝑆 = 1), leads to intermittent execution designs that
significantly underutilize the power-cycle energy budget, thus requiring a large number of power
cycles to complete inference. Accordingly, Figure 3(b) shows an illustrative example where the
baseline design severely underutilizes the energy budget, requiring 192 power cycles to complete
the inference, thus resulting in a high 𝐿𝑎𝑡1 of 127 s, which exceeds the 𝐿𝑎𝑡𝑟𝑒𝑞 of 100 s.
In contrast, Figure 3(c) shows an appropriate candidate design where the parameters were

chosen considering intermittent execution behavior (i.e., tile size 𝑇𝑟 =3,𝑇𝑐 =6,𝑇𝑚 =1,𝑇𝑛 =16, 𝑆 =16
and the 𝐼𝐹𝑀 reuse order). To ensure safety and efficiency, this intermittent-aware candidate design
balances data reuse and the additional costs related to progress preservation and recovery, and also
considers batch preservation with a batch size of 𝑆 =16, while ensuring the power-cycle energy
consumption is within the energy budget. The relatively smaller tile size enables the system to
accommodate the additional VM space required to retain the computed output of 𝑆 tiles. Here,
batch preservation not only allows IFM tile data to be reused across the tiles processed in the same
power cycle but also improves the energy budget utilization, thus reducing the number of power
cycles required for intermittent inference. The intermittent-aware candidate design completes in
16 power cycles and has an end-to-end inference latency of 79 s, which satisfies the target latency
requirement and significantly outperforms the baseline.

1The end-to-end inference latency includes the recharge time, assuming a constant but weak power supply. The recharge
time may be higher if there is no energy to harvest.
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4 INAS: INTERMITTENT-AWARE NEURAL ARCHITECTURE SEARCH
4.1 Design Rationale and Challenges
Motivated by the observations and limitations discussed in Section 3, we propose to introduce
intermittent execution behavior into NAS. We enable NAS to consider the energy budget as well
as the additional costs related to progress preservation and recovery, allowing NAS to find an
accurate neural network which can safely and efficiently execute under intermittent power, without
violating the inference latency requirement. However, introducing such a concept to NAS raises
two key challenges.

The first challenge is how to define a feasible solution space which considers intermittent execu-
tion behavior. This is particularly difficult as preservation design parameters and energy budget
related to intermittent execution are tightly coupled with conventional execution design parame-
ters as well as hardware specification and inference latency constraints. To address this challenge,
we present a novel intermittent-aware execution design explorer that introduces a preservation
design space and an energy budget constraint to NAS. The preservation design space includes
the preservation batch size parameter to specify the number of inference computation outputs
preserved together, and it is unified and jointly explored with the execution design space. The
energy budget constraint is combined with the hardware and latency constraints and enforced
together during exploration.
The second challenge is how to analytically formulate the performance of an intermittent

execution design solution. This is non-trivial as the additional key costs related to progress
preservation and recovery have to be accurately captured. To address this challenge, we present an
intermittent-aware abstract performance model. We formulate the power-cycle energy consumption
and latency, considering the additional costs of preserving the progress indicators and inference
computations as part of progress preservation, along with the costs of rebooting, fetching progress
indicators and data re-fetching as part of progress recovery. These costs are based on the parameters
in the unified preservation and execution design spaces, and considering these costs allows iNAS
to find an intermittent execution design that can appropriately balance data reuse and the cost of
data re-fetching. The formulated power-cycle energy and latency are used to derive the end-to-end
inference latency across power cycles.

4.2 iNAS Overview
We design an intermittent-aware neural architecture search (iNAS) framework with the following
problem definition. Given a specific dataset, a target intermittent system and an inference latency
requirement (𝐿𝑎𝑡𝑟𝑒𝑞), the objective is to generate a neural network, such that its end-to-end
inference latency (𝐿𝑎𝑡 ) on the given intermittent system is less than 𝐿𝑎𝑡𝑟𝑒𝑞 , while achieving the
maximum accuracy (𝐴𝑐𝑐) on the given machine learning dataset. iNAS co-explores the network
architecture, execution design and preservation design search spaces to find the most accurate
network model and the most efficient intermittent execution design. iNAS employs analytical
models within the design space exploration to derive the power-cycle energy consumption 𝐸𝑝𝑐 and
end-to-end inference latency 𝐿𝑎𝑡 to ensure safe and efficient inference execution under intermittent
power.

As shown in Figure 4, iNAS consists of two key components: (1) the intermittent-aware execution
design explorer (referred to as iNAS-Exp) and (2) the intermittent-aware abstract performance
model (referred to as iNAS-PMod). They work alongside conventional NAS components, such
as the NAS controller and the DNN trainer (Section 2.3). The NAS controller is based on [34],
which uses a recurrent neural network to search the network architecture space and conducts
reinforcement learning to update the controller. In each iteration, the NAS controller generates a
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child network, parameterized by the kernel size (𝐾 ) and number of weight kernels (𝑀) per layer,
both of which crucially affect model accuracy and inference latency [23]. Hence, the size of the
architecture space is ( |𝐾 |×|𝑀 |)𝐿 , where |𝐾 | and |𝑀 | indicate the sizes of the discrete sets of kernel
sizes and number of weight kernels per layer to search from, and 𝐿 is the number of network
layers. Although we use this architecture search space to implement and show the benefit of
introducing intermittent execution behavior into NAS, more sophisticated NAS controllers with
a larger, parameter-rich architecture space can be easily integrated into iNAS. Provided a child
network has a valid architecture2, it is passed to the iNAS-Exp to find the intermittent execution
design that minimizes the end-to-end inference latency, else it is assigned a negative reward. The
end-to-end inference latency is the total latency to compute the network across multiple power
cycles.
The iNAS-Exp performs a joint preservation and execution design space exploration on the

child network, while ensuring the feasibility of a candidate design. For each candidate design
(i.e., a specific combination of execution and preservation parameters per layer) in the search
space, iNAS-Exp uses iNAS-PMod to estimate the energy consumption per power cycle and the
end-to-end inference latency. These estimations are used to determine if a candidate design can
feasibly execute within the energy budget, without violating the latency requirement. If the lowest
achievable end-to-end inference latency by any of the feasible candidate designs is lower than the
latency requirement (i.e., 𝐿𝑎𝑡 <𝐿𝑎𝑡𝑟𝑒𝑞), the DNN trainer is used to train and obtain the accuracy
(𝐴𝑐𝑐) of the child network. Subsequently, the accuracy and the lowest achievable end-to-end
inference latency are added and used as a reward signal to update the NAS controller. We formulate
the reward similar to an existing HW-NAS [34], where the reward is equal to (𝐴𝑐𝑐 − 𝑏) + 𝐿𝑎𝑡

𝐿𝑎𝑡𝑟𝑒𝑞

when 𝐿𝑎𝑡 <𝐿𝑎𝑡𝑟𝑒𝑞 , else it is equal to
𝐿𝑎𝑡𝑟𝑒𝑞−𝐿𝑎𝑡

𝐿𝑎𝑡𝑟𝑒𝑞
−1, where 𝑏 is the exponential moving average of the

accuracies of the previous feasible child networks. This process is repeated for a specified number
of iterations, guiding the search towards a network model that is accurate, safe and efficient.
The total search time increases linearly with the number of generated feasible child networks.
The resulting solution of iNAS is the generated child network with the highest accuracy and its
corresponding intermittent execution design which has the lowest end-to-end inference latency.

2A valid architecture, for example, is supported by the runtime inference library and has a model size (i.e., weight parameters
and OFM buffer requirements) that fits within NVM [58].
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4.3 Intermittent-aware Execution Design Explorer
4.3.1 Search Spaces: The execution design space and the preservation design space are jointly
searched to find, the candidate design that minimizes the end-to-end inference latency. The
execution design space has five parameters per layer: the tile size (𝑇𝑟 ,𝑇𝑐 , 𝑇𝑚,𝑇𝑛) and loop order
(denoted𝑈 ), as introduced in Section 2.1. To simplify the latency analysis and the runtime inference
implementation, we assume all tiles in a layer are of the same size, and an equal number of tiles are
processed in each power cycle. Therefore, the tile size parameters are restricted to be an integer
divisor of the layer dimension (i.e., 𝑇𝑟 |𝑅, 𝑇𝑐 |𝐶 , 𝑇𝑚 |𝑀 and 𝑇𝑛 |𝑁 , where 𝑅,𝐶,𝑀, 𝑁 denote the layer
dimensions). The inter-tile loop order (𝑈 ) can either be the IFM, weight or OFM reuse order (abbrv.
r.o). POOL layers have an equal number of input and output channels, so 𝑇𝑚 =𝑇𝑛 and𝑈 = OFM r.o.
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Fig. 5. Intermittent inference execution using batch preservation (e.g., 𝑆=4)

The preservation design space consists of the preservation batch size (𝑆) parameter per layer,
where 𝑆 represents the number of tile outputs preserved together in a power cycle (Section 2.2).
As shown in Figure 5, for a given layer, the system processes a batch of 𝑆 tiles in each power
cycle, retaining each tile’s output in VM. After completing the last tile in the batch, the system
preserves the output of all 𝑆 tiles in NVM and proactively triggers a system shutdown. An equal
number of tiles of a layer are processed in each power cycle, so the value of 𝑆 is restricted to
an integer divisor of the number of iterations of the innermost inter-tile loop, which differs
depending on the loop order (i.e., 𝑆 | ⌈ 𝑀

𝑇𝑚
⌉, 𝑆 | ⌈ 𝑅

𝑇𝑟
⌉ ⌈ 𝐶

𝑇𝑐
⌉ or 𝑆 | ⌈ 𝑁

𝑇𝑛
⌉, respectively, if 𝑈 is equal to the

IFM, weight or OFM r.o). Although seemingly straightforward, combining the preservation batch
size parameter with the aforementioned parameters in the execution design space is not trivial as
it requires considering the compound impact on the preservation and recovery costs, VM usage
and computation requirements.

4.3.2 Feasible Solution Space: A candidate design is feasible if it satisfies the energy budget,
hardware specification and inference latency constraints. The energy budget constraint is required
to ensure a batch of tiles can be safely processed without power interruption within a power cycle.
Therefore, the energy consumed within each power cycle (denoted 𝐸𝑝𝑐 ) by each network layer
should be satisfied by the available energy budget per power cycle (denoted 𝐸𝑎𝑣) as follows:

max
1≤𝑖≤𝐿

𝐸𝑖𝑝𝑐 (𝑇𝑟 ,𝑇𝑐 ,𝑇𝑚,𝑇𝑛,𝑈 , 𝑆) ≤ 𝐸𝑎𝑣 (1)

where 𝐸𝑖𝑝𝑐 denotes the power-cycle energy consumption of the 𝑖𝑡ℎ layer in the child network, and
𝐿 denotes the number of layers in the network. As each layer is assigned specific execution and
preservation parameters (Section 4.3.1), the power-cycle energy consumption will vary across
the layers. Thus, to satisfy the energy budget constraint, the maximum 𝐸𝑖𝑝𝑐 must be less than or
equal to 𝐸𝑎𝑣 . Here, 𝐸𝑖𝑝𝑐 is derived by the iNAS-PMod (Section 4.4) taking the tile size, loop order
and preservation batch size as input, considering the key costs related to intermittent inference
execution. As discussed in Section 2.2, for a given intermittent system with a capacitor of size
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𝐶𝑐𝑎𝑝 and power ON/OFF voltage thresholds 𝑉𝑜𝑛 and 𝑉𝑜 𝑓 𝑓 , the available energy budget 𝐸𝑎𝑣 can be
derived as 1

2𝐶𝑐𝑎𝑝 (𝑉 2
𝑜𝑛 −𝑉 2

𝑜 𝑓 𝑓
).

Hardware specification constraints are required to ensure the candidate design can be feasibly
implemented on the target platform with limited resources. Crucially, the VM capacity should be
sufficiently large to contain the tile input and output data as follows:

𝐵𝑖𝑛 + 𝐵𝑤 + 𝐵𝑜𝑢𝑡 ≤ 𝑉𝑀𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (2)

where 𝐵𝑖𝑛 , 𝐵𝑤 and 𝐵𝑜𝑢𝑡 respectively denote the VM buffer space required for the IFM, weight and
OFM tile data. The buffer sizes are related to the tile size, loop order and preservation batch size,
where 𝐵𝑖𝑛 =𝑇ℎ𝑇𝑤𝑇𝑛 and 𝐵𝑤 =𝐾2𝑇𝑚𝑇𝑛 . Additional VM space is required to store the output of 𝑆
tiles, so 𝐵𝑜𝑢𝑡 =𝑆 (𝑇𝑟𝑇𝑐𝑇𝑚) in all cases, except when the OFM reuse order is used, where the partial
sums in the OFM tile buffer are accumulated and overwritten, resulting in 𝐵𝑜𝑢𝑡 =𝑇𝑟𝑇𝑐𝑇𝑚 . Hardware
constraints may also include the number of parallel multiply-accumulate (MAC) units available on
an accelerator, restricting the tile size parameters 𝑇𝑚 and 𝑇𝑛 [34, 68].

The inference latency constraint guarantees the user’s expected inference timing behavior, such
that the given child network when executed intermittently using a specific candidate design will
result in an inference latency (𝐿𝑎𝑡 ) lower than the target latency requirement (𝐿𝑎𝑡𝑟𝑒𝑞) as follows:

𝐿𝑎𝑡 < 𝐿𝑎𝑡𝑟𝑒𝑞 (3)

where𝐿𝑎𝑡 is calculated by the iNAS-PMod (as per Section 4.4), taking the execution and preservation
parameters and the dimensions of each network layer, as well as the energy budget as input.
The iNAS-Exp exhaustively evaluates all combinations of the execution and preservation pa-

rameters (i.e., the tile size parameters 𝑇𝑟 ,𝑇𝑐 ,𝑇𝑚,𝑇𝑛 , the loop order𝑈 and preservation batch size 𝑆)
for each layer in the child network. Therefore, the size of the intermittent-aware execution design
space for a layer is ( |𝑇𝑟 |×|𝑇𝑐 |×|𝑇𝑚 |×|𝑇𝑛 |×|𝑈 |×|𝑆 |), where the sizes of the discrete parameter sets
depend on the layer dimensions (as indicated in Section 4.3.1). The exploration time polynomially
increases with the design space. At the end of the design space exploration, the feasible candidate
design with the lowest 𝐿𝑎𝑡 is returned and the child network is trained. The child network is not
trained if none of the candidate designs are feasible.

4.4 Intermittent-aware Abstract Performance Model
4.4.1 Progress Preservation Cost: Intermittent inference execution requires progress preservation
to accumulate inference progress across power cycles (Section 2.2). Progress preservation involves
preserving progress indicators along with the computed tile outputs in NVM at the end of each
power cycle, and both their associated costs must be included in the total progress preservation
cost. Progress indicators can be represented by the four inter-tile loop indices (Section 2.2), and
their preservation incurs a fixed cost related to a single NVM write operation. In each power cycle,
the tile output of a batch of computed tiles are retained in the OFM tile buffer in VM (with size 𝐵𝑜𝑢𝑡 ,
as introduced in Section 4.3.2), and as such, tile output preservation involves writing to specific
non-contiguous locations in NVM. Tile output preservation incurs multiple NVM write operations
on lightweight systems that commonly use sequential NVM access. The data block size of each
NVM write operation and the number of such operations required to preserve the tile output will
vary based on the tile size, preservation batch size and inter-tile loop order. Therefore, the total
progress preservation cost (denoted 𝑝𝑝) can be estimated as follows:

𝑝𝑝 =


𝑇𝑟𝑇𝑐 [𝑤𝑟𝑖𝑡𝑒 (𝑆𝑇𝑚)] +𝑤𝑟𝑖𝑡𝑒 (4), if𝑈 = IFM r.o
𝑆𝑇𝑟𝑇𝑐 [𝑤𝑟𝑖𝑡𝑒 (𝑇𝑚)] +𝑤𝑟𝑖𝑡𝑒 (4), if𝑈 = Weight r.o
𝑇𝑟𝑇𝑐 [𝑤𝑟𝑖𝑡𝑒 (𝑇𝑚)] +𝑤𝑟𝑖𝑡𝑒 (4), if𝑈 = OFM r.o

(4)
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where𝑤𝑟𝑖𝑡𝑒 (𝑧) refers to a single NVM write operation with a data block size 𝑧. The derivation of
the preservation and recovery costs (Eq. 4 and Eq. 5) may be simpler for systems with sophisticated
memory access capability (e.g., 2D DMA support), requiring fewer write operations for tile in-
put/output data transfers. However, lightweight MCUs (e.g., MSP430 or Arm Cortex-M0/M4 MCUs)
such as those commonly used in intermittent systems, typically do not support such features.

4.4.2 Progress Recovery Cost: Intermittent inference execution requires progress recovery at the
start of every power cycle to correctly resume the interrupted inference process. Progress recovery
involves system reboot, fetching the progress indicators and tile input data from NVM to VM, and
all associated costs must be included in the total progress recovery cost. System reboot incurs a
fixed cost of peripheral initialization (e.g., the accelerator and NVM communication interface) and
fetching the index of the currently computing network layer from NVM. Fetching the progress
indicators also incurs a fixed cost of reading the four inter-tile loop indices from NVM using
a single read operation. Tile input data need to be re-fetched in each power cycle, as the data
fetched into VM in the previous power cycle are lost due to power loss, which is a characteristic of
intermittent inference. Figure 6 illustrates an example where under continuous power inference,
using the IFM reuse loop order, the IFM tile data are fetched in the first tile and reused across
subsequent tiles. However, under intermittent power, if batch preservation is not considered (i.e.,
𝑆 = 1), the IFM tile data cannot be reused, as the data are lost at the end of a power cycle, and
therefore the data need to be re-fetched in the next power cycle. Thus, maximizing data reuse, as
performed by HW-NAS, may be inefficient under intermittent power, as it may cause a higher
data re-fetching cost. In contrast, when batch preservation is considered (i.e., 𝑆 >1), the respective
IFM, weight or OFM tile input data fetched in the first tile can be reused across all the subsequent
tiles computed in the current power cycle (Figure 6 bottom). Correctly considering the progress
recovery cost (as formulated in Eq. 5) effectively allows iNAS-Exp to find a candidate design which
can balance the data reuse benefit and data re-fetching cost.
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Fig. 6. Data reuse under continuous and intermittent inference (when preservation batch size 𝑆 =1 and 𝑆 >1)

The cost of fetching the tile input data within a power cycle will differ based on the loop order,
the tile size and preservation batch size, and therefore the overall progress recovery cost (denoted
𝑝𝑟 ) can be estimated as follows:

𝑝𝑟 =


𝑟𝑏𝑡 + 𝑟𝑒𝑎𝑑 (4) +

[
𝑆 (Γ𝑤 + Γ𝑜 ) + Γ𝑖

]
, if𝑈 = IFM r.o

𝑟𝑏𝑡 + 𝑟𝑒𝑎𝑑 (4) +
[
𝑆 (Γ𝑖 + Γ𝑜 ) + Γ𝑤

]
, if𝑈 = Weight r.o

𝑟𝑏𝑡 + 𝑟𝑒𝑎𝑑 (4) +
[
𝑆 (Γ𝑖 + Γ𝑤) + Γ𝑜

]
, if𝑈 = OFM r.o

(5)
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where 𝑟𝑏𝑡 is the reboot cost and 𝑟𝑒𝑎𝑑 (𝑧) refers to a single NVM read operation with data block size
𝑧. Also, Γ𝑖 , Γ𝑤 and Γ𝑜 respectively denote the IFM, weight and OFM tile input data fetching costs
which are calculated as Γ𝑖=𝑇𝑟𝑖𝑇𝑐𝑖 [𝑟𝑒𝑎𝑑 (𝑇𝑛)], Γ𝑤=𝐾2𝑇𝑚 [𝑟𝑒𝑎𝑑 (𝑇𝑛)] and Γ𝑜=𝑇𝑟𝑇𝑐 [𝑟𝑒𝑎𝑑 (𝑇𝑚)], assuming
sequential NVM access.

4.4.3 Computation Cost: As intermittent inference employs batch preservation, the total cost
of computing multiple tiles in a power cycle needs to be considered. Computing one tile may
require successive accelerator operation executions on resource constrained systems that often
only support simple vector math hardware acceleration [5, 26]. On such lightweight accelerators,
the innermost intra-tile loop (Section 2.2) can be unrolled and executed as a vector multiply-
accumulate (MAC) operation followed by a scalar addition. Here, we adapt the computation cost
formulation used for architectural accelerators [34, 56, 68], to support lightweight accelerators and
batch tile processing. Hence, the total computation cost (denoted 𝑐𝑝) in a power cycle to compute
a batch of 𝑆 tiles can be estimated as follows:

𝑐𝑝 = 𝑆

(
𝐾2𝑇𝑟𝑇𝑐𝑇𝑚 [𝑣𝑒𝑐𝑀𝐴𝐶 (𝑇𝑛) +𝐴𝑑𝑑]

)
(6)

where 𝑣𝑒𝑐𝑀𝐴𝐶 refers to the vector MAC operation between the weight kernel and the IFM, of
length𝑇𝑛 in the input channel dimension, and 𝐴𝐷𝐷 refers to the scalar addition of the current and
previously computed partial sums. Both computations are executed 𝐾2𝑇𝑟𝑇𝑐𝑇𝑚 times per tile, and 𝑆
tiles are computed in a power cycle. Larger accelerators may unroll and execute multiple intra-tile
loops in parallel [56, 68], reducing the number of operation executions required per tile (in Eq. 6).

4.4.4 Power-cycle Energy Consumption and Latency: The power-cycle energy consumption (𝐸𝑝𝑐 )
and latency (𝐿𝑝𝑐 ) of a specific candidate design are respectively required to determine if the
design satisfies the energy budget constraint (Section 4.3.2) and to derive its end-to-end inference
latency (Section 4.4.6). To calculate 𝐸𝑝𝑐 and 𝐿𝑝𝑐 , the progress preservation, progress recovery and
computation costs of a power cycle (defined in Eq. 4, 5 and 6) are added together as follows:

𝐸𝑝𝑐 = 𝐸 (𝑝𝑝) + 𝐸 (𝑝𝑟 ) + 𝐸 (𝑐𝑝) (7)
𝐿𝑝𝑐 = 𝐿(𝑝𝑝) + 𝐿(𝑝𝑟 ) + 𝐿(𝑐𝑝) (8)

In Eq. 7 and Eq. 8, 𝐸 () and 𝐿() respectively refer to the energy consumption and latency of the
aforementioned 𝑝𝑝 , 𝑝𝑟 and 𝑐𝑝 costs (defined in Eq. 4, 5 and 6). For example, by E(pp) and L(pp)
we respectively refer to the energy E() and latency L() costs of progress preservation (pp). In a
candidate design, each layer has specific execution and preservation parameters, so 𝐸𝑖𝑝𝑐 and 𝐿𝑖𝑝𝑐
are used to denote the power-cycle energy consumption and latency of the 𝑖𝑡ℎ layer. An equal
number of tiles in a layer are processed in each power cycle (Section 4.3.1), so the energy and
latency costs of each power cycle are equal.

4.4.5 Recharge Time: The recharge time (denoted as 𝐿𝑟𝑐 ) is the period in which the harvested
energy is accumulated into the energy buffer, and 𝐿𝑟𝑐 is required to derive the end-to-end inference
latency. As illustrated in Figure 7, the energy buffer is discharged during execution and recharged
after the system is proactively shut down at the end of a power cycle. Depending on the amount
of energy consumed in the power cycle (i.e., 𝐸𝑝𝑐 as formulated in Eq. 7) before the system is shut
down, recharge can start from a partially full energy buffer. Therefore, 𝐿𝑟𝑐 is directly proportional
to the energy buffer size (𝐶𝑐𝑎𝑝 ) and 𝐸𝑝𝑐 , and can be expressed as follows:

𝐿𝑟𝑐 = −𝑅𝑒𝑞𝐶𝑐𝑎𝑝 ln
[
𝑉𝑜𝑛 −𝑉𝑠𝑢𝑝
𝑉𝑝𝑐 −𝑉𝑠𝑢𝑝

]
(9)

where 𝑉𝑠𝑢𝑝 is the supply voltage, 𝑅𝑒𝑞 is the equivalent resistance of the energy harvesting and
power management circuitry and 𝑉𝑜𝑛 is the system power ON voltage threshold (Section 2.2). As
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shown in Figure 7, the voltage across the energy buffer at the end of a power cycle after 𝐸𝑝𝑐 has
been consumed is denoted as 𝑉𝑝𝑐 , and is equal to

√︁
2(𝐸𝑎𝑣 − 𝐸𝑝𝑐 )/𝐶𝑐𝑎𝑝 +𝑉𝑜 𝑓 𝑓 .
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Lpc
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Time (s)
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Energy
buffer

recharge

proactive system shutdown

Process the last S
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Eav Epc

power ON power OFF

one layer processed across multiple power cycles

power cycle 0 power cycle j

Lrc

Fig. 7. Recharge and discharge phases of the energy buffer across power cycles

4.4.6 End-to-end Inference Latency: The total time taken to complete an end-to-end inference of a
child network across multiple power cycles is the summation of the power-cycle latency (i.e., 𝐿𝑝𝑐
as given in Eq. 8) and the energy buffer recharge duration (i.e., 𝐿𝑟𝑐 as given in Eq. 9) of all power
cycles, across all layers in the network. Recall that 𝐿𝑝𝑐 includes all latency costs within a power
cycle and 𝐿𝑟𝑐 relies on the energy consumption of a power cycle. Thus, the end-to-end inference
latency (𝐿𝑎𝑡 ) can be calculated as follows:

𝐿𝑎𝑡 =

𝐿∑︁
𝑖=1

𝑁𝑝𝑐∑︁
𝑗=1

(
𝐿
𝑖, 𝑗
𝑝𝑐 + 𝐿

𝑖, 𝑗
𝑟𝑐

)
(10)

where 𝐿𝑖, 𝑗𝑝𝑐 and 𝐿
𝑖, 𝑗
𝑟𝑐 respectively denote the power-cycle latency and the recharge duration, corre-

sponding to the 𝑗𝑡ℎ power cycle of the 𝑖𝑡ℎ layer in the child network (Figure 7). In Eq. 10,𝑁𝑝𝑐 denotes
the number of power cycles required to complete a layer and is calculated as

(
⌈ 𝑅
𝑇𝑟
⌉ ⌈ 𝐶

𝑇𝑐
⌉ ⌈ 𝑁

𝑇𝑛
⌉ ⌈ 𝑀

𝑇𝑚
⌉/𝑆

)
.

Therefore, larger tile sizes and preservation batch sizes result in fewer power cycles required to
complete an inference, provided the energy budget constraint (Eq. 1) is not violated.

4.5 Generality
Although the proposed intermittent-aware execution design explorer and abstract performance
model (in Sections 4.3 and 4.4) primarily consider CONV layers, other common types of DNN
layers are also supported with trivial or no adaptations. FC layers can be formulated as CONV
layers by setting the weight kernel dimensions to match the IFM dimensions, and POOL layers
can also be tiled, where multiple pooling windows can be processed within a tile. Furthermore,
advanced models with skip connections and feedback paths [58] can also be supported by including
the additional data fetching costs in the progress recovery cost. iNAS can also be extended to
support other intermittent inference execution models such as task-based models without proactive
shutdown [19] and footprint-based models [36]. To support the former, the progress recovery cost
formulation (Section 4.4.2) should be extended to capture the cost of inference re-execution. To
support the latter, the progress preservation cost formulation (Section 4.4.1) should be extended to
include the costs of fine-grain progress and inference output preservation.
iNAS is also compatible with other NAS frameworks that contain additional design spaces.

For example, the DNN compression space (e.g., filter/channel pruning and weight quantization)
[32] can be integrated into iNAS, with modifications to the performance model to consider the
impact on the energy and latency cost due to different compression parameters. Furthermore, we
demonstrate our proposed preservation space can already offer significant intermittent inference
improvements over HW-NAS (Section 6.2.1), but our methodology can be leveraged by others
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to expand the preservation space or combine it with a compression space to achieve further
improvements.

As iNAS assumes a generic tile-based intermittent inference execution model, we expect iNAS
can directly support widely available, ultra-low power MCU architectures (e.g., TI MSP430 and
ARM Cortex-M0/M4), which are commonly used by intermittent systems [60]. However, it is
important to note that for intermittent systems, the selection of the appropriate VM and capacitor
sizes is more crucial than the type of MCU architecture, as the cost of data transfer between the
VM and NVM, and the energy buffer recharge cost significantly affects intermittent execution
performance. iNAS can be also extended to support other types of intermittently-powered systems
(e.g., FPGA-based [69] or multiprocessor intermittent systems [57]), by considering any additional
preservation and recovery costs related to those specific systems. These extensions may not be
trivial, and thus require further investigation, where iNAS can provide a foundation for such future
research.

5 INAS IMPLEMENTATION
iNAS was implemented on top of an existing HW-NAS framework [34] using Tensorflow 1.15
and executed on an NVIDIA GTX 1080 Ti GPU. The solutions found by iNAS were deployed
on the Texas Instruments (TI) MSP430FR5994 [27] MCU, with 16 MHz clock speed, a TI Low
Energy Accelerator (LEA) and 8KB SRAM (2KB dedicated for accelerated inference). External NVM
(Cypress CY15B108Q 1MB serial FRAM [14]) was used to support reasonably large DNNs.

5.1 Accelerated Intermittent Inference
A hardware-accelerated intermittent inference library was developed for the TI platform to support
tiled DNN processing and task-based intermittent execution with proactive shutdown. The LEA
vector multiply-accumulate command (i.e., LEACMD__MAC with vector size𝑇𝑛) was used to compute
the innermost intra-tile loop (Section 4.4.3), and for compatibility with the LEA, the tile size
parameter 𝑇𝑛 was restricted to one or an even value. External NVM was interfaced via SPI (serial
peripheral interface) and was configured to co-operate with the DMA (direct memory access)
controller to transfer tile input/output data one byte at a time, without CPU intervention. The
iNAS solutions are represented using custom data structures defined by the inference library. For
compatibility with the MSP430 platform, all models were compressed by quantizing the input and
weight parameters to a 16-bit fixed point representation (Q15.1 format) from the 32-bit floating
point representation used during training, without significant loss of accuracy.

To ensure idempotency, where repeated execution does not produce a new result each time, the
inference library avoids write-after-read dependencies by using a double buffering mechanism
similar to that in [19, 50] when reading and writing to the OFM buffer in NVM. After processing
a batch of tiles, the system is proactively shut down (as discussed in Sections 2.2 and 4.3.1) by
employing an external power control switch similar to [31, 35]. The intermittent inference library
sends a signal to the power control switch to close the power supply path to the MCU and start the
energy buffer recharge once a batch of tiles is completed. An additional control switch at the entry
to the energy management unit ensures the capacitor recharge and system execution processes
are separated, and also ensures the system is solely driven by the capacitor energy.

5.2 Energy and Latency Estimation
A set of micro-benchmarkswere developed to profile the low-level energy and latency costs of the TI
platform, allowing us to derive the costs related to intermittent inference (i.e., progress preservation,
progress recovery and computation) discussed in Section 4.4. We used linear regression to model
the cost of the LEACMD__MAC command with respect to the input vector size (i.e., 𝑣𝑒𝑐𝑀𝐴𝐶 operation
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in Eq. 6) and the cost of a DMA-based NVM read/write transfer with respect to the data block
size (i.e., 𝑟𝑒𝑎𝑑 and 𝑤𝑟𝑖𝑡𝑒 operations in Eq. 4 and 5). These operations incur an additional fixed
overhead related to the operation input/output memory address pointer calculation (e.g., calculating
the source/destination memory location for an NVM 𝑟𝑒𝑎𝑑/𝑤𝑟𝑖𝑡𝑒 operation). Therefore, we also
obtained latency and energy measurements of fine-grain CPU-based math instructions (e.g., add,
multiply, divide etc.), to allow us to estimate the pointer address calculation overhead of each
operation invocation. In addition, each DMA transfer incurs a DMA invocation of 2 clock cycles and
an NVMwrite overhead of 16 clock cycles. All energy and latency measurements were respectively
obtained using the TI EnergyTrace software [25] and a hardware timer in the MCU. Due to
physical characteristics such as capacitor leakage, charge redistribution and voltage ripples in the
power management circuitry [3], the actual runtime energy budget may vary slightly from the
estimate (𝐸𝑎𝑣). Therefore, to guarantee safe inference execution, the power-cycle energy budget is
underestimated by 45%, which was derived using a measurement-based approach on our prototype
platform. This safety margin can be further reduced to allow iNAS to find intermittent execution
designs that can better utilize the energy budget, but at increased risk.

6 EVALUATION
6.1 Experimental Setup
We evaluated the amount of improvement iNAS brings to the HW-NAS framework [34]3. The solu-
tions of both iNAS and HW-NAS with the highest accuracy across multiple runs are deployed and
evaluated on the TI MSP430FR5994 platform, as described in Section 5. Intermittent execution was
emulated using a Keithley 2280S power supply, a TI-BQ25570 energy harvesting and management
unit and a capacitor. A power supply of 6 mW (2 V, 3 mA) was used, representative of indoor light
energy [48], which is insufficient to continuously operate the TI platform. Also, the system power
ON/OFF thresholds were respectively set at 3V and 2.8V.

Table 1. Evaluation datasets and related parameter settings

Dataset DNN Trainer NAS Controller
Training Validation Model architecture K M

CIFAR-10 50000 10000 5 × 2D CONV, GPOOL, FC 1,3,5,7 4,8,16,24
HAR 7400 3000 3 × 1D CONV, GPOOL, FC 1,3,5,7 4,8,16,24
KWS 37000 4900 5 × FC - 48,64,96,128

CONV: convolutional layers, GPOOL: global average pooling, FC: fully connected layer,
K: kernel size, M: number of filters

Table 1 shows the three datasets used for evaluation, taken from the tinyML benchmark suite
[6] and representative of tiny machine learning applications. These include an image classification
dataset [38] referred to as CIFAR-10, an accelerometer sensor dataset [4] used for human activity
recognition referred to as HAR and a speech keywords dataset [62] referred to as KWS. Each dataset
is composed of a training and validation set. A feasible child network is trained for 25 epochs, with
the maximum validation accuracy used to compute the reward. Different NAS controller settings
and model architecture types are used to suit different datasets. For example, the architecture for
CIFAR-10 (in Table 1) has five 2D CONV layers (i.e., dense convolution with stride=1 and no zero-
padding), a global POOL and an FC layer, and for each network layer, the NAS controller selects
the kernel size and the number of filters from a given selection (i.e., 𝐾=1,3,5,7 and𝑀=4,8,16,24).
3The HW-NAS framework [34] was originally developed for FPGA-based systems. For fair comparison, we have adapted it
to support MCU-based systems.
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Therefore, the size of the model architecture space is 1048576, 4096 and 256, respectively for the
CIFAR-10, HAR and KWS datasets. The size of the intermittent-aware execution and preservation
design space for a generated child network depends on its layer dimensions, where for the above
settings the maximum design space size is 846336, 71904 and 13464 respectively for the CIFAR-10,
HAR and KWS datasets. For each dataset, 100 child networks are generated (i.e., 100 iterations).

To evaluate the ability of iNAS and HW-NAS to find feasible solutions for different intermittent
execution scenarios, we conduct experiments under small, medium and large energy budgets,
respectively specified by the capacitor sizes 1 mF, 5 mF and 10 mF. Given the above platform
configuration, these correspond to 0.55 mJ, 2.7 mJ and 5.5 mJ energy budgets. Unlike iNAS, HW-
NAS does not consider the intermittent system energy budget, so the same HW-NAS solution is
evaluated under different capacitor sizes. To further observe the efficacy of the derived solutions
under different feasible solution spaces, we evaluate iNAS and HW-NAS under three different
inference latency requirements (𝐿𝑎𝑡𝑟𝑒𝑞), denoted as TS1 (low), TS2 (medium) and TS3 (high), and
they are respectively set such that 25%, 50% and 75% of the solutions are feasible in the search
space. While ensuring these same percentage ratios, we use separate latency requirements per
capacitor size and dataset as well as for HW-NAS. This is because the energy budget and model
architecture type directly impact the end-to-end inference latency of the iNAS solutions, and
HW-NAS requires different latency requirements for fair comparison as it does not consider the
additional costs related to intermittent inference execution across multiple power cycles.
In our primary set of experiments, we evaluate the resulting solutions of iNAS and HW-NAS

in terms of their end-to-end inference latency on the TI platform under intermittent power, their
model accuracy on the dataset and the average search time across multiple NAS runs. As discussed
in Sections 4.3 and 4.4, the VM capacity size and the energy budget of an intermittent system are
key factors that affect the costs related to intermittent execution behavior, and thus impact the
end-to-end inference latency. Therefore, we conduct a secondary set of experiments to provide
useful design suggestions for selecting an appropriate VM capacity size and capacitor size for a
new intermittent inference design. For these secondary experiments, we use the network model
solutions obtained by iNAS from the primary experiments (i.e., under the 10 mF and TS3 cases, for
each dataset) and run iNAS-Exp and iNAS-PMod under varied capacitor and VM sizes.

6.2 Performance Comparison
6.2.1 Inference latency: Figure 8 shows the end-to-end intermittent inference latency on the TI
platform of the solutions found by iNAS and HW-NAS, across all datasets, capacitor sizes and
latency requirements. The results indicate that the HW-NAS solutions may be unsafe, as they
cannot complete the inference when the energy budget is insufficient. For example, the HW-NAS
solutions fail to make forward progress under the small capacitor (1 mF) in all three datasets, as well
as in several cases under the medium capacitor (e.g., in CIFAR-10 when the latency requirement
was set to TS2 and TS3). This is primarily because HW-NAS maximizes data reuse by finding
execution designs consisting of large tile sizes with higher energy cost, without considering the
power-cycle energy budget. In contrast, iNAS ensures the power-cycle energy consumption of a
solution can be satisfied by the intermittent system, and therefore the iNAS solutions can safely
complete the inference under all evaluated scenarios, even under the small energy budget.

Although the HW-NAS solutions can complete the inference when the energy budget is sufficient,
the solutions are inefficient in all such cases, as they do not meet the end-to-end latency requirement.
This is particularly evident when the latency requirement is higher (e.g., in CIFAR-10 under
10 mF/TS3 and in HAR under 5 and 10 mF/TS3), as HW-NAS finds more complex solutions,
such as network architectures with a larger number of filters and larger kernel sizes. Because
execution designs are constrained by the VM capacity size and HW-NAS does not consider batch
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Fig. 8. End-to-end inference latency of iNAS solutions compared to HW-NAS

preservation and additional costs related to intermittent execution behavior, the derived complex
solutions require a large number of power cycles to complete, while significantly underutilizing
the power-cycle energy budget. Additionally, HW-NAS solutions are susceptible to re-execution,
further increasing their end-to-end inference latency. Re-execution is more noticeable under a
marginally sufficient energy budget that shows slight variation at runtime due to the capacitor’s
physical characteristics (Section 5.2), and also when the power-cycle energy cost per layer has
lower variation due to a small architecture search space (e.g., KWS under 5 mF). In contrast,
iNAS considers batch preservation and appropriately balances data reuse and costs related to
intermittent execution, and therefore the derived solutions allow for better utilization of the energy
budget and require fewer power cycles to complete inference. Therefore, the iNAS solutions can
efficiently meet the end-to-end latency requirement under all experiment conditions. Moreover, as
iNAS underestimates the energy budget (Section 5.2), slight variation leading to re-execution are
overcome.

The relative reductions in the inference latency of the iNAS solutions compared with the HW-
NAS solutions are indicated above the bar plots. Overall, compared to the HW-NAS solutions that
can safely complete the inference, the iNAS solutions reduce the intermittent inference latency
by 16% to 87% (on average 60%). The improvements are more apparent when it is especially
challenging for HW-NAS to find feasible solutions, for instance under a small capacitor, where
the inference does not complete, and additionally under a high latency requirement, where more
complex network architectures are found.

6.2.2 Solution Accuracy: Figure 9 shows the relative accuracy difference of the solutions found
by iNAS with respect to the HW-NAS solutions, for each dataset under different capacitor sizes
and latency requirements. iNAS shows an accuracy gain of up to 3.4% (e.g., CIFAR-10 under 1 mF)
but also an accuracy loss of up to 1.2%, 0.82% and 0.4%, respectively, for the CIFAR-10, HAR and
KWS datasets. However, note that iNAS by design does not improve or degrade accuracy, and
the highest accuracy found by any of the explored solutions is highly dependent on the size of
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the feasible solution space, controlled by the latency requirement [34]. The accuracy difference
between the HW-NAS and iNAS solutions are mainly contributed by the DNN trainer, as the
accuracy of the same child network may vary 1-2% each time it is trained. Compared to the HAR
and KWS datasets, the accuracy difference is higher in the CIFAR-10 dataset, because its network
model type has a larger architecture search space, and hence the number of filters and kernel size
vary greatly across the explored child networks.
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Fig. 9. Relative accuracy difference of iNAS solutions compared to HW-NAS solutions

6.2.3 Search Time: Figure 10 shows the difference between the search time of iNAS compared with
HW-NAS, averaged across multiple runs. The bars in the figure indicate the relative search time
difference, and the absolute search time of each framework is reported above the bars (displayed
in minutes, rounded to the nearest integer; top: iNAS, bottom: HW-NAS). The search time is
dominated by the training time of the feasible child networks, and therefore the CIFAR-10 and
HAR datasets respectively have the highest and lowest search time, considering the size of their
training data and their model architecture type. Moreover, a higher latency requirement also
increases the search time as it increases the number of feasible child networks which are trained.
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Compared to HW-NAS, iNAS incurs extra overhead to explore the preservation design space in
addition to the execution design and network architecture spaces, and to calculate the power-cycle
energy consumption and latency which are used to estimate the end-to-end inference latency. This
additional overhead is more apparent for datasets with less training data, such as HAR, where the
iNAS search time is 11% to 17% higher than HW-NAS. By contrast, for datasets with a relatively
large training set such as CIFAR-10 and KWS, the iNAS overhead is respectively only 5% to 8%
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and 0.1% to 5.5% higher than HW-NAS. In a few cases iNAS finds marginally fewer feasible child
networks than HW-NAS, resulting in a decrease in the overhead (e.g., KWS under 10 mF and TS1).

6.3 Constraint Characterization
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Fig. 11. Impact of VM size and capacitor size on end-to-end inference latency

Figure 11 shows the impact of the capacitor size and VM size on the end-to-end inference latency,
explored across the three model architecture types used for the evaluation datasets. We make
several key observations from this analysis. Firstly, the VM and capacitor sizes are tightly coupled.
Larger VM sizes allow for execution designs with larger tile sizes, reducing the total data access
costs and lowering the inference latency. However, after a certain point, doubling the VM size
does not significantly improve the inference latency, as the energy budget becomes a bottleneck,
restricting the preservation batch size. Secondly, for model architectures with a smaller search
space, such as KWS, larger VM sizes do not bring any noticeable latency improvement, for the
same capacitor size. This is because, for such model architecture types, under different VM sizes,
the intermittent execution design that gives the lowest latency may require an equal number of
power cycles to complete, resulting in a low variation in end-to-end inference latency. Thirdly,
increasing the capacitor size does not necessarily reduce the end-to-end inference latency. A larger
capacitor size allows for a larger preservation batch size, which reduces the number of required
power cycles for intermittent inference and improves the end-to-end inference latency. However,
for a given VM size, after the maximum feasible preservation batch size has been reached, the
capacitor recharge time will be a bottleneck, which increases with the capacitor size, and thus
impacts the end-to-end inference latency. This is clearly seen in HAR under small VM sizes (e.g.,
256 and 512 bytes), because the HAR model architecture type has a smaller search space than that
of CIFAR-10 and a larger input size than that of KWS. This quickly saturates the VM capacity,
given a large intermittent execution design.

7 DISCUSSION
Although through extensive experiments we demonstrate the practicality of iNAS, there are several
opportunities for further performance improvement. The iNAS framework does not target a specific
type of application, instead iNAS is generic and broadly applicable for intermittent inference
systems typically running lightweight DNNs. As shown in Section 6.3, iNAS is also well suited as
an early design exploration and system evaluation tool, to facilitate key platform design choices
during early design stages. System design considerations should be appropriately determined
based on the application requirements. For example, if low latency is a critical requirement, then
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the system can be designed with a larger capacitor size or stronger power source (at a higher
area and component cost), to respectively reduce the number of power cycles or recharge time.
Alternatively, techniques such as model compression and runtime adaptation can also be integrated
to reduce the inference latency (Section 8)

In this first work, exhaustively exploring the execution and preservation design spaces is simple
yet manageable. However, exhaustive search will become infeasible as the network size and
design space becomes larger, and therefore more efficient and sophisticated exploration algorithms
may need to be used (e.g., evolutionary search [51], heuristic-based speed-ups [40] or dynamic
programming approaches [46]). Similarly, as discussed in Section 8, faster architecture search
strategies such as gradient-based optimization can also be applied to speed up the NAS.

As discussed in Section 5.2, the proposed intermittent-aware abstract performance model (iNAS-
PMod) is general and broadly applicable to intermittently-powered edge devices characterized
in Section 2.1, although the target devices need to be profiled. In order to calibrate iNAS-PMod,
we obtain energy/latency measurements of micro computations and data transfer operations on
the target intermittent platform, as explained in Section 5.2. Minor calibration may be required
to determine the equivalent resistance of the energy harvesting unit and power management
circuits, if not stated in the specification. Nevertheless, please note that abstract performance
models typically rely on some form of calibration; for example, using information in datasheets,
simulator traces [53], real hardware measurements to train machine learning models [9], or similar
to our approach, calibration may be in the form of profiling low-level operations [19]. Moreover,
the process of calibration can be automated [18], and other modeling approaches that do not rely
on per-device calibration can also be adopted to improve iNAS-PMod (e.g., [2, 11, 64]). In the
performance model, it is not crucial for the estimated absolute performance of a solution to be
highly accurate; instead iNAS requires the relative order of the solutions in the search space to
be accurate, in terms of their relative performance, to find the solution with the lowest end-to-
end inference latency. In additional, to ensure safe execution while experiencing energy budget
variation at runtime, iNAS underestimates the power-cycle energy budget, where the safety margin
can be increased to further improve energy budget utilization, but at the risk of failure.

8 RELATEDWORK
HW-NAS frameworks incorporate hardware-aware objectives and constraints, such as inference

latency [34, 65], energy consumption [15, 51] and resource usage [66] into the NAS optimization,
to find networks with high accuracy and hardware performance. To further maximize hardware
efficiency, the DNN architecture and hardware design spaces are merged and simultaneously
co-searched [1, 66]. HW-NAS fundamentally maximizes data reuse to achieve low inference
latency, while minimizing resource and energy usage. HW-NAS may enforce an energy constraint
on the total inference energy consumption [15, 51], but not at the power-cycle level, so safe
execution cannot be guaranteed. Furthermore, none of the existing techniques explore any form
of preservation design space, which may lead to sub-optimal designs for intermittent systems. In
contrast, our work is the first to introduce intermittent execution behavior into NAS, by enabling
NAS to appropriately balance data reuse and costs related to intermittent execution, and to co-
search a new preservation design space unique to intermittent inference, while ensuring solutions
do not exceed the power-cycle energy budget. Smaller and faster networks with low accuracy loss
can be found by exposing model compression (i.e., minimization) spaces of techniques such as
hardware-aware pruning [32, 43], where parameter redundancy is reduced, quantization-aware
training [20, 61], where small bit-width models are trained, and knowledge distillation [54], where
knowledge from a larger model is transferred to a smaller model. On an intermittent system,
where the power source is weak and unstable, in most cases, a compressed model would still
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require multiple power cycles to complete an inference. Therefore, compression may still have
to be combined with design-time tools or runtime software to guarantee safe execution. Future
efforts can leverage our methodology to integrate these orthogonal compression spaces into
intermittent-aware NAS to achieve better inference latency improvements.
There is a growing interest to speed up NAS, as it can become extremely time consuming,

especially when considering wide design spaces or large datasets [59, 70]. Hierarchically combined
micro and macro architecture spaces reduce the search space size, while maintaining a high degree
of search freedom [45, 59]. Concepts such as weight sharing [8, 9, 44] and accuracy predictors [63],
alleviate the cost of training individual child networks. Fast gradient-based search optimizations
make the NAS objective function differentiable [12, 41], but special transformations are required
for non-differentiable metrics such as inference latency [9]. In contrast, search strategies such
as reinforcement learning [70] and evolutionary algorithms [51, 55], although computationally
expensive, are generic and support architectures with a broad range of criteria. Interested readers
can find a comprehensive review of NAS techniques (including HW-NAS) in [7, 16]. We consider
a macro architecture space with key parameters and a generic reinforcement learning search
strategy that is commonly used by HW-NAS [33, 34, 59]. These are sufficient to demonstrate the
effectiveness of our approach to produce safe and efficient solutions for intermittent systems. Our
framework can indeed be complemented by integrating any of the above mentioned NAS speed
up techniques.
Initial work on intermittent inference provided task-based runtime software to reduce the

overhead of progress preservation and recovery of loop-heavy inference computations [19]. Our
framework assumes a similar execution model as in [19], extended with a proactive system shut-
down strategy. Hardware accelerated inference operations can also be accumulatively executed
across power cycles, by employing fine-grain progress tracking, which exploits the inherent opera-
tional behavior of lightweight accelerators found in commercial off-the-shelf MCUs [36]. Runtime
system software may also opportunistically adapt the inference to vary the inference performance
depending on the harvested energy level. Existing adaptation techniques may grow/shrink network
elements and perform runtime retraining with the help of a co-processor [39], or select early
termination points on a multi-exit network without significant accuracy degradation, by using
a power trace-aware offline optimization [42, 67]. Intermittent inference can also be applied to
applications with real-time requirements and continuous data (e.g., audio keyword recognition) by
combining early termination techniques and energy-aware scheduling [29, 30]. In essence, the
above intermittent inference techniques and runtime adaptation techniques efficiently execute or
incrementally adapt a fixed baseline DNN model, without searching for an optimum architecture
for the target intermittent platform. Extending our work to consider these efficient runtime meth-
ods may open up new challenges in intermittent-aware NAS.

9 CONCLUDING REMARKS
This paper presents iNAS, which introduces intermittent execution behavior into NAS, to find
accurate network architectures with corresponding intermittent execution designs that can be
feasibly deployed on intermittently-powered systems. Existing NAS frameworks find inference
execution designs that maximize data reuse, which under intermittent power can be inefficient as
they may not meet the end-to-end intermittent latency requirement and, even more seriously, the
execution designs may be unsafe as they may not safely make forward progress if the power-cycle
energy budget is insufficient. In contrast, iNAS is able to find intermittent execution designs
which are both safe and efficient by using an intermittent-aware execution design explorer and an
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intermittent-aware abstract performance model. The solutions found by iNAS4 and an existing
HW-NAS framework [34] were evaluated on a Texas Instruments device under intermittent power.
In all scenarios, the iNAS solutions safely meet the latency requirements and show improved
end-to-end inference latency compared to the HW-NAS solutions. The improvements are more
evident when it is harder for HW-NAS to find feasible solutions, such as when the energy budget
is small, as well as when the latency requirement is high, where HW-NAS fails to find efficient
execution designs for complex network architectures. Furthermore, the iNAS solutions show
accuracy comparable to the HW-NAS solutions, and iNAS incurs an acceptable increase in search
overhead.
The iNAS framework and the intermittent inference library, has been made openly available

[52], allowing the automatic design and deployment of DNNs with high accuracy and low latency
for energy harvesting edge devices, and additionally, iNAS can also assist in the selection of
appropriate configurations for a new intermittent platform to provide the required performance.
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