
61

Heterogeneity-aware Multicore Synchronization for
Intermittent Systems

WEI-MING CHEN, Academia Sinica and National Taiwan University, Taiwan
TEI-WEI KUO, City University of Hong Kong, China and National Taiwan University, Taiwan
PI-CHENG HSIU, Academia Sinica, National Taiwan University and National Chi Nan University, Taiwan

Intermittent systems enable batteryless devices to operate through energy harvesting by leveraging the
complementary characteristics of volatile (VM) and non-volatile memory (NVM). Unfortunately, alternate and
frequent accesses to heterogeneous memories for accumulative execution across power cycles can significantly
hinder computation progress. The progress impediment is mainly due to more CPU time being wasted for
slow NVM accesses than for fast VM accesses.

This paper explores how to leverage heterogeneous cores to mitigate the progress impediment caused
by heterogeneous memories. In particular, a delegable and adaptive synchronization protocol is proposed
to allow memory accesses to be delegated between cores and to dynamically adapt to diverse memory
access latency. Moreover, our design guarantees task serializability across multiple cores and maintains data
consistency despite frequent power failures. We integrated our design into FreeRTOS running on a Cypress
device featuring heterogeneous dual cores and hybrid memories. Experimental results show that, compared to
recent approaches that assume single-core intermittent systems, our design can improve computation progress
at least 1.8x and even up to 33.9x by leveraging core heterogeneity.

CCS Concepts: • Computer systems organization→ Embedded software.

Additional Key Words and Phrases: Multicore synchronization, task concurrency, data consistency, batteryless
devices, intermittent computing

ACM Reference Format:
Wei-Ming Chen, Tei-Wei Kuo, and Pi-Cheng Hsiu. 2021. Heterogeneity-aware Multicore Synchronization
for Intermittent Systems. ACM Trans. Embedd. Comput. Syst. 20, 5s, Article 61 (September 2021), 22 pages.
https://doi.org/10.1145/3476992

This article appears as part of the ESWEEK-TECS special issue and was presented in the International Conference on
Hardware/Software Codesign bland System Synthesis (CODES+ISSS), 2021.
This work was supported in part by the Ministry of Science and Technology, Taiwan, under grant MOST 110-2222-E-001-
003-MY3.
Authors’ addresses: W.-M. Chen, Research Center for Information Technology Innovation (CITI), Academia
Sinica, and Department of Computer Science and Information Engineering, National Taiwan University, Taiwan,
d04922006@csie.ntu.edu.tw; T.-W. Kuo, Department of Computer Science, City University of Hong Kong, China, and
Department of Computer Science and Information Engineering, National Taiwan University, Taiwan, ktw@ntu.edu.tw; P.-C.
Hsiu (corresponding author), Research Center for Information Technology Innovation (CITI), Academia Sinica, College
of Electrical Engineering and Computer Science, National Taiwan University, and Department of Computer Science and
Information Engineering, National Chi Nan University, Taiwan, pchsiu@citi.sinica.edu.tw.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
1539-9087/2021/9-ART61 $15.00
https://doi.org/10.1145/3476992

ACM Trans. Embedd. Comput. Syst., Vol. 20, No. 5s, Article 61. Publication date: September 2021.

https://doi.org/10.1145/3476992
https://doi.org/10.1145/3476992


61:2 W.-M. Chen, T.-W. Kuo, and P.-C. Hsiu

1 INTRODUCTION
Various heterogeneous multicore architectures have recently been explored to fulfill increasingly
diverse demands for applications in the Internet-of-Things (IoT) domain [22, 41]. For instance,
many ultra low-power microcontrollers (e.g., STMicro STM32WB55 and Cypress PSoC62) have
featured heterogeneous dual cores to allow IoT devices to combine computing performance and
energy efficiency. However, the rapidly increasing number of IoT devices and their maintenance
costs make them inapplicable to be powered with batteries [17]. A promising alternative is energy
harvesting, but ambient energy is inherently unstable and weak, leading to frequent power failures
and resumptions [30]. Intermittent computing, which leverages the complementary characteristics
of heterogeneous memories, has emerged as a new computing paradigm and created innovative
applications like solar-powered ambient sensors [48], self-powered cameras [35], wireless-powered
cellphones [42], and battery-free game consoles [13]. However, applications executed on such
devices need to run intermittently [15, 21] and accumulate computation progress across power-on
cycles [4, 37]. Such execution behavior increases the difficulty of designing hardware chips [18,
28, 43] and system software [20, 31], and also makes existing peripheral designs intended for
continuously-powered systems inapplicable [5, 26, 33, 34].
Intermittent systems typically use checkpointing to frequently save task progress and data in

volatile memory (VM) to non-volatile memory (NVM) so that the systems can be recovered after
power resumption [11, 19, 32, 46]. Various consistency-aware checkpointing approaches have
been proposed to avoid inconsistency between the data preserved in NVM and the task progress
restored into VM [36] due to re-execution of a non-idempotent task [29, 39, 44, 45]. Although many
attempts have been made to improve checkpointing efficiency [14, 24, 47, 49], checkpointing-based
approaches normally suffer from long system suspension and recovery times [8]. To alleviate
runtime checkpointing overhead, task-based approaches partition an application program into
multiple atomic tasks and only update data modifications after task completion [12, 27, 40]. Various
programmingmodels [29] and compiler supports [31] have been developed to assist task partitioning.
Nonetheless, these studies assume serial task execution in order to be manageable for programmers.
Multitasking operating systems typically allow for concurrent task execution so that multiple

tasks that share data can be executed in an interleaving manner to improve CPU utilization [23]. It
is particularly challenging to enable concurrency control on intermittent systems due to frequent
yet transient power failures. Recently, some failure-resilient designs [8–10] have been proposed to
enable intermittent-aware task concurrency. Specifically, the designs guarantee the serializability
of concurrently executed tasks as if they were serially executed in some arbitrary order. To allow
instant system recovery from power failures, durability is achieved by keeping the data in NVM
always consistent with the task progress restored into VM, and atomicity is enforced to update data
in an all-or-none manner and thus avoid data corruption due to partial updates. However, these
studies assume single-core systems and do not address multicore task synchronization, which is
essential to ensure the consistency of shared data when accessed simultaneously by tasks executed
on different cores.

This paper presents the first attempt to study intermittent-aware multicore synchronization. We
observe that the overhead required to enable intermittent computing can easily reduce the achiev-
able computation progress, mainly because intermittent systems require alternate and frequent
accesses to heterogeneous memories to advance and preserve progress, resulting in more CPU
time being wasted for slow NVM accesses than for fast VM accesses. Importantly, the wasted CPU
time varies significantly with the memory access latency, and the reduced computation progress
substantially increases with the CPU computing capability. These observations motivate us to

ACM Trans. Embedd. Comput. Syst., Vol. 20, No. 5s, Article 61. Publication date: September 2021.



Heterogeneity-aware Multicore Intermittent Systems 61:3

explore how to leverage heterogeneous cores to mitigate the computation progress reduction caused
by heterogeneous memories.
To better utilize CPU resources, we propose a heterogeneity-aware design, which allows the

high-speed core to primarily push computation progress forward and the low-speed core to help
carry out slow memory accesses. Our design extends the two-version data management used in a
failure-resilient design [9] to provide intermittent-aware multicore concurrency control. However,
a major challenge lies in how to enable delegable and adaptive synchronization, while enforcing
task serializability across multiple cores. Specifically, delegable commitment allows slow memory
accesses to be delegated from the high-speed core to the low-speed core, thereby transferring the
wasted CPU time between cores. Moreover, adaptive synchronization allows tasks to adaptively wait
for fast and slow memory accesses, thus reducing the wasted CPU time. Lastly, the serializability of
tasks concurrently executed on different cores is enforced via two-phase backward validation. When
realized on intermittent systems, the design should be sufficiently lightweight to accommodate
transient power on and off cycles.

We integrated our heterogeneity-aware design into FreeRTOS [3], a real-time operating system,
and conducted extensive experiments on a heterogeneous dual-core device featuring hybrid memo-
ries, namely Cypress CY8CKIT-062-WiFi-BT, to measure achieved forward progress1. Compared to
failure-resilient non-checkpointing [9] and system-wise checkpointing [19] designs, our design can
respectively improve forward progress by 1.8 to 11.6x and 4.7 to 33.9x by leveraging the hetero-
geneity of CPU cores, where the improvement is more evident for intermittent devices with more
asymmetric operating frequencies. We also conduct a breakdown analysis on the required system
costs and incurred runtime overheads to provide some valuable insights into intermittent-aware
multicore synchronization.

The remainder of this paper is organized as follows. Section 2 provides background information
and Section 3 explains the motivation for this work. Section 4 presents our heterogeneity-aware
design, with implementation issues discussed in Section 5. The experimental results are reported in
Section 6. Section 7 contains some concluding remarks.

2 BACKGROUND
2.1 Intermittent-aware Concurrency Control

Fig. 1. System architecture of an intermittent device.

Figure 1 shows the system architecture of a typical intermittent device, using energy harvesting
as the power source and a capacitor as an energy buffer. The system is respectively powered on
1Forward progress, defined as the computation workload finished per time unit, is a widely used performance metric for
intermittent systems due to their non-deterministic power-on cycles.

ACM Trans. Embedd. Comput. Syst., Vol. 20, No. 5s, Article 61. Publication date: September 2021.



61:4 W.-M. Chen, T.-W. Kuo, and P.-C. Hsiu

and off when the capacitor voltage respectively reaches two preset thresholds. To accommodate
frequent power failures, the device is normally equipped with hybrid memories composed of volatile
memory (VM) and non-volatile memory (NVM), both of which are directly accessible by the CPU.
The VM features high performance but will lose data after power failures, whereas the NVM can
preserve data across power cycles but suffers from high latency for data accesses. Borrowed from
traditional (database) systems, checkpointing is adopted to backup and restore data between VM
and NVM to accumulate computation progress across short power-on periods [4, 19, 32, 37, 43],
while logging is used to accommodate system recovery from power failures to a consistent state.

To improve computation progress, multitasking systems typically support task concurrency,
where multiple tasks that share data can be executed in an alternating manner [23]. As a result, the
resultant values of the data depend on the precedence order of data access operations conducted
by tasks. To ensure that the resultant data values are predictable, concurrency control is normally
adopted to enforce serializability, ensuring that the concurrent task execution is equivalent to
the case where these tasks are executed serially in some arbitrary order. However, enabling task
concurrency on checkpointing-based intermittent systems may result in long runtime suspension
and recovery times, given frequent power failures (e.g., from hundreds of milliseconds to a few
seconds [8, 9]). This is because checkpointing needs to suspend running tasks to obtain an exclusive
access to VM and NVM, and recovery via log traversing needs to redo (resp. undo) data modifications
made by finished (resp. unfinished) tasks after power resumption.Whenmore tasks are concurrently
executed, the overheads become more evident due to the increased size of checkpoints and logs,
which can even offset the computation progress improved by concurrent task execution. Moreover,
intermittent systems may be unable to conduct timely system recovery via log traversing within
short power-on periods.
Recent work has proposed a failure-resilient design to enable task concurrency on intermittent

systems without checkpointing and logging [9]. The design uses two-version data in heterogeneous
memories to provide the flexibility of concurrent task execution by allowing every data object
to be accessed simultaneously by multiple tasks. The data object in NVM is kept consistent with
the progress of finished tasks at all times, ensuring that a consistent version is always available in
NVM to allow instant recovery without logging. Thus, durability is achievable despite frequent
power failures. On the other hand, data modifications made by each task on a data object will
be conducted on the task’s own working version in VM. To eliminate checkpointing, only when
a task is prepared to finish, its working versions can be committed into the consistent versions
if its execution is validated as serializable with a backward validation algorithm. Otherwise, the
task is aborted and rerun as if it had never been executed; accordingly, idempotence is protected
because repeated execution will produce the same result as one single execution. To avoid partial
updates on the consistent versions due to power failures, atomicity is enforced by an atomic commit
operation. However, the failure-resilient design assumes single-core intermittent systems and does
not address multicore task synchronization.

2.2 Multicore Task Synchronization
When multiple tasks sharing data objects run on different cores, simultaneous updates on any data
object can potentially lead to a non-serializable outcome. Thus, data access operations conducted by
these tasks must be synchronized to ensure the consistency of shared data objects. Synchronization
protocols typically employ spinlocks or semaphores to ensure that shared data objects can only be
updated in a critical section, where only one task can enter at a time. Specifically, before entering
the critical section, a task needs to acquire a corresponding lock which will be released after the
task leaves the critical section. In a spinlock-based protocol, a task uses a while loop to keep the
core repeatedly request the lock, also known as busy-waiting. In contrast, under a semaphore-based

ACM Trans. Embedd. Comput. Syst., Vol. 20, No. 5s, Article 61. Publication date: September 2021.



Heterogeneity-aware Multicore Intermittent Systems 61:5

protocol, a task which fails to acquire the lock will enter a sleep-waiting state, be put into a waiting
queue, and yield the CPU core to other tasks.
Each kind of protocol has its own pros and cons with respect to the waiting time of a task.

Specifically, spinlocks provide a quick response time to the task but will waste CPU time if the
waiting time is lengthy, whereas awaiting task can release the CPU to other tasks under a semaphore-
based protocol but have to spend additional CPU time for context switch and maintenance of the
waiting queue. To reduce the wasted CPU time in traditional systems, early research has proposed
adaptive synchronization, which allows a task to transit between waiting mechanisms at runtime
according to the length of the waiting time [25]. During transition, previous approaches typically
incur a non-negligible overhead to traverse hierarchical locking structures, suspend/resume waiting
tasks, and migrate locks between memory hierarchies [6, 7]. The incurred overhead and waiting
time are assessed prior to transition, so that a transition can be invoked only when the assessment
finds it to be beneficial.

Unlike traditional systems, where data accessed by tasks are mainly in VM, intermittent systems
require frequent and alternate accesses to VM and NVM, thus increasing the number of waiting
tasks which suffer from high variations in the waiting time (due to different memory access latency).
With that in mind, tasks have to frequently transit between waiting mechanisms to adapt to the
variations. When the power source is weaker, where alternate accesses to VM and NVM will be
more frequently, the overhead incurred by assessment-based approaches could offset the CPU time
gained by adaptive synchronization and even might be unable to guarantee timely transitions.

3 HETEROGENEOUS MULTICORE INTERMITTENT SYSTEMS: OBSERVATION AND
MOTIVATION

To explore the extent of computation progress reduced by heterogeneous memories to enable
intermittency, as well as how heterogeneous cores can help improve progress, we conducted an
experiment on a Cypress device, equipped with a CPU comprising a big core (Cortex-M4) and a
LITTLE core (Cortex-M0+) and with hybrid memories comprising VM (256KB SRAM) and NVM
(1MB Flash), under a stable power source. In the experiment, each core repeatedly runs two tasks,
each of which reads a shared data object, performs an arithmetic function on the object, and finally
updates the object.

We compare the computation progress achieved by a conventional design used by continuously-
powered systems and a failure-resilient design [9] developed for intermittently-powered systems
(Section 2.1). The main difference between them is that once a task is ready to finish, the failure-
resilient design needs to update the data object in NVM to prevent the progress from being lost
due to a potential power failure, whereas the conventional design only updates the data object
in VM, which provides high performance when a power failure will never occur. Figure 2 shows
the forward progress (defined as the number of finished tasks per second) respectively achieved by
the two designs using each waiting mechanism (spinlock or semaphore) on each core type (big
or LITTLE). As expected, the failure-resilient design significantly reduces the forward progress
achieved by the conventional design by between 62% and 92%. The reduction is mainly because
the conventional design only requires VM accesses, whereas the failure-resilient design incurs
many NVM accesses, and much more CPU time is wasted for slow NVM accesses than for fast VM
accesses, regardless of the waiting mechanism used.
This experiment allows us to make the following two observations. First, by comparing the

progress achieved by the two designs, the reduction on the big core is about 4 times that on the
LITTLE core. In other words, the cost of performing a memory access is much higher on the big
core than on the LITTLE core. Note that although the amount of wasted CPU time remains similar
regardless of which core the memory access is performed on, the big core can make more progress

ACM Trans. Embedd. Comput. Syst., Vol. 20, No. 5s, Article 61. Publication date: September 2021.



61:6 W.-M. Chen, T.-W. Kuo, and P.-C. Hsiu

w/ Spinlock

w/ Semaphore

w/ Spinlock

w/ Semaphore

LITTLE core

LITTLE core

Big core

Big core

0 100 200 300 400 500

23.3

40.9

35.5

123.9

105.6

66.5

430.3

257.9

Conventional design

Failure-resilient design

Forw ard progress (num ber o f fin ished tasks per second)

-74%

4.1x

3.9x

Fig. 2. Computation progress achieved by different designs using different waiting mechanisms on individual
cores.

than the LITTLE core given the same amount of CPU time. This suggests that forward progress
can be significantly improved if those slow operations leading to high memory access latency
on the big core can be delegated to the LITTLE core. Second, for a memory operation which is
well-suited to one waiting mechanism but instead adopts the other one, the conventional design
suffers from a progress reduction of up to 18%, as opposed to 74% for the failure-resilient design. In
other words, using an inappropriate waiting mechanism for a memory operation may lead to a more
considerable progress reduction in intermittent systems than in traditional systems. This result
agrees with the reason for adaptive synchronization (Section 2.2), which is particularly necessary
for intermittent systems that feature high variations in the waiting time due to heterogeneous
memories. However, the considerable difference in progress reduction would also suggest selecting
the waiting mechanism according to the type of memory (instead of prior waiting time assessment)
is sufficient to significantly compensate for the progress reduction.

The above-mentioned results could be observed in any intermittent-aware design which requires
alternate and frequent accesses to heterogeneous memories to advance and preserve progress, and
will be more evident when more tasks are concurrently executed or the system features a higher
level of heterogeneity.

4 HETEROGENEITY-AWARE MULTICORE CONCURRENCY CONTROL
4.1 Design Overview
Motivated by the observations in Section 3, we propose a heterogeneity-aware design which lever-
ages heterogeneous CPU cores to reduce the wasted computation resources due to heterogeneous
memory accesses, thereby improving the forward progress of concurrent task execution on intermit-
tent systems. A major challenge of realizing such a design is how to enable delegable and adaptive
synchronization, which is sufficiently lightweight for intermittent systems, while guaranteeing task
serializability across multiple cores.
Figure 3 illustrates our design which manages tasks executed concurrently on heterogeneous

cores, as well as their data accesses to hybrid memories. To increase the flexibility of concurrency
control, two-version data management allows two data versions respectively in VM and NVM for
each data object, so that multiple tasks can simultaneously access the same data object during
execution and then commit their data modifications from VM into NVM after execution. Because
tasks on different cores can simultaneously access the same object, their data access operations must
be synchronized to ensure an exclusive update on the object. To this end, adaptive synchronization is
employed to avoid conflict operations while adapting to diverse waiting times incurred by different
operations. Moreover, delegable commitment allows commit operations to be delegated between

ACM Trans. Embedd. Comput. Syst., Vol. 20, No. 5s, Article 61. Publication date: September 2021.



Heterogeneity-aware Multicore Intermittent Systems 61:7

CPU cores and merged with other commit operations, thereby mitigating the CPU time wasted
by the high-speed big core on NVM updates without overloading the low-speed LITTLE core.
Although task synchronization avoids simultaneous conflict operations, the operations performed
by concurrently executed tasks may not maintain a serializable order under optimistic concurrency
control. Therefore, before a task can actually perform its commit operation, its execution must be
validated via two-phase validation to ensure serializability across multiple cores.

Fig. 3. Our Heterogeneity-aware design for Concurrency Control and Synchronization.

Two-version data management (detailed in Section 4.2) allows multiple tasks to simultaneously
read and write the same data object during their execution while achieving instant recovery under
intermittent power. Specifically, at the end of execution, a task atomically commits its modifications
on data objects in VM into the corresponding objects in NVM, and the task is deemed finished once
its commit operation is complete. Power failures may occur during task execution. Upon power
resumption, only those unfinished tasks, which were lost in VM, are recreated to rerun, thereby
preventing the data objects in NVM from being repeatedly modified by finished tasks. This allows
data in NVM to be always kept consistent with the progress of finished tasks, thereby allowing
instant system recovery upon power resumption.

Delegable and Adaptive Synchronization (detailed in Section 4.3) prevents tasks from simultane-
ously performing conflict data access operations while reducing the wasted CPU time. Specifically,
a task must acquire the corresponding lock before it can read, write, or commit a data object which
is also accessible by other tasks; otherwise, the task will wait until the lock is available. To adapt
to high variations in memory access latency, adaptive synchronization allows frequent waiting
mechanism transitions during context switches, with negligible transition overhead. Moreover,
considering the high latency of NVM writes, delegable commitment enables the commit operations
of tasks executed on the big core to be delayed and delegated to the LITTLE core. Meanwhile, to
reduce the number of NVM writes, individual commit operations are allowed to be merged and
atomically performed as a batch.

Two-phase validation (detailed in Section 4.4) ensures that only tasks which maintain serializabil-
ity across multiple cores can commit their data modifications from VM to NVM. Specifically, when
multiple tasks running on different cores attempt to commit their modifications simultaneously, the
first phase allows tasks to be validated on different cores in parallel to reduce the validation time,
while the second phase is protected by a global critical section to force all tasks under validation to
be validated against one another. For tasks that violate serializability, they can be simply aborted
and rerun without violating idempotence, because their data modifications have yet to be committed
into NVM and will become invalid in VM.

ACM Trans. Embedd. Comput. Syst., Vol. 20, No. 5s, Article 61. Publication date: September 2021.



61:8 W.-M. Chen, T.-W. Kuo, and P.-C. Hsiu

4.2 Two-version Data Management
4.2.1 Version Allocation and Transition. To provide flexibility for concurrency control, our design
allows two data versions, namely consistent version and working version, for each data object. A
data object has only one consistent version in NVM but can have multiple working versions in VM.
The consistent version represents the latest value committed by serializable tasks and is preserved
permanently in NVM. On the other hand, working versions store intermediate values written by
unfinished tasks and will be lost in VM upon a power failure. For each consistent version, we allow
a temporary copy in VM to provide high speed data access. Working versions of a data object are
allocated in a copy-on-write manner. Specifically, once a task first attempts to write a data object, a
working version dedicated for the task will be allocated in VM. The working and consistent versions,
as well as temporary copies, are manipulated by read, write, and commit operations, and thus allow
tasks to simultaneously perform different operations on the same data objects via different versions
and copies.

Fig. 4. The allocation and transition of data accessed by read, write, and commit operations [9].

Figure 4 shows the allocation and transition of data versions/copies accessed by the three
operations. When a task attempts to read a data object, the temporary copy will be read by default
to utilize high speed VM. If the temporary copy is not available, the consistent version in NVM will
be read instead. When the task attempts to write the data object, a working version dedicated for
the task will be immediately allocated in VM. Afterward, subsequent read and write operations
conducted by the task on the data object will be made on its own working version. At the end of
execution, the taskwill commit its modifications via a commit operation. Our design uses a backward
validation procedure to validate whether the task is serializable (Section 4.4). If serializability is
violated, the task is simply aborted and rerun. Otherwise, for each data object modified by the
validated task, the commit operation is granted to update the consistent version in NVM as the
corresponding working version, and the working version is directly transited into the temporary
copy in VM without extra data movement. Once the consistent versions of all data objects modified
by the validated task are successfully updated, the task is deemed finished. In short, for a data
object, our design allows a working version dedicated for each task, and the temporary copy (resp.
consistent version) is always transited (resp. updated) from the working version of the most recently
validated (resp. finished) task and accessible by all tasks. Whenever an operation is to be performed
on a shared data object, our design uses a task synchronization protocol to prevent the data object
from being simultaneously accessed by conflict operations (Section 4.3).

4.2.2 Atomicity and Durability. A task cannot directly write on the consistent version but on
a working version dedicated for the task in VM. The consistent versions in NVM will never be
updated during task execution and can only be atomically updated after a task is validated as
serializable. To enforce atomicity, our design implements atomic commit operations to prevent the
consistent versions in NVM from being partially updated due to a power failure. When a power
failure occurs during task execution, the working versions and temporary copies are directly lost
in VM, as if those unfinished tasks had never been executed. Therefore, after power resumption,
unfinished tasks can simply be recreated and rerun based on the consistent versions in NVM. Note

ACM Trans. Embedd. Comput. Syst., Vol. 20, No. 5s, Article 61. Publication date: September 2021.



Heterogeneity-aware Multicore Intermittent Systems 61:9

that finished tasks will not be recreated to prevent the consistent versions from being repeatedly
updated, thus protecting idempotence. By maintaining the consistency between data objects and
task progress at all times, our design not only enforces durability but also achieves instant system
recovery.

4.3 Delegable and Adaptive Synchronization
4.3.1 Adaptive Synchronization. Multiple data versions allow tasks executed on different CPU cores
to simultaneously access a data object to maximize forward progress, yet a task synchronization
protocol is needed to prevent conflict operations from being simultaneously performed on the same
data object. Two operations are deemed to conflict if both access the same data object and at least
one of them updates the object. Thus, two read operations are not in conflict because they do not
update data. Also, two write operations are not in conflict because each task writes on its own
working version. In contrast, a commit operation cannot be simultaneously performed with a read
or another commit operation on the same data object. This is because when a task is updating
the temporary copy or consistent version of a data object, this object cannot be simultaneously
accessed (i.e., read or committed) by another task. Thus, before reading or committing a data object
shared with other tasks, a task must acquire the corresponding lock to obtain an exclusive access
to the object.
If a task cannot acquire the desired locks due to some ongoing operations, it needs to enter

either a busy-waiting or sleep-waiting mode until these operations are complete. Whenever a
task attempts to access an occupied data object, our design determines how the task waits for the
corresponding lock to reduce the wasted CPU time. Figure 5 shows the transition policy for a task
to adapt to diverse waiting times incurred by different data access operations. If the task is waiting
for the completion of any slow operations (i.e., NVM write), it enters sleep-waiting and releases the
CPU core. In contrast, if the task is only waiting for fast operations (i.e., VM read, VM write, and
NVM read) to complete, it enters busy-waiting to provide a quick response. Afterward, the task can
dynamically transit between busy-waiting and sleep-waiting, with a change of those remaining
memory operations it is waiting for.

Fig. 5. A transition policy of adaptive synchronization.

As observed in Section 3, intermittent systems should be able to frequently transit between
waiting mechanisms to adapt to alternate accesses of heterogeneous memories. To accommodate
lightweight transitions, our design realizes adaptive synchronization by allowing tasks to be
suspended to enter sleep-waiting and be resumed to enter busy-waiting during context switch,
which avoids the additional overhead required to suspend and resume tasks for waiting mechanism
transitions. As illustrated in Figure 5, once the task currently executed on a core is switched out
by the scheduler (Step 1), those busy-waiting tasks in the ready queue and sleep-waiting tasks in
the suspension queue are swapped according to the above-mentioned transition policy (Steps 2
and 3). Note that a task that has acquired all desired locks in the suspension queue will also be

ACM Trans. Embedd. Comput. Syst., Vol. 20, No. 5s, Article 61. Publication date: September 2021.



61:10 W.-M. Chen, T.-W. Kuo, and P.-C. Hsiu

moved into the ready queue, but it must acquire all desired locks in an all-or-none manner to avoid
a hold-and-wait deadlock. Lastly, one of the tasks (either waiting or not) in the ready queue will be
switched in by the scheduler to occupy the CPU core (Step 4). More implementation issues will be
detailed in Section 5.

4.3.2 Delegable Commitment. Once a task is validated as serializable, its commit operation is
granted. However, even with adaptive synchronization, the slow commit operation will incur an
inevitable waste of CPU time. To transfer the wasted CPU time between cores, if the commit
operation does not conflict with any ongoing operations, our design immediately transits the
working versions of the task into temporary copies in VM but allows the updates of consistent
versions in NVM to be delayed. Consequently, other unfinished tasks can still read temporary
copies to obtain the latest values of data objects, while delayed updates on consistent versions can
be delegated between cores and merged with other updates to reduce the NVM access cost.

Fig. 6. Delayed and merged NVM updates via delegable commitment.

For ease of presentation, we use a heterogeneous dual-core CPU as an example. To improve
forward progress, any commit operations invoked on the big core will be delayed by default and
delegated to the LITTLE core. The reason is that the extent of reduced forward progress incurred
by conducting NVM updates on a CPU core increases with the computing capability of the core,
as observed in Section 3. In contrast, none of the commit operations on the LITTLE core will be
delayed. Figure 6 illustrates how a commit operation is delegated from the big core to the LITTLE
core, where its working versions are first transited into the temporary copies in VM (Step 1) while
its NVM updates are delayed (Step 2). Then, delayed updates can be merged with another commit
operation (Step 3) carried out by the LITTLE core when any task executed on the core attempts to
update some of the same consistent versions (Step 4). Note that delegable commitment is compatible
with adaptive synchronization, in that other tasks can still wait for ongoing conflict operations by
adaptively using an appropriate waiting mechanism.
To this end, our design stores all delayed updates in a VM buffer shared by both cores. For

each consistent version, only the latest delayed update is stored in the buffer because preceding
delayed updates on the same consistent version will eventually be overwritten by the latest one.
Delaying the updates of a validated task on consistent versions can reduce the waiting time of
other unfinished tasks that attempt to access the corresponding data objects, while merging several
updates into one update reduces the amount of CPU time wasted by the LITTLE core to perform
slow NVM updates. However, if the buffer which stores delayed updates is full, the big core needs
to perform all delayed NVM updates to preserve forward progress in a timely manner. Delegable
commitment can also be applied to a multicore CPU featuring more high-speed and low-speed
cores. Specifically, each high-speed core is a producer of delayed updates into the buffer, while each

ACM Trans. Embedd. Comput. Syst., Vol. 20, No. 5s, Article 61. Publication date: September 2021.



Heterogeneity-aware Multicore Intermittent Systems 61:11

low-speed core consumes some delayed updates from the buffer along with its commit operations.
Note that simultaneous accesses from multiple cores to the buffer can be synchronized with global
semaphores, in a way similar to the typical producer-consumer synchronization protocol [38].

To prevent the consistent versions from being corrupted due to partial updates, the updates of a
commit operation must be performed in an all-or-none manner. This implies that, for a commit
operation, all its updates on consistent versions must be either delayed or performed together. Thus,
if some updates of a commit operation are merged with some updates of other commit operations,
all updates of these operations must be performed together (and a cascade is possible). Moreover,
once performed, all the updates must be atomically completed to prevent the consistent versions
in NVM from being partially updated, and once all the updates are completed, the corresponding
tasks must be successfully marked as finished to protect idempotence. The implementation issues
will be detailed in Section 5.

4.4 Two-phase Backward Validation
4.4.1 Multicore Validation. Whenever a task attempts to perform a commit operation, our design
ensures serializability across multiple CPU cores via a two-phase validation procedure. The two-
phase validation procedure shares a similar idea with a one-phase validation approach [9, 10] to
ensure serializability. Differently, the previous approach is intended for single-core systems and
thus can validate only one task at a time, which results in a long validation procedure when multiple
tasks running on different cores attempt to commit their modifications simultaneously. Hence, our
procedure allows multiple tasks to be simultaneously validated on different cores in the first phase
to reduce the waiting time incurred by the validation procedure, and protects the second phase by a
global critical section to ensure that all the tasks under validation are validated against one another.

To maintain a serializable order, for each task to be validated, the one-phase validation procedure
will try to derive a validity time interval, in which the task can be viewed as having been executed
logically in isolation. The validity time interval is derived according to the read and write operations
performed by the task on data objects during its execution, in an attempt to serialize the precedence
relationship between the task and all the validated tasks which have ever accessed some of the
same data objects. If a non-empty validity time interval can be derived for the task, the task is
serializable and its commit operation is allowed; otherwise, it is aborted and rerun. However, the
validation procedure of a task needs to be protected by a critical section to prevent other tasks
from being validated during the procedure, ensuring that the task is validated against all tasks that
have been previously validated as serializable.
Our two-phase validation procedure extends the one-phase procedure to avoid using a global

critical section across multiple cores during the whole procedure. Specifically, each phase uses the
one-phase procedure to validate the task under validation against some previously validated tasks
that share data objects with the task. In the first phase, the task is validated against all tasks which
have been previously validated before the procedure starts. While the task is being validated, other
tasks can be validated on different cores in parallel and may be validated as serializable ahead of
the task. In the second phase, which is protected by a global critical section, the task is validated
against those newly validated tasks after the procedure starts. Consequently, multiple tasks may
pass partial validation in the first phase, but only one at a time can enter the second phase to finish
the complete validation, forcing multiple tasks under validation to be validated against one another.
Note that the second phase is usually much shorter than the first phase because the number of
tasks involved in the second phase is much smaller than in the first phase.

4.4.2 Serializability. Previous work [10], where one task is validated at a time, has proven that any
serializable task validated by the one-phase procedure is conflict-serializable [16, 23], by constructing

ACM Trans. Embedd. Comput. Syst., Vol. 20, No. 5s, Article 61. Publication date: September 2021.



61:12 W.-M. Chen, T.-W. Kuo, and P.-C. Hsiu

a precedence graph and showing that the graph is acyclic. Specifically, each node of the graph
represents a validated task, and a directed edge between two nodes represents the precedence
relationship between two tasks due to their data access orders. The idea is to prove that the to-be-
validated task has been validated against all previously validated tasks that share data objects with
the task.

Similarly, the serializability of tasks validated by our two-phase procedure, where multiple tasks
are validated simultaneously, can be proven in the same way. Specifically, each task is validated at
the first phase against all tasks that have previously been validated before it enters the first phase,
as well as at the second phase against those newly validated tasks that complete their validation
after the task enters the first phase. Moreover, during the second phase, which is protected by a
global critical section, no other tasks are allowed to complete their validation. Thus, those tasks
validated by our two-phase procedure are also conflict-serializable because every task is validated
against all tasks that have been validated as serializable before the task completes its validation.

5 A MULTICORE INTERMITTENT OPERATING SYSTEM

Fig. 7. FreeRTOS-extended system architecture.

We integrated our heterogeneity-aware design into FreeRTOS [3], a real-time operating sys-
tem supporting many kinds of commercial microcontrollers, to realize an intermittent multicore
operating system. Our implementation follows the system architecture of a FreeRTOS-extended
operating system [2] developed according to a failure-resilient design intended for single-core
intermittent systems [9, 10], by extending two modules, namely a data manager and a recovery
handler, to support heterogeneity-aware multicore synchronization, as shown in Figure 7, with
additional 1218 lines of C code scattered into 13 files. Our FreeRTOS-extended operating system
is then deployed on a Cypress CY8CKIT-062-WiFi-BT device, which features heterogeneous dual
cores and hybrid memories to enable intermittent-aware multicore concurrency control.

5.1 Data Manager
Our data manager, which improves on the data manager developed for single-core intermittent
systems in [9], is responsible for data management, adaptive synchronization, and two-phase valida-
tion. Specifically, the data management is extended to allow tasks on multiple cores to concurrently
access data objects, the adaptive synchronization is added to synchronize data access operations
across heterogeneous cores, and the two-phase validation extends the one-phase validation to
simultaneously validate multiple tasks on different cores.
To this end, the data manager maintains memory space used by data versions and copies in

hybrid memories via the functions, pvPortMalloc() and vPortFree(), provided by the memory

ACM Trans. Embedd. Comput. Syst., Vol. 20, No. 5s, Article 61. Publication date: September 2021.



Heterogeneity-aware Multicore Intermittent Systems 61:13

manager to allocate data and reclaim invalid data. A data structure is maintained in NVM to record
the location and size of the consistent version of each data object, whereas the corresponding
information of temporary copies and working versions are maintained in VM. To avoid data
corruption, tasks must access data objects through our read, write, and commit operations, which
replace the original implementations provided by FreeRTOS. Unlike single-core systems where
only one task can perform its data access operation at a time, multicore systems allow multiple
tasks to simultaneously perform their operations on different cores while ensuring an exclusive
update on any data object.
Conflict operations on shared data objects must be synchronized. We implement semaphores

and spinlocks with a hardware locking mechanism supported by the microcontroller to allow tasks
executed on different cores to atomically acquire a lock. To read or commit (but not write) a data
object, a task must acquire permission to set the corresponding hardware lock, and other tasks that
invoke conflict operations will wait for the lock occupied by the task. To enable tasks to transit
between busy-waiting and sleep-waiting, the data manager uses the functions, vTaskSuspend()
and vTaskResume(), provided by the task scheduler to respectively suspend running tasks and
resume suspended tasks for adaptive synchronization. To accommodate frequent transitions, the
data manager allows waiting mechanism transitions only during context switch. In addition, instead
of moving tasks between the ready and suspension queues, our implementation uses only one
queue to store all the tasks and modify the scheduler to prevent sleep-waiting tasks from being
selected for execution.

To validate whether a task is serializable, the data manager records its read and write operations
on data objects in VM during task execution, and tries to derive a non-empty interval which does
not overlap with the validity time interval of any validated task that has ever accessed data objects
shared with the task. For ease of validation, each data object is associated with the validity time
interval of the most recently validated task which transits its working copy as the temporary copy.
In our two-phase validation procedure, the first phase need not to be mutually exclusive, yet the
second phase is protected by a global critical section, which is usually short and thus implemented
with a spinlock. Moreover, the time granularity of validity time intervals is set as a single system
time tick, which is triggered every 2 ms in FreeRTOS, to exempt our implementation from the extra
overhead of maintaining the system time.

5.2 Recovery Handler
Our recovery handler, which improves on the recovery handler in [9], is responsible for delegable
commitment and instant system recovery. Specifically, our recovery handler additionally enables
commit operations to be delayed and delegated between CPU cores, and also extends the atomic
commit that can finish only one task at a time to finish multiple tasks together.
Once a commit operation is delayed, the data objects modified by the corresponding task and

the delayed updates will be stored in a VM buffer, and they will be removed from the buffer
after the operation is performed by some CPU core to actually update the consistent versions
in NVM. Note that delegable commitment is orthogonal to how NVM updates are implemented,
regardless of synchronous or asynchronous I/O. In our implementation, NVM updates are conducted
asynchronously via a direct memory access (DMA) controller to reduce the CPU time wasted during
data movement. However, the CPU still requires some time to interact with the DMA controller,
and delegable commitment can transfer the wasted CPU time from the big core to the LITTLE core.
To accommodate frequent power failures, the recovery handler maintains the attributes of

unfinished tasks in a data structure in NVM, and uses the function, xTaskCreate(), provided by
the scheduler to directly recreate unfinished tasks upon power resumption. Instant system recovery
is possible because the consistent versions are always kept consistent with the progress of finished

ACM Trans. Embedd. Comput. Syst., Vol. 20, No. 5s, Article 61. Publication date: September 2021.



61:14 W.-M. Chen, T.-W. Kuo, and P.-C. Hsiu

tasks and available in NVM. To this end, those commit operations with merged NVM updates must
be able to be performed atomically. Moreover, once all the updates are completed, the corresponding
tasks must be successfully marked as finished. In [10], a shadowing mechanism is used to atomically
update none or all of the data objects modified by a task and, meanwhile, to update the data structure
of unfinished tasks as if it were also a data object. Our implementation extends the shadowing
mechanism so that multiple commit operations, along with marking multiple tasks as finished, can
be finalized by one single CPU instruction.

6 PERFORMANCE EVALUATION
6.1 Experimental Setup

Fig. 8. The experimental environment.

To evaluate the proposed design, we installed our FreeRTOS-extended intermittent operating
system on a Cypress device, as described in Section 5. Figure 8 shows the experimental environment.
The device is equipped with heterogeneous cores and memories. Moreover, the operating frequency
of both the cores can be scaled to up to 100 MHz2, whereas the throughput of NVM writes is only
256 kBps. We powered the device by an energy harvesting management (EHM) module composed
of a BQ25504 low-power boost converter, a 1mF capacitor to store the harvested energy, and a
switch to turn on (resp. off) the power supply when the voltage of the capacitor rises above 2.8 V
(resp. drops below 2.4 V). Table 1 details the hardware and software specifications.

We used a programmable power supply made by B&K Precision to emulate energy-harvesting
sources. As many intermittent applications like environment monitoring [48] adopted solar power,
we manufactured strong (70 mW) and weak (24.5 mW) power sources to respectively emulate the
average magnitude of power produced by a small (5cm2) solar cell during daylight and evening
hours [30]. Each power source lasted 100 seconds, which was sufficient to mitigate experimental
variances while making experiments reproducible. Note that neither power source was sufficient
for the device to operate continuously, leading to repeated yet unpredictable power failures at
runtime. The resultant power-on and power-off periods depended on the capacitor size and the
amounts of energy harvested and consumed during system operation. Given the used capacitor
and power sources, power-on periods were approximately dozens of milliseconds.

2The frequency of the LITTLE core can only be set at lower or equal to that of the big core, and the big core can execute
more instructions per cycle than the LITTLE core even when their operating frequencies are the same.

ACM Trans. Embedd. Comput. Syst., Vol. 20, No. 5s, Article 61. Publication date: September 2021.



Heterogeneity-aware Multicore Intermittent Systems 61:15

Table 1. Specifications of the experimental platform.

Hardware
MCU PSoC 62
CPU Cortex M4 up to 100 MHz

Cortex M0+ up to 100 MHz
Memory 288KB SRAM & 1MB Flash

Software
OS FreeRTOS V9.0.0

Energy
Capacitance 1 mF
Switch on/off voltage 2.8 V/2.4 V
Strong power 70 mW = 3.5 V × 20 mA
Weak power 24.5 mW = 3.5 V × 7 mA

Considering that energy-harvesting devices are typically intended for lightweight applications
such as sensing to detect events and simple data processing, with privacy usually considered,
we ported two sensing tasks provided by Cypress and six computational tasks from the Texas
InstrumentsMSP430 Competitive Benchmarking. To emulate different levels of task concurrency, we
investigated two respective scenarios, namely low and high concurrency workloads. Specifically, in
one scenario, the LITTLE core executes the two sensing tasks which respectively sense temperature
and detect touch events from the on-board capacitive touch sensor, and the big core executes two
computational tasks which respectively perform discrete Fourier transform and SHA-256 hashing
algorithm on the collected data. In the other scenario, apart from the four tasks, the LITTLE
(resp. big) core additionally executes two computational tasks which respectively performance
one-dimensional (resp. two-dimensional) matrix multiplication and integer (resp. floating-point)
arithmetic operations. All tasks were run repeatedly, and forward progress (defined as the number
of finished tasks per second) was adopted as the performance metric.
We conducted three sets of experiments. First, we evaluated the system costs incurred by our

design, where the data manager and the recovery handler require additional computation time
and memory space. Then, we compared the performance achieved by our design (OURS) with that
achieved by system-wise checkpointing (SYS) [19] and failure-resilient non-checkpointing (NON ) [9]
designs, under different combinations of concurrency workloads and core frequencies, allowing
us to observe how different heterogeneity levels can improve forward progress under different
concurrency levels. Note that all the three designs were respectively integrated into FreeRTOS for a
fair comparison3. Finally, to further analyze the causes behind performance differences, we explored
the runtime overheads incurred by different designs. In particular, we measured the wasted CPU
time, system recovery time, and data recency achieved by each design. These runtime overheads
affect the forward progress and data quality.

6.2 System Costs
Our design ensures the serializability of concurrent task execution and achieves system recovery
in multicore intermittent systems at the cost of additional computation time and memory space. At
runtime, the data manager manages multi-version data objects, synchronizes accesses to shared
objects, and validates the serializability of concurrent task execution. The recovery handler records
3NON was integrated into FreeRTOS and publicly available [2]. We integrated SYS, similar in concept to the design proposed
in [19], into FreeRTOS.

ACM Trans. Embedd. Comput. Syst., Vol. 20, No. 5s, Article 61. Publication date: September 2021.



61:16 W.-M. Chen, T.-W. Kuo, and P.-C. Hsiu

attributes of unfinished tasks and atomically updates data objects committed by finished tasks.
To evaluate the costs, we measured the average computation time required by each data access
operation, as well as the memory space used by the data manager and recovery handler to maintain
data versions and copies, attributes of unfinished tasks, and the precedence relationship between
finished tasks.

Table 2. Operation execution time and memory space required by our design.

Read Write Validation Commit
Average execution time 39.7 𝜇s 49.5 𝜇s 63.2 𝜇s 1181.1 𝜇s

Data manager Recovery handler
Additional memory usage 1458 bytes 1376 bytes

Table 2 lists the average execution time required by each data access operation and memory space
used by the data manager and the recovery handler. To ensure serializability, the data manager
requires extra execution times for synchronization and two-phase validation. The average time
required to execute the validation procedure is 63.2 𝜇s, while the average execution times required
by the read, write, and commit operations are respectively 39.7, 49.5, and 1181.1 𝜇s. Relatively, the
commit operation requires much more time than the other operations because it involves NVM
writes. However, compared to the high access latency of NVM (i.e., a dozen milliseconds on the
Cypress platform), the execution time required by the commit operation is insignificant because
NVM writes are conducted via DMA and thus in parallel to task execution on the CPU in our
implementation. Considering that the execution time of a task (even without waiting for other
tasks) is from a few to dozens of milliseconds, the execution times of these operations are marginal.
In addition, the data manager and the recovery handler respectively use only 1458 bytes and 1376
bytes over the 1MB + 288KB memory space to maintain multi-version data objects and record task
attributes in VM and NVM. Thus, both the time and space costs of our design are justifiable.

6.3 Forward Progress
We compared the forward progress respectively achieved by different designs. SYS enables inter-
mittent computing by checkpointing a snapshot of VM and CPU registers. To preserve forward
progress across power cycles, SYS checkpoints a system snapshot every 20 ms. By contrast, NON
enables intermittent computing by allowing a task to commit its data modifications only after
its execution. SYS was originally intended for serial task execution. To enable concurrent task
execution, SYS borrows from NON an intermittent-aware concurrency control protocol with a
one-phase validation procedure [9], as described in Section 2.1. Both SYS and NON were originally
designed for single-core systems. We assume that they adopt semaphores when run on a multicore
system, because semaphores are relatively efficient compared to spinlocks in an intermittent system
with heavy NVM updates, as shown in Section 3.

To fully investigate the efficacy of our design, which leverages core heterogeneity to improve
forward progress, we measured the forward progress under three different heterogeneity levels.
First, the operating frequencies of both cores are set identically (50 MHz). Then, we measured the
improved forward progress when the operating frequency of the big core is scaled up from 50 to
100 MHz with the LITTLE core kept at 50 MHz. Finally, the frequency of the LITTLE core is scaled
down from 50 to 25 MHz with the big core kept at 100 MHz. The three settings are respectively
denoted as low, medium, and high heterogeneity levels, allowing us to investigate the impact of
different core heterogeneity on the proposed dynamic delegation. Moreover, we measured the
forward progress achieved under two different concurrency levels, which allows us to evaluate

ACM Trans. Embedd. Comput. Syst., Vol. 20, No. 5s, Article 61. Publication date: September 2021.



Heterogeneity-aware Multicore Intermittent Systems 61:17

the proposed adaptive synchronization when the CPU resource is utilized by different numbers of
concurrently executed tasks.

 0

 100

 200

 300

 400

 500

Weak Strong

F
o
rw

ar
d
 p

ro
g
re

ss

Stability of power supply

Ours
NON
SYS

5.31

184.22

1.85

55.98

0.95
28.17

(a) Low concurrency workload

 0

 100

 200

 300

 400

 500

Weak Strong

Stability of power supply

Ours
NON
SYS

30.17

281.07

5.10

67.58

2.68

58.90

(b) High concurrency workload

Fig. 9. Forward progress achieved under low and high concurrency workloads with low CPU heterogeneity.

Figures 9(a) and 9(b) respectively show the forward progress achieved under the low and high
concurrency workloads when both cores are set at 50 MHz. In general, OURS and NON achieve
more forward progress than SYS by eliminating the long suspension and recovery times incurred by
system checkpointing. OURS can further achieve 2.87 to 5.92x forward progress achieved by NON
by allowing the waiting mechanism to adapt to high variations in memory access latency. Moreover,
the progress improvement increases with the concurrency level, because the efficacy of adaptive
synchronization becomes more apparent when more concurrently executed tasks wait for a data
access operation. If the operation is fast, OURS allows waiting tasks to provide quick responses
while preventing additional context switches. In contrast, if the operation is slow, OURS allows
waiting tasks to release CPU cores, preventing a waste of CPU time on spinning. Additionally, as
shown in Figure 9(b), compared to NON and SYS, OURS respectively increases forward progress by
3.22 to 5.92x and 4.77 to 11.25x when the power supply is relatively weak. This is because OURS can
make progress even given short power-on periods by committing data objects and finishing tasks
in a timely fashion. The results imply that, compared with NON and SYS, OURS is more suitable
for use in intermittent systems with high concurrency workloads and frequent power failures.

Figures 10(a) and 10(b) respectively show the forward progress achieved under the low and high
concurrency workloads when the operating frequency of the big core is scaled up from 50 to 100
MHz. The results are similar to those found in Figure 9. Interestingly, as the operating frequency of
the big core increases, the forward progress achieved by NON and SYS is reduced, whereas that
achieved by OURS is still increased. By comparing the results in Figures 9(a) and 10(a), we observe
that as the big core frequency increases under the weak (resp. strong) power supply, the forward
progress achieved by OURS is improved by 38.6% (resp. 167.1%), whereas that achieved by NON
and SYS is respectively reduced by 3.7% and 23% (resp. 5.8% and 33.3%). Comparing Figures 9(b)
and 10(b) finds similar results. The reduced progress is because, as the frequency increases, the
waiting times incurred by commit operations under SYS or NON are not correspondingly reduced,
yet the power consumption is increased, thus increasing the cost of using the big core to perform a

ACM Trans. Embedd. Comput. Syst., Vol. 20, No. 5s, Article 61. Publication date: September 2021.



61:18 W.-M. Chen, T.-W. Kuo, and P.-C. Hsiu

 0

 100

 200

 300

 400

 500

Weak Strong

F
o
rw

ar
d
 p

ro
g
re

ss

Stability of power supply

Ours
NON
SYS

7.36

224.90

1.78

52.70

0.73
18.78

(a) Low concurrency workload

 0

 100

 200

 300

 400

 500

Weak Strong

Stability of power supply

Ours
NON
SYS

47.24

416.76

4.70

55.01

1.35
31.10

(b) High concurrency workload

Fig. 10. Forward progress achieved under low and high concurrency workloads with medium CPU hetero-
geneity.

memory access. In contrast, OURS enables commit operations on the big core to be delayed and
delegated to the LITTLE core, thereby allowing the big core to make more forward progress as its
frequency increases.

 0

 100

 200

 300

 400

 500

Weak Strong

F
o
rw

ar
d
 p

ro
g
re

ss

Stability of power supply

Ours
NON
SYS

7.38

221.33

1.67

51.03

0.77
16.05

(a) Low concurrency workload

 0

 100

 200

 300

 400

 500

Weak Strong

Stability of power supply

Ours
NON
SYS

46.93

414.18

3.70

53.37

1.70
27.42

(b) High concurrency workload

Fig. 11. Forward progress achieved under low and high concurrency workloads with high CPU heterogeneity.

Figures 11(a) and 11(b) show the forward progress achieved when the frequency of the LITTLE
core is scaled down from 50 to 25 MHz. Although the results are similar to those found in Figure 10,
the reasons for different approaches to maintain forward progress are different. For OURS, the
forward progress is mainly made by the big core and remains similar as the big core operates at the
same frequency. On the other hand, the LITTLE core, on which multiple commit operations are

ACM Trans. Embedd. Comput. Syst., Vol. 20, No. 5s, Article 61. Publication date: September 2021.



Heterogeneity-aware Multicore Intermittent Systems 61:19

merged and performed as a batch, is not overloaded by delegated commit operations even with
a lower frequency. In contrast, for NON and SYS, as the forward progress is already limited by
the wasted CPU time due to extensive memory access, the reduced computation resource does
not lead to a significant decrease in progress. The experimental results above show that OURS can
leverage the huge performance gap between the CPU and memory, and also explains why OURS
can respectively achieve up to 11.6x and 33.9x progress improvements compared to NON and SYS.
The result also implies that OURS is particularly suitable for use in heterogeneous intermittent
systems with asymmetric operating frequencies.

6.4 Runtime Overheads
To analyze the causes behind the performance differences among different designs, we measured
runtime overheads, including the wasted CPU time (defined as the percentage of the CPU time
spent by waiting tasks over the total CPU time), the recovery time (defined as the time required for
the first unfinished task to be ready to run after power resumption), and the data recency (defined
as the time difference between the latest data update and the completely recovered system).

Table 3. Runtime overheads incurred by different designs with low CPU heterogeneity.

OURS NON SYS
LITTLE big LITTLE big LITTLE big

Wasted CPU time (%) - low 0.1 0.5 2 15.4 57.2 57.3
Wasted CPU time (%) - high 0.2 1.1 4.6 22 59.1 59.4
Recovery time (ms) 0.62 0.63 2.53
Data recency (ms) - low 7.3 7.3 48.5
Data recency (ms) - high 7.4 7.3 49.1

Table 3 shows the runtime overheads when the frequencies of both CPU cores are set at 50
MHz. Overall, OURS reduces the CPU times wasted under NON and SYS by one to three orders of
magnitude by adaptively transiting waiting mechanisms and merging several NVM updates. For
the LITTLE and big cores under different concurrency levels, the wasted CPU times under OURS
are only 0.1 to 1.1%, whereas the wasted CPU times under NON and SYS vary from 2 to 22% and
57.2 to 59.4%, respectively. The reduction in the wasted CPU time is consistent with the significant
forward progress improvement achieved by OURS, as shown in Section 6.3. Moreover, the system
recovery times required by OURS, NON, and SYS are respectively 0.62, 0.63, and 2.53 ms. OURS and
NON recreate unfinished tasks based on task attributes stored in NVM after power resumption and
thus require about the same amount of recovery time. By eliminating memory restoration during
recovery, OURS and NON reduce the recovery time required by SYS by 75%. Also, by committing
data modifications immediately before tasks are finished, OURS and NON can significantly improve
the data recency achieved by SYS, which reverts the data back to the latest checkpoint after system
recovery. Note that although OURS allows commit operations on the big core to be merged and
delegated to the LITTLE core, the data recency is not adversely affected. This is because when
shared data objects are frequently accessed by tasks on both cores, delayed commit operations on
the big core will be merged with others and timely performed by the LITTLE core.

Table 4 shows the runtime overheads when the frequency of the big core is scaled up to 100 MHz
with the LITTLE core kept at 50 MHz. Compared to NON and SYS, OURS still achieves a significant
reduction in the wasted CPU time. Under OURS, the increased frequency does not have an obvious
impact on the wasted CPU time of the big core. In contrast, under NON, the wasted CPU time of the
big core increases accordingly. This is because the increased frequency allows the big core to finish

ACM Trans. Embedd. Comput. Syst., Vol. 20, No. 5s, Article 61. Publication date: September 2021.



61:20 W.-M. Chen, T.-W. Kuo, and P.-C. Hsiu

Table 4. Runtime overheads incurred by different designs with medium CPU heterogeneity.

OURS NON SYS
LITTLE big LITTLE big LITTLE big

Wasted CPU time (%) - low 0.1 0.7 1.3 19.3 50.4 50.4
Wasted CPU time (%) - high 0.2 1.6 2 29.7 60.1 60.1
Recovery time (ms) 0.33 0.33 1.89
Data recency (ms) - low 7.4 7.3 50.8
Data recency (ms) - high 7.4 7.2 48.6

tasks more quickly and thus perform data access operations more frequently. Thus, the efficacy
of delegable and adaptive synchronization becomes more manifest. The wasted CPU time under
SYS does not increase with the CPU frequency because the frequency of checkpointing, which
dominates the wasted CPU time due to long runtime suspension, does not increase accordingly.
With the increased frequency, the recovery times required by OURS, NON, and SYS are respectively
reduced by 47.8, 47.6, and 25.2%. By contrast, the data recency is not evidently affected because
the latency of NVM updates is not reduced. Similar results can also be observed in Table 5, where
the frequency of the LITTLE core is scaled down to 25 MHz with the big core kept at 100 MHz.
Notably, even if the LITTLE core operates at a lower frequency, OURS can still maintain the data
recency because OURS allows commit operations to be merged so that the LITTLE core can still
timely perform delegated commit operations despite slow NVM writes.

Table 5. Runtime overheads incurred by different designs with high CPU heterogeneity.

OURS NON SYS
LITTLE big LITTLE big LITTLE big

Wasted CPU time (%) - low 0.3 1.15 1.6 20.4 60 58.6
Wasted CPU time (%) - high 0.2 1.5 1.3 33.6 56.8 56.1
Recovery time (ms) 0.33 0.33 1.89
Data recency (ms) - low 7.4 7.3 50.4
Data recency (ms) - high 7.4 7.3 47.8

To sum up, extensive experiments based on a prototype system running benchmark tasks
demonstrate that OURS not only improves concurrent task execution but also enables instant system
recovery. By allowing waiting tasks to adaptively transit between different waiting mechanisms,
OURS reduces the wasted CPU times of both CPU cores, thereby improving forward progress.
Furthermore, by allowing slow memory operations to be dynamically delegated between cores,
OURS trades the CPU time of the LITTLE core for allowing the big core additional time to improve
forward progress. The experimental results also suggest that OURS is particularly suitable for
heterogeneous multicore devices which may suffer from frequent power failures.

7 CONCLUDING REMARKS
This paper advocates that intermittent systems should move toward heterogeneous multicore
architectures, so that core heterogeneity can be leveraged to mitigate the forward progress reduction
caused by memory heterogeneity. To demonstrate the efficacy of this proposition, we developed
a heterogeneity-aware multicore synchronization protocol, which allows respective cores to be
primarily engaged in CPU computations and slow memory operations. Our design was integrated

ACM Trans. Embedd. Comput. Syst., Vol. 20, No. 5s, Article 61. Publication date: September 2021.



Heterogeneity-aware Multicore Intermittent Systems 61:21

into FreeRTOS [3] to realize an intermittent-awaremulticore operating system capable of concurrent
task execution and instant system recovery. We installed the operating system on a Cypress device
featuring heterogeneous dual cores and hybrid memories to conduct a series of experiments.
Compared to failure-resilient non-checkpointing [9] and system-wise checkpointing [19] designs,
our design can respectively improve forward progress by 4.9x and 12.7x on average, with justifiable
system costs and runtime overheads. Our design is also found to be particularly effective for high
concurrency workloads under frequent power failures.

The source code of our multicore intermittent operating system has been made open [1], facili-
tating programmers in developing applications on energy-harvesting multicore devices regardless
of power stability, while exempting them from the responsibility of handling task concurrency and
synchronization.

REFERENCES
[1] A Heterogeneity-aware Multicore Intermittent Operating System. Available: https://github.com/EMCLab-Sinica/

Intermittent-Multicore.
[2] An Intermittent Operating System. Available: https://github.com/EMCLab-Sinica/Intermittent-OS.
[3] The FreeRTOS™ Kernel. Available: https://www.freertos.org.
[4] D. Balsamo, A. S. Weddell, A. Das, A. R. Arreola, D. Brunelli, B. M. Al-Hashimi, G. V. Merrett, and L. Benini. Hibernus++:

A Self-Calibrating and Adaptive System for Transiently-Powered Embedded Devices. IEEE TCAD, 35(12):1968–1980,
2016.

[5] G. Berthou, T. Delizy, K. Marquet, T. Risset, and G. Salagnac. Sytare: A Lightweight Kernel for NVRAM-Based
Transiently-Powered Systems. IEEE TC, 68(9):1390–1403, 2019.

[6] M. Chabbi, M. Fagan, and J. Mellor-Crummey. High Performance Locks for Multi-Level NUMA Systems. In Proc. of
ACM PPoPP, pages 215–226, 2015.

[7] M. Chabbi and J. Mellor-Crummey. Contention-Conscious, Locality-Preserving Locks. In Proc. of ACM PPoPP, pages
1–14, 2016.

[8] W.-M. Chen, Y.-T. Chen, P.-C. Hsiu, and T.-W. Kuo. Multiversion Concurrency Control on Intermittent Systems. In
Proc. of IEEE/ACM ICCAD, pages 1–8, 2019.

[9] W.-M. Chen, P.-C. Hsiu, and T.-W. Kuo. Enabling Failure-resilient Intermittently-powered Systems Without Runtime
Checkpointing. In Proc. of IEEE/ACM DAC, pages 1–6, 2019.

[10] W.-M. Chen, T.-W. Kuo, and P.-C. Hsiu. Enabling Failure-resilient Intermittent SystemsWithout Runtime Checkpointing.
IEEE TCAD, 39(12):4399–4412, 2020.

[11] J. Choi, H. Joe, Y. Kim, and C. Jung. Achieving Stagnation-Free Intermittent Computation with Boundary-Free Adaptive
Execution. In Proc. of IEEE RTAS, pages 331–344, 2019.

[12] A. Colin and B. Lucia. Chain: Tasks and Channels for Reliable Intermittent Programs. In Proc. of ACM OOPSLA, pages
514–530, 2016.

[13] J. de Winkel, V. Kortbeek, J. Hester, and P. Pawełczak. Battery-Free Game Boy. In Prof. of ACM IMWUT, 4(3), 2020.
[14] Z. Ghodsi, S. Garg, and R. Karri. Optimal Checkpointing for Secure Intermittently-powered IoT Devices. In Proc. of

IEEE/ACM ICCAD, pages 376–383, 2017.
[15] G. Gobieski, N. Beckmann, and B. Lucia. Intelligence Beyond the Edge: Inference on Intermittent Embedded Systems.

In Proc. of ACM ASPLOS, pages 199–213, 2019.
[16] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann Publishers Inc., 1st edition,

1992.
[17] J. Hester and J. Sorber. The Future of Sensing is Batteryless, Intermittent, and Awesome. In Proc. of ACM SenSys, pages

1–6, 2017.
[18] M. Hicks. Clank: Architectural Support for Intermittent Computation. In Proc. of ISCA, pages 228–240, 2017.
[19] H. Jayakumar, A. Raha, and V. Raghunathan. QUICKRECALL: A Low Overhead HW/SW Approach for Enabling

Computations across Power Cycles in Transiently Powered Computers. In Proc. of IEEE VLSID, pages 330–335, 2014.
[20] C.-K. Kang, C.-H. Lin, P.-C. Hsiu, and M.-S. Chen. HomeRun: HW/SW Co-Design for Program Atomicity on Self-

Powered Intermittent Systems. In Proc. of IEEE/ACM ISLPED, pages 29:1–29:6, 2018.
[21] C.-K. Kang, H. R. Mendis, C.-H. Lin, M.-S. Chen, and P.-C. Hsiu. Everything Leaves Footprints: Hardware Accelerated

Intermittent Deep Inference. IEEE TCAD, 39(11):3479–3491, 2020.
[22] P. Kansakar and A. Munir. Selecting Microarchitecture Configuration of Processors for Internet of Things (IoT). IEEE

TETC, 8(4):973–985, 2018.
[23] H. T. Kung and J. T. Robinson. On Optimistic Methods for Concurrency Control. ACM TODS, 6(2):213–226, 1981.

ACM Trans. Embedd. Comput. Syst., Vol. 20, No. 5s, Article 61. Publication date: September 2021.

https://github.com/EMCLab-Sinica/Intermittent-Multicore
https://github.com/EMCLab-Sinica/Intermittent-Multicore
https://github.com/EMCLab-Sinica/Intermittent-OS
https://www.freertos.org


61:22 W.-M. Chen, T.-W. Kuo, and P.-C. Hsiu

[24] Q. Li, M. Zhao, J. Hu, Y. Liu, Y. He, and C. J. Xue. Compiler Directed Automatic Stack Trimming for Efficient Non-volatile
Processors. In Proc. of IEEE/ACM DAC, pages 1–6, 2015.

[25] B.-H. Lim and A. Agarwal. Reactive Synchronization Algorithms for Multiprocessors. SIGOPS Oper. Syst. Rev.,
28(5):25–35, 1994.

[26] Y. Lin, P. Hsiu, and T. Kuo. Autonomous I/O for Intermittent IoT Systems. In Proc. of IEEE/ACM ISLPED, pages 1–6,
2019.

[27] S. Liu, W. Zhang, M. Lv, Q. Chen, and N. Guan. LATICS: A Low-Overhead Adaptive Task-Based Intermittent Computing
System. IEEE TCAD, 39(11):3711–3723, 2020.

[28] Y. Liu, Z. Li, H. Li, Y. Wang, X. Li, K. Ma, S. Li, M.-F. Chang, S. John, Y. Xie, J. Shu, and H. Yang. Ambient Energy
Harvesting Nonvolatile Processors: From Circuit to System. In Proc. of IEEE/ACM DAC, pages 150:1–150:6, 2015.

[29] B. Lucia and B. Ransford. A Simpler, Safer Programming and Execution Model for Intermittent Systems. In Proc. of
ACM PLDI, pages 575–585, 2015.

[30] K. Ma, Y. Zheng, S. Li, K. Swaminathan, X. Li, Y. Liu, J. Sampson, Y. Xie, and V. Narayanan. Architecture Exploration
for Ambient Energy Harvesting Nonvolatile Processors. In Proc. of IEEE HPCA, pages 526–537, 2015.

[31] K. Maeng, A. Colin, and B. Lucia. Alpaca: Intermittent Execution Without Checkpoints. Proc. of ACM OOPSLA, pages
96:1–96:30, 2017.

[32] K. Maeng and B. Lucia. Adaptive Dynamic Checkpointing for Safe Efficient Intermittent Computing. In Proc. of USENIX
OSDI, pages 129–144, 2018.

[33] K. Maeng and B. Lucia. Supporting peripherals in intermittent systems with just-in-time checkpoints. In Proc. of ACM
PLDI, pages 1101–1116, 2019.

[34] H. R. Mendis and P.-C. Hsiu. Accumulative Display Updating for Intermittent Systems. ACM TECS, 18(5s):72:1–72:22,
2019.

[35] S. Nayar, D. Sims, and M. Fridberg. Towards Self-Powered Cameras. In Proc. of IEEE ICCP, pages 1–10, 2015.
[36] B. Ransford and B. Lucia. Nonvolatile Memory is a Broken Time Machine. In Proc. of MSPC, pages 5:1–5:3, 2014.
[37] B. Ransford, J. Sorber, and K. Fu. Mementos: System Support for Long-Running Computation on RFID-Scale Devices.

In Proc. of ACM ASPLOS, pages 159–170, 2011.
[38] M. Raynal and D. Beeson. Algorithms for Mutual Exclusion. MIT Press, Cambridge, MA, USA, 1986.
[39] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutiu. ThyNVM: Enabling Software-transparent Crash consistency in

Persistent Memory Systems. In Proc. of IEEE/ACM MICRO, pages 672–685, 2015.
[40] E. Ruppel and B. Lucia. Transactional Concurrency Control for Intermittent, Energy-Harvesting Computing Systems.

In Proc. of ACM PLDI, pages 1085–1100, 2019.
[41] F. Samie, L. Bauer, and J. Henkel. IoT Technologies for Embedded Computing: A Survey. In Proc. of IEEE/ACM

CODES+ISSS, pages 1–10, 2016.
[42] V. Talla, B. Kellogg, S. Gollakota, and J. R. Smith. Battery-Free Cellphone. In Prof. of ACM IMWUT, 1(2), 2017.
[43] Y. Wang, Y. Liu, S. Li, D. Zhang, B. Zhao, M. F. Chiang, Y. Yan, B. Sai, and H. Yang. A 3us Wake-up Time Nonvolatile

Processor Based on Ferroelectric Flip-flops. In Proc. of IEEE ESSCIRC, pages 149–152, 2012.
[44] M. Xie, C. Pan, M. Zhao, Y. Liu, C. J. Xue, and J. Hu. Avoiding Data Inconsistency in Energy Harvesting Powered

Embedded Systems. ACM TODAES, pages 38:1–38:25, 2018.
[45] M. Xie, M. Zhao, C. Pan, J. Hu, Y. Liu, and C. J. Xue. Fixing the Broken TimeMachine: Consistency-aware Checkpointing

for Energy Harvesting Powered Non-volatile Processor. In Proc. of IEEE/ACM DAC, pages 1–6, 2015.
[46] M. Xie, M. Zhao, C. Pan, H. Li, Y. Liu, Y. Zhang, C. J. Xue, and J. Hu. Checkpoint Aware Hybrid Cache Architecture for

NV Processor in Energy Harvesting Powered Systems. In Proc. of IEEE/ACM CODES+ISSS, pages 1–10, 2016.
[47] T. Xu and M. Potkonjak. Energy-efficient Fault Tolerance Approach for Internet of Things Applications. In Proc. of

IEEE/ACM ICCAD, pages 62:1–62:8, 2016.
[48] D. Zhang, J. W. Park, Y. Zhang, Y. Zhao, Y.Wang, Y. Li, T. Bhagwat,W.-F. Chou, X. Jia, B. Kippelen, C. Fuentes-Hernandez,

T. Starner, and G. D. Abowd. OptoSense: Towards Ubiquitous Self-Powered Ambient Light Sensing Surfaces. In Prof. of
ACM IMWUT, 4(3), 2020.

[49] M. Zhao, C. Fu, Z. Li, Q. Li, M. Xie, Y. Liu, J. Hu, Z. Jia, and C. J. Xue. Stack-Size Sensitive On-Chip Memory Backup for
Self-Powered Nonvolatile Processors. IEEE TCAD, 36:1804–1816, 2017.

ACM Trans. Embedd. Comput. Syst., Vol. 20, No. 5s, Article 61. Publication date: September 2021.


	Abstract
	1 Introduction
	2 Background
	2.1 Intermittent-aware Concurrency Control
	2.2 Multicore Task Synchronization

	3 Heterogeneous Multicore Intermittent Systems: Observation and Motivation
	4 Heterogeneity-aware Multicore Concurrency Control
	4.1 Design Overview
	4.2 Two-version Data Management
	4.3 Delegable and Adaptive Synchronization
	4.4 Two-phase Backward Validation

	5 A Multicore Intermittent Operating System
	5.1 Data Manager
	5.2 Recovery Handler

	6 Performance Evaluation
	6.1 Experimental Setup
	6.2 System Costs
	6.3 Forward Progress
	6.4 Runtime Overheads

	7 Concluding Remarks
	References

