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Energy harvesting creates an emerging intermittent computing paradigm, but poses new challenges for
sophisticated applications such as intermittent deep neural network (DNN) inference. Although model
compression has adapted DNNs to resource constrained devices, under intermittent power, compressed models
will still experience multiple power failures during a single inference. Footprint-based approaches enable
hardware accelerated intermittent DNN inference by tracking footprints, independent of model computations,
to indicate accelerator progress across power cycles. However, we observe that the extra overhead required to
preserve progress indicators can severely offset the computation progress accumulated by intermittent DNN
inference.

This work proposes the concept of model augmentation to adapt DNNs to intermittent devices. Our
middleware stack, JAPARI, appends extra neural network components into a given DNN, to enable the
accelerator to intrinsically integrate progress indicators into the inference process, without affecting model
accuracy. Their specific positions allow progress indicator preservation to be piggybacked onto output feature
preservation to amortize the extra overhead, and their assigned values ensure uniquely distinguishable
progress indicators for correct inference recovery upon power resumption. Evaluations on a Texas Instruments
device under various DNN models, capacitor sizes, and progress preservation granularities, show that JAPARI
can speed up intermittent DNN inference by 3x over the state of the art, for common convolutional neural
architectures that require heavy acceleration.
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1 INTRODUCTION
Energy harvesting enables the development of battery-less, sustainable and cost-effective Internet
of Things (IoT) devices, thus creating innovative applications like solar-powered cameras [57],
wireless-powered cellphones [66], and battery-free game consoles [20]. However, such devices
encounter unique challenges as applications on these devices suffer from frequent power failures
and thus are executed intermittently, i.e., when energy is available [15, 30, 49]. Given the scarcity
of ambient energy, it is prohibitive to send raw sensor data and offload computations to remote
servers. Therefore, to provide responsive applications with efficient communication bandwidth
usage, intermittent systems frequently make decisions locally and execute lightweight versions
of intelligent algorithms such as deep neural networks (DNNs) [65]. Although computationally
expensive, DNN inference on lightweight devices becomes a possibility with hardware acceleration
available on modern ultra-low power microcontrollers (MCUs) [16, 35, 39, 67]. Therefore, hardware
accelerated intermittent DNN inference has emerged as a crucial challenge as future IoT devices
become self-powered and rely more on local, on-device inference.
The shift towards local inference has prompted significant research on model adaptation

approaches, to make DNN inference feasible on resource and energy constrained embedded IoT
devices [65]. Specifically,model compression techniques such as network pruning [51, 58, 71], weight
sharing [29, 68], and non-uniform quantization [46, 69] substantially reduce the computational
complexity of DNN models in order to speed up DNN inference, while minimizing the degradation
to model accuracy. Depending on the application requirements, some techniques are designed to
provide high inference performance but require custom hardware support (e.g., FPGAs [28]), while
other techniques may target commercial off-the-shelf platforms (e.g., MCUs [22]) as they are widely
available and easily programmable [25].

Existing model adaptations are well suited for battery-powered systems, but on an intermittent
system,where the harvested power is usuallyweak and unstable [40, 52], inmost cases, a compressed
model would still require multiple power cycles to complete a single end-to-end inference [24,
72]. Some techniques have been proposed to allow intermittent execution across power cycles.
Checkpointing-based approaches backup volatile system state in non-volatile memory (NVM)
[3, 8, 41, 60], but the high memory demand of DNN inference results in large checkpoints, and
therefore significant runtime overhead, which scales with the backup size and frequency. Moreover,
checkpointing cannot correctly preserve the progress of peripherals with inaccessible internal
state, such as accelerators [10, 55]. Alternatively, task-based approaches [12, 14, 54] partition the
application into multiple atomic (i.e., power uninterrupted) tasks that fit within an energy budget
(capacitor), and only backup the task indices and modified data at task boundaries. However,
energy-aware task partitioning is non-trivial for DNN inference even with tool assistance [24], and
minor changes to the DNN model may require energy re-profiling.
In light of intrinsic peripheral behavior, footprint-based approaches [43, 56] track footprints to

indicate the progress of a peripheral operation, and thus allow for accumulative peripheral execution,
without requiring access to the peripheral internal state and application-level energy estimation.
Specifically, footprint-based accelerated DNN inference [43] preserves the accelerator outputs (i.e.,
weighted sums) and footprints (i.e., progress indicators) in NVM during DNN inference, and upon
recovery from power failure, uses footprints to resume the interrupted operation. One accelerator
operation may comprise multiple sub-operations, where each performs an atomic computation
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(called a job). Therefore, footprint-based approaches require re-executing only the last incomplete
job, not the entire task [24], and also enables sub-operation (job) outputs to be preserved in parallel
to operation computation.
This work proposes the novel concept of model augmentation to adapt DNN models to

intermittently-powered edge devices. Model augmentation is motivated by an observation that
as progress indicators are generated independent of the job outputs computed by the accelerator,
they incur extra progress preservation overhead, which can significantly offset the benefit of
accumulative execution enabled by intermittent DNN inference. In contrast to state-of-the-art
intermittent inference approaches [24, 43], model augmentation appends extra neural network
components to a DNNmodel to intrinsically integrate progress indicators into the inference process.
This allows for job outputs and progress indicators to be generated in an alternate manner, and
therefore progress indicator preservation can be piggybacked onto job output preservation, thereby
amortizing the extra overhead of progress preservation. The additional computation overhead
brought by model augmentation is compensated by a reduction in data transfer overhead, because
the accelerator computation cost is typically much lower than the NVM access cost.While seemingly
mutually contrary, model compression and augmentation can be combined to speed up intermittent
edge DNN inference.
To realize model augmentation, we develop JAPARI (Job and Progress Alternate Inference),

a footprint-based middleware stack, which addresses two key design challenges of model
augmentation. The first challenge is to determine where in the model architecture to augment in
order for the accelerator to alternately generate job outputs and footprints, to enable simultaneous
preservation. This challenge is addressed by footprint appending, where footprint kernels and
channels are inserted into specific positions without corrupting the model architecture, to generate
the required interleaved layout. The second challenge is to determine how to identify the interrupted
job based on the preserved footprints, such that an inference can correctly resume upon power
resumption. This challenge is addressed by footprint representation, where footprint kernels and
channels are assigned specific values without affecting the model accuracy, to ensure the latest
footprint is uniquely distinguishable from prior footprints that reuse the same preservation buffer.
We prototyped JAPARI on the Texas Instruments (TI) MSP430FR5994 LaunchPad [36] with an

internal low-energy accelerator (LEA), 8KB SRAM (VM), and external 1MB FRAM (NVM) [1].
Experiments were conducted under intermittent power with different energy buffer capacities, as
well as under continuous power. Three DNN models were used for evaluation, with varied levels
of complexity, representative of those typically used in tiny machine learning applications [9].
Compared to a task-based intermittent inference approach similar in concept to TAILS [24], and
a state-of-the-art footprint-based approach called HAWAII [43], JAPARI respectively reduces the
energy consumption of an end-to-end inference by 52% and 26% on average, thereby reducing the
inference time by 42% and 25%. The reduction is more evident when data transfers required for
progress preservation in a DNN model can be largely converted into computations.

The remainder of this paper is organized as follows. Section 2 provides background information
and Section 3 explains the motivation for this work. Section 4 presents our JAPARI design, with
implementation details given in Section 5. Experimental results are reported in Section 6, and
Section 7 discusses the limitations of JAPARI and future extensions. Section 8 presents some
concluding remarks.
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Fig. 1. Tiled convolution

2 BACKGROUND
2.1 Deep Neural Network Acceleration
DNNs consist of multiple connected layers (L) such as convolutional (CONV), fully connected (FC)
and pooling (POOL) layers [65]. A CONV layer, for example, takes input feature maps (IFMs) with
N channels andW ×H spatial dimensions and convolves them withM weight kernels of dimension
N ×K×K to produceM output feature maps (OFMs) with C×R spatial dimensions. Due to their large
size, the IFMs, weights, and OFMs of a layer are stored in NVM and logically partitioned into tiles
during inference computation on edge devices. As shown in Figure 1, to compute an OFM tile
of size Tm×Tc×Tr , tiled input data need to be fetched from NVM to VM, specifically an IFM tile
of size Tn×Tw×Th , a weight kernel tile of Tm kernels with size Tn×K×K and stride s , and also the
previously computed partial sums of the OFM tile. The size of a tile computation is determined by
the < Tn,Tm,Tc ,Tr > parameters.

IFM

Kernel

1/4 1/4
1/4 1/4

2/4 1/4
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OFM buffer (NVM)Partial sum 
computation

Current progress

Accum
ulation

Fig. 2. Partial sum accumulation in the OFM buffer

To complete a layer, OFM tiles are sequentially computed in a certain order. The loop order and
associated dataflow may vary across different accelerator designs, depending on factors such as VM
size and data reuse strategy. Figure 1 (top) shows a tiled convolution computation order, commonly
used in accelerator designs [42, 63, 74]. The intra-tile and inter-tile execution loops respectively
determine the computation order within an OFM tile and the computation order among OFM tiles.
Due to limited VM space and accelerator capability, the output features within an OFM tile are
typically not computed using one accelerator operation; instead, each output feature is accumulated
from those corresponding partial sums computed individually in the channel dimension. To this
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end, an OFM buffer (of sizeM×C×R) in NVM is used to store the computed OFM tiles of a layer. As
illustrated in Figure 2, previously computed partial sums in the OFM buffer are accumulated with
the partial sums of the currently computed OFM tile (e.g., given N

Tn
= 4, four inter-tile accumulation

iterations are required) to fully complete the output features.
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Fig. 3. Hardware accelerated DNN inference

Recent ultra-low power microcontrollers (MCUs) contain computation peripherals such as
general vector math accelerators [16, 35] and dedicated convolution accelerators [39, 67]. As shown
in Figure 3(a), an on-chip accelerator typically shares a VM region with the CPU, and tiled input
data are fetched from NVM into the shared VM before accelerator operations are invoked. By an
operation, we indicate any command available on the accelerator (e.g., matrix multiplication or
smaller vector multiply-accumulate operation). One operation can contain multiple sub-operations
which produce the minimum intermediate outputs intrinsically written back by the accelerator to
the shared VM. One sub-operation computation is referred to as a job. A lightweight accelerator
with very limited internal memory typically has a fine-grained job, which can be a partial sum,
a partially accumulated output feature, or a fully completed output feature, depending on the
sub-operation. As shown in Figure 3(b), to produce job outputs, the accelerator loads the input data
into its internal memory, computes the jobs and writes back the job outputs to the shared VM, in a
pipelined fashion.

2.2 Intermittent Deep Model Inference
Intermittent systems rely on ambient power sources. Harvested energy is accumulated into an
energy buffer (e.g., a capacitor) [41, 49, 52], and the intermittent system is powered ON when
the buffered energy level reaches a preset threshold and powered OFF when the energy buffer
is depleted. Therefore, the power ON duration in a power cycle is determined by the incoming
power, buffered energy, and energy consumption. NVM is leveraged for state persistence across
power cycles, but NVM typically has higher data access energy and latency costs than VM, so
for performance and energy concerns, the application is run from VM. The direct memory access
(DMA) controller is utilized for efficient data transfer between NVM and VM, while the hardware
accelerator is used to speed up specific computations.

DNN inference on intermittent systems has recently been made possible [24, 43], by accumulating
inference progress across multiple power cycles. Existing intermittent inference approaches take
a pre-trained DNN model and execute it intermittently without any modifications on the model.
During inference, progress indicators are preserved along with accelerator outputs from VM to
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NVM. The unpreserved progress in VM will be lost upon power failure and has to be re-executed
in the next power cycle. After power resumption, the progress indicators are used to identify the
interrupted progress, re-fetch the required input data, and correctly resume the inference process.
Intermittent inference approaches are different in the progress indicators used (e.g., loop indices [24]
or layer/job counters [43]), resulting in different preservation granularities (at the operation [24]
or sub-operation level [43]) and overheads.

Accelerator job output

DMA1 : Progress indicator preservation
DMA0 : Job output preservation

n n+1

Time
: Data block

To VM

To NVM

To NVM

: Data transfer command

Fig. 4. Inference progress preservation

Figure 4 illustrates progress preservation in HAWAII [43], a state-of-the-art hardware accelerated
intermittent inference approach. The job output preservation and progress indicator preservation
(i.e., transferring job outputs and progress indicators to NVM) are carried out separately via
two DMA channels. Accordingly, the previous job output and its corresponding indicator (called
footprint) are preserved in a pipelined fashion, and in parallel with the current job computation,
to reduce the runtime overhead. The job outputs and progress indicators are preserved in non-
contiguous NVM locations, respectively in the OFM buffer and in a persistent variable. Hence, two
separate DMA channels and data transfer commands are required for both job output and progress
indicator preservation. The overhead of a data transfer command includes DMA invocation, NVM
invocation, and the NVM write. If this overhead required for progress indicator preservation is
significant, it would offset the benefit brought by accumulating inference progress across power
cycles, thereby impeding intermittent DNN inference.

3 PROGRESS PRESERVATION: OBSERVATION AND MOTIVATION
Progress preservation is essential for intermittent systems. To explore a new means for progress
preservation, we conducted an experiment on a Texas Instruments (TI) MSP430FR5994 device [36],
with the TI low energy accelerator (LEA), 8KB internal VM and 1MB external NVM [1]. Vector
math operations in LEA were used to compute a convolution tile (i.e., partial sum computation and
accumulation as described in Section 2.1). The tile size was set asTn = Tm = 8 andTc = Tr = 4, and
the kernel size was set as K = 3, allowing the tiled input data to fit in VM. An accelerator operation
consists of Tm sub-operations (jobs). The DMA controller was used for job output and progress
indicator preservation. We repeatedly executed the convolution tile, and the inference time was
measured as the average time required to compute the tile, under a power source (3 mW) and two
respective capacitor sizes (100 µF and 1 mF). The power source was insufficient for the device to
operate continuously, leading to repeated yet unpredictable power failures.

We compare three progress preservation configurations. The first (baseline), similar to HAWAII
[43], uses a footprint to indicate each computed job during inference. As a job output and footprint
pair is preserved in non-contiguous NVM locations, two separate DMA channels and data transfer
commands are required for progress preservation, resulting in 2Tm total data transfer commands,
each writing one data block of 2 bytes to NVM. The second configuration (denoted 1DMA-2) uses a
single DMA channel to simultaneously preserve a job output and footprint pair. In 1DMA-2, we
double the tile size (i.e., 2Tm = 16) to essentially double the number of accelerator computations,
in order to emulate the behavior of the accelerator that computes an augmented tile and writes
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contiguous job output and footprint pairs to shared VM (details provided in Section 4). Accordingly,
1DMA-2 writes an equal number of total data blocks from VM to NVM as the baseline, but using
only half the number of transfer commands. The third configuration (denoted 1DMA-ALL) also
uses one DMA channel, but only a single transfer command is used to preserve all accelerator
outputs of an operation, with the equal number of data blocks written to NVM. 1DMA-ALL exploits
the slower NVM write compared to an accelerator operation, where the current accelerator output
is available in the shared VM before the previous accelerator output preservation has completed.
All configurations transfer the same number of data blocks to NVM, but they differ in terms of the
number of transfer commands invoked for an accelerator operation, respectively 2Tm , Tm , and 1
for the baseline, 1DMA-2, and 1DMA-ALL.
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Fig. 5. Inference time under different progress preservation configurations

The experiment result (Figure 5) shows that different progress preservation configurations have
a significant impact on the inference time, and the impact is more evident when power failures
occur more frequently under smaller capacitance. In the baseline, separate preservation of job
outputs and footprints can lead to significant overhead which prolongs the inference time. By
contrast, simultaneous preservation can reduce the overhead. In 1DMA-2, using a single transfer
command to preserve an adjacent job output and footprint pair reduces the inference time by 56%
and 44% against the baseline, respectively under 100µF and 1mF capacitance. The reductions are
respectively 80% and 74% in 1DMA-ALL, which uses a single transfer command to preserve all job
outputs and footprints in contiguous NVM locations.
Although the accelerator computations in 1DMA-2 and 1DMA-ALL have doubled against the

baseline, the additional computation overhead can be traded for a reduction in data transfer overhead
to significantly reduce the inference time, due to two key reasons. Firstly, the latency required by
the accelerator to compute a job is typically much shorter than the latency required to preserve a
job output into NVM, and the latency reduction is more apparent when such a latency gap between
the accelerator and NVM is larger1. Secondly, multiple data blocks per transfer command efficiently
utilize the NVM bandwidth and reduce energy consumption. Note that, unlike continuously-
powered inference, intermittently-powered inference typically incurs a high NVM utilization due
to progress preservation. From the experiment, we draw a useful insight that inspires our approach.
Progress preservation overhead can be amortized if progress indicator (footprint) preservation is
piggybacked onto job output preservation, provided that they are placed contiguously in the shared
VM.

4 JAPARI: JOB AND PROGRESS ALTERNATE INFERENCE
Motivated by the observation in Section 3, we proposemodel augmentation, which adapts a standard,
pre-trained DNN model to intermittent power by appending additional computation units such
1One job computed by a vector MAC of length Tn = 8 incurs 12 clock cycles on the LEA, while using DMA to preserve a
2byte job output to the external NVM incurs 58 cycles.
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as extra channels and kernels onto the DNN model, thereby intrinsically preserving progress
information during inference. This allows data transfers required for progress indicator preservation
to be converted into accelerator computations, and thus progress indicator preservation can be
piggybacked onto job output preservation. While model augmentation could be generic to different
progress indicators [24, 43], we use a footprint to indicate each computed job output because a
single footprint is relatively minimal compared with other indicators such as a set of loop indices.
As shown in Figure 6, to realize model augmentation, we propose JAPARI, a runtime middleware
that sits between the application and hardware layers of a system. JAPARI transparently appends
additional computation units onto the DNN during inference, manages simultaneous preservation
of job outputs and footprints, and ensures correct progress recovery upon power resumption,
without involvement from the application. Note that although we carry out model augmentation
online, it can also be applied in an offline fashion, before deployment.

4.1 Design Challenges
Two key design challenges need to be addressed to realize model augmentation. The first challenge is
to determine the positions in the original model architecture to augment in order for the accelerator
to generate job outputs and footprints in contiguous VM locations, with the model architecture
uncorrupted. Here, we mean the original model architecture is unchanged and contained within the
augmented model. This is non-trivial to achieve, as the accelerator may not generate the required
layout, where job outputs and footprints are placed in an alternate manner, if new computation
units are invalidly added into the model. Also, incorrect model augmentation can affect the model
architecture. The second challenge is to assign the values of the computation units so that the
latest progress can be derived based on the footprints preserved in NVM, with the model accuracy
unaffected. Here, we mean the OFMs of the original model are unchanged and contained within the
OFMs generated by the augmented model. Due to model augmentation, job outputs and footprints
are no longer preserved separately, but in the same contiguous NVM region which may be reused
by prior operations and layers on resource constrained devices. Therefore, identifying the latest
footprint becomes particularly difficult, as old footprints preserved in the same NVM region may
obfuscate the new ones. Also, incorrect value assignment can affect the model accuracy.
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The first design challenge of where in the model to augment is addressed by footprint appending.
As shown in Figure 7, footprint kernels and footprint channels are appended into specific positions
in the tiled input data, without corrupting the model architecture. This allows the accelerator to
intrinsically generate and place job outputs and footprints in VM in an alternate manner during the
convolution process (Section 2.1), making simultaneous preservation possible. Footprint appending
increases the number of accelerator computations, but the additional computation overhead is
compensated by the reduced transfer overhead (Section 3).

The second challenge of how to identify the interrupted job is addressed by footprint representation.
Footprint kernels and channels are assigned specific values, without affecting the model accuracy.
This ensures that the latest footprint can be distinctively identified from previously preserved
footprints and used to derive the interrupted job, making correct recovery possible. Note that as
currently computed partial sums are accumulated onto those previously computed and preserved
in the OFM buffer (Section 2.1), we cannot reset the buffer to zero before a new operation, nor can
we implicitly determine the interrupted job by the position of the last non-zero value in the buffer.

4.2 JAPARI Architecture
Our JAPARI middleware performs model augmentation at runtime. Figure 6 shows the typical
software architecture of an embedded system, where the application layer defines the DNN model
structure, and the hardware layer contains the CPU, hardware accelerator, DMA controller, VM
and NVM. The accelerator uses a shared VM region with the CPU. The inference input data
(obtained via sensors at runtime), model weight parameters, and preservation buffer are located in
NVM. Our JAPARI middleware transparently manages progress preservation and recovery, without
involvement from the application layer. The JAPARI engine includes four key components: (1)
progress seeker, (2) kernel generator, (3) channel generator, and (4) data mover. These components
are invoked by the JAPARI library functions during the respective layer computation (e.g., CONV,
FC and POOL) to integrate footprints into the inference process. The role of each key component is
explained as follows.

An end-to-end inference is computed layer by layer on a tiled basis, where an IFM tile, a weight
kernel tile and a partially computed OFM tile are fetched from NVM to VM by the data mover to
accumulatively compute an OFM tile. Subsequently, the kernel and channel generators automatically
append footprints kernels and channels onto the IFM and weight kernel tiles, before accelerator
operations are invoked. To accommodate the VM space required for footprint kernels and channels,
when fetching tiled input data, the data mover ensures appropriately sized memory regions are
unoccupied after the fetched IFM tile and between the weight kernels. The specific positions of
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the appended footprint kernels and channels (Section 4.3) ensure job output and footprint pairs,
produced by the accelerator, are placed contiguously in the shared VM. The data mover then
preserves the job outputs and footprints of the same accelerator operation to the preservation
buffer in NVM using one single DMA transfer command, in parallel to the accelerator computing
the subsequent jobs in a pipelined fashion. Layers are processed sequentially, where one layer’s
output is the next layer’s input. Therefore, during the computation of the current layer, footprints
generated for the previous layer are excluded when tiled input data are fetched.
A tile computation may be interrupted due to power failure. Upon power resumption, the

progress seeker searches for the latest footprint in the current layer from all preserved footprints
in the preservation buffer in NVM. Footprint kernels and channels are assigned specific values
(Section 4.4), such that the latest footprint in the current layer can be distinctively identified from
prior footprints paired with job outputs, even though the preservation buffer is reused for different
operations, tiles, and layers. Hence, once the latest footprint has been retrieved, it is used to derive
the interrupted job in the current layer. The accelerator is then configured to resume inference
from the interrupted job. Only partial IFM, weight kernel, and OFM tiles are re-fetched by the data
mover to complete the remaining jobs of the interrupted tile.
Currently, JAPARI has incorporated footprint appending and footprint representation to the

convolution (CONV), fully connected (FC) and pooling (POOL) layers, which account for a majority
of the computation in DNNs. We primarily focus on the CONV layer in Sections 4.3 and 4.4, and
then discuss how the proposed footprint appending and representation are applied to FC and POOL
layers in Section 4.5.1. The JAPARI engine and library can be extended to support other layer types
such as depthwise and pointwise convolution.

4.3 Footprint Appending for Progress Preservation
4.3.1 Footprint-related Positions: The positions of the appended footprint kernels and channels
ensure that each job output is paired with a footprint indicating the inference progress. The output
granularity varies across accelerators, depending on the size of their internal registers. We first
consider generic accelerators with fine-grained outputs and basic support for vector/matrix math
operations, such as those typically found in lightweight systems. Support for accelerators with
coarse-grained outputs will be discussed in a subsequent section.

As shown in Figure 7, for tiled input data fetched into VM, one footprint kernel (denoted FK ) is
appended to eachweight kernel. Then, one footprint channel is appended to the IFM tile, eachweight
kernel, and each footprint kernel, where the appended channels are respectively denoted as FCI ,
FCK and FCF . The dimensions of each FK match the original weight kernel (i.e., |FK | = Tn×K×K ),
the dimensions of FCI match one channel of the fetched IFM tile (i.e., |FCI | = Tw×Th ) and the
dimensions of FCK and FCF match the kernel spatial dimensions (i.e., |FCK | = |FCF | = K×K).
Accordingly, an augmented OFM tile comprises 2Tm channels with spatial dimensions Tc×Tr . Note
that each OFM channel will only contain either job outputs or footprints, making the original
model architecture uncorrupted.

To allow job outputs and footprints to be produced in the shared VM in an alternate manner, an
augmented OFM tile with dimensions 2Tm×Tc×Tr is computed in channel-major order (Figure 7). On
generic accelerators, intra-tile computation requires multiple operations of two types. The first type
of operation, denoted psum, performs 2Tm vector MACs (each of which computes the dot product
of a kernel vector and an IFM vector in the input channel dimension) to produce 2Tm partial sums
in the output channel dimension, where each pair of adjacent partial sums represent a job output
and a footprint with interleaved positions. To produce all partial sums in the augmented OFM tile,
psum needs to be invoked Tc×Tr times. Then, the second operation type, denoted acum, performs
a vector addition, where the currently computed 2Tm partial sums in the channel dimension are
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respectively accumulated onto those previously computed counterparts. Symmetrically, acum is
also invoked Tc×Tr times. As each kernel contains K×K vectors, to complete the augmented OFM
tile, the above process needs to be repeated K×K times. Overall, for fine-grained accelerators, an
augmented OFM tile requires up to 2Tc×Tr ×K×K operations to compute, where their computation
order can vary depending on the intra-tile execution loops (Figure 1).
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Fig. 8. Layout of preserved job outputs and footprints

To preserve inference progress despite power instability, a partial sum buffer (denoted PB) and
an OFM buffer (denoted OB) in NVM are respectively used to preserve the outputs of the psum
and acum operations. As illustrated in Figure 8, the size of PB is 2Tm×Tc×Tr , which is sufficient to
preserve the currently computed OFM tile, and its layout directly follows the same interleaved
layout in the shared VM. As one layer’s output is the next layer’s input, OB is a circular buffer
with size 4M×C×R, which is sufficient to accommodate both the augmented OFMs and IFMs of the
currently computed layer (Figure 1). In the circular buffer, the OFMs are preserved next to the IFMs,
to prevent the IFMs from being overwritten by currently computed OFM tiles. The augmented
OFMs are computed by successively computing augmented OFM tiles, where the computation order
can vary depending on the inter-tile execution loops selected to maximize data reuse (Figure 1). To
reduce memory usage on edge devices, all layers reuse the same PB and OB, and thus their sizes
must be applicable to any layer (i.e., with the largest Tm×Tc×Tr andM×C×R) in the DNN. Crucially,
they may contain job outputs and footprints from the current layer as well as from a prior layer.
Note that for dedicated convolution accelerators, with psum and acum merged into one operation,
its job outputs and footprints will directly be preserved in OB, and PB will not be required.

4.3.2 Computation and Preservation Overhead: Compared with HAWAII, JAPARI invokes the
same number of accelerator operations but each operation contains more sub-operations. The
computation overhead mainly increases with the number of appended footprint kernels (FKs). The
required number of FKs depends on the granularity (Ji ) of an accelerator output, which is related
to the level of computation parallelism and the size of the internal memory of the accelerator.
With the maximum number of FKs, the number of required sub-operations is doubled, and each
fine-grained job output is paired with a footprint. As illustrated in Figure 9, for an accelerator
with a fine-grained output (i.e., P0 case, where Ji is one partial sum), one FK is appended to each
weight kernel, resulting in Tm footprint kernels, as described in Section 4.3.1. Conversely, for a
coarse-grained output (i.e., P1-P5 case, where Ji is a vector/matrix of partial sums), only one FK
is appended to the last weight kernel to preserve the whole operation progress, and thus the
computation overhead is relatively lower. Furthermore, a batch of B job outputs can be paired with
a footprint, where B is between 1 and the total number of jobs in an invoked operation. Then,
only one FK is appended to every B weight kernels. Figure 9 (bottom), shows an example where
B = 3 and Ji is P0, resulting in ⌈

Tm
B ⌉ appended FKs. A larger batch size B can reduce the number of
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for(kh = 0; kh < K; kh++) do: ——————————————————> P5
 for(kw = 0; kw < K; kw++) do: —————————————————> P4
  for(tr = r; tr < min(r+Tr , R); tr++) do:—————> P3
   for(tc = c; tc < min(c+Tc , C); tc++) do:————> P2
    for(tm = m; tm < min(m+Tm , M); tm++) do:———> P1
     for(tn = n; tn < min(n+Tn , N); tn++) do:——> P0 
      //Partial sum computation and accumulation
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Fig. 9. Different output granularities and batch sizes

appended FKs, thereby decreasing the computation overhead, but at the cost of increased progress
lost upon power failure.

Compared with HAWAII, JAPRAI invokes fewer transfer commands to preserve an equal number
of job output and footprint pairs. The preservation overhead is dominated by the number of
invoked DMA transfer commands. To carry out progress preservation in parallel to accelerator
computation, the data mover is invoked alongside an accelerator operation to preserve all job
outputs and footprints in VM to NVM using a single transfer command. The number of required
transfer commands depends on the latency difference between the accelerator computation and
NVM access on the target platform. As shown in Section 3, if the computation latency is lower
than the preservation latency, then only a single transfer command is required to preserve all job
outputs and footprints of the same operation, reducing the total number of 2×Tm transfer commands
required for separate preservation to 1. For the inverse case, a new transfer command is required
to preserve every pair of job output and footprint, but the number of transfer commands required
is still smaller than if every job output and its associated footprint were preserved separately [43].

4.4 Footprint Representation for Progress Recovery
4.4.1 Footprint-related Values: The values of the appended footprint kernels and channels ensure
that the latest footprint (denoted FL) generated for the current layer can be distinctively identified
from previously preserved footprints. There are three requirements for the value assignment. First,
despite those appended channels and kernels involved during convolution computation, the model
accuracy should be unaffected. Second, as the PB and OB buffers are reused within each layer
(Section 4.3), where old footprints will be overwritten by new ones, footprints generated for the
same layer must be distinguishable from one another to uniquely identify the latest footprint
within the layer. Third, as the two buffers are also reused across layers, where old footprints may
obfuscate the new ones, footprints generated for the current layer must be distinguishable from
those preserved for prior layers.

Figure 10 illustrates the value assignment scheme used. We assign the first element of the channel
appended to each footprint kernel (denoted FC0

F ) to cnt×b, the first Tc×Tr elements of the channel
appended to the IFM tile to 1, and all remaining elements of the footprint kernels and channels are
assigned 0, which results in all generated footprints only taking on the value of FC0

F = cnt×b after
partial sum computation. Note that because those elements of the appended footprint kernels that
convolve on the original IFM tile are assigned 0, the generated job outputs will only take on the
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Fig. 10. Values of footprint kernels and footprint channels

values computed based on the original IFM tile and weight kernels, and thus the first requirement
of unaffected model accuracy is satisfied.

Here, cnt is a counter variable in VM, used to uniquely distinguish footprints generated within
the same layer (i.e., the second requirement). At the start of each layer, cnt is set to 1 and then
incremented before each time a position in PB is reused (i.e., an old footprint is overwritten), which
depends on the intra-tile execution loops (Figure 1). For example, in Figure 7, where a psum operation
comprises 2Tm sub-operations and the PB size is 2Tm×Tc×Tr , the outputs of Tc×Tr psum invocations
can be preserved in a single reuse cycle, and in such a case, each position in PB is reused K×K times
and thus cnt is incremented by K×K after an augmented OFM tile is completed. Because footprints
preserved onto the same PB position increase in their absolute values, while those having the same
value are preserved onto different positions, they are uniquely distinguishable. The footprints
preserved in OB are accumulated by those counterparts in PB (Section 4.3.1), and thus they also
satisfy the aforementioned second requirement.

Finally, the control variable b = {+1 or −1} in VM is used to satisfy the third requirement. At the
start of each layer, the PB buffer is reset to 0 (using one single DMA command). Thus, the footprints
preserved into PB for the current layer will never be obfuscated by old footprints preserved for
prior layers. However, we do not reset the OB buffer to 0 before a new layer, because OB is orders
of magnitude larger than PB in size and contains the IFMs required for the current layer. Instead,
we use b to indicate two adjacent reuse cycles by inverting its sign whenever OB is fully reused
(i.e., all footprints have the same sign or, simplistically, the first and last footprints have the same
sign). Consequently, an old footprint can only be overwritten by a new footprint with an inverted
sign. Within the NVM region allocated to the OFMs of the current layer, footprints preserved
respectively for the current layer and for prior layers (if any exist) must have different signs and
thus are distinguishable.

4.4.2 Progress Search and Recovery: Upon power resumption, the progress seeker is invoked to
correctly recover the power-interrupted inference. Specifically, the objective of the progress seeker
is to determine three data items, namely the interrupted layer, the interrupted operation type, and
the interrupted job within the layer. Figure 11 shows the control flow of the progress recovery
process. First, the index of the interrupted layer (Li ) is retrieved from NVM, where Li is directly
tracked in NVM as a counter variable and is incremented by 1 before a new layer. Then, the
interrupted operation type (opt ) is determined, where opt is indicated by the PB buffer usage status
(i.e., fully reused or not) upon power resumption. For each PB reuse cycle, if PB is fully reused
(i.e., all footprints increase in their absolute values or, simplistically, the absolute value of the last
footprint is not smaller than that of the first footprint), it indicates all psum operations successfully
completed but a subsequent acum operation was interrupted (i.e., opt = acum) due to power loss.
Inversely, if PB is not fully reused, it indicates a psum operation was interrupted (i.e., opt = psum).
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Next, in order to derive the interrupted job, the latest footprint (FL) in the current layer is searched
and retrieved from NVM, where the buffer to search depends on opt . If opt = acum, then OB is
searched, else PB is searched instead. Furthermore, only the buffer region that contains footprints of
the currently computed layer is searched, using binary search, where the search latency increases
logarithmically with the region size. As the generated footprints are always increasing in their
absolute values (Section 4.4.1), the search criteria is essentially the last largest or last smallest
footprint in the searched buffer, depending on the control variable b (+1 or −1) currently used.
Note that as the same b is used in each OB reuse cycle, the currently used b is implicitly indicated
by the first footprint in OB.

PB buffer full?

Set opt = psum Set opt = acum

Fetch FL from PB Fetch FL from OB

Derive loop indices from FL 

Restore cnt and b

Resume execution

YN

Power resumption Fetch Li

Progress search Recovery

Fig. 11. Progress search and recovery

As shown in Figure 11, once FL is retrieved, it is used to derive the loop indices (i.e.,
r , c,m,n,kh,kw, tr , tc, tm, and tn in Figure 1) of the interrupted job. As the inference process is
unidirectional and each layer is computed by sequential operations, the structure of the inter/intra-
tile execution loops, including their bounds and order, are deterministic and known at design time.
Furthermore, as each job progress is indicated by a footprint, which is uniquely distinguishable
by its absolute value and position in the buffer region (Section 4.4.1), the interrupted job can be
derived based on the value and position of the latest footprint FL . Take the intra-tile computation in
Figure 7 for example, where the cnt variable is incremented by K×K after the augmented OFM tile,
and all the Tm×Tc×Tr footprints in each PB reuse cycle share the same cnt value. The loop indices
kw and kh can be respectively derived as kw = |FL |%K and kh = |FL |%(K×K )

K , given the footprint
value |FL |. Similarly, based on the footprint position F̂L in PB, the loop indices tm, tc , and tr can be
respectively derived as tm = F̂L%Tm , tc = F̂L%(Tm×Tc )

Tm
, and tr = F̂L

Tm×Tc
. Note that the inner-most tn

loop is carried out with an atomic sub-operation to compute a job in the used psum operation.
Lastly, the inference execution can resume from the interrupted job. To ensure that the footprint

values of the remaining jobs correctly continue to increase or decrease, the cnt and b variables
introduced for footprint representation (Section 4.4.1) are respectively restored as the absolute value
and the sign of the last footprint (i.e., cnt = |FL | and b = {+1 or − 1}). The tiled input data required
for the remaining jobs are then fetched to VM by the data mover (Section 4.2) and, subsequently,
the accelerator is appropriately configured and initialized with the derived loop indices to resume
the interrupted opt operation and proceed to complete the interrupted tile (Section 4.3.1).

4.5 Generality
4.5.1 Support for Other Layer Types: A Fully-connected (FC) layer with an N ×W ×H input andM
output neurons can be equivalently formulated as a CONV layer withM kernels each N ×W ×H (i.e.,
the kernel dimensions match the IFM dimensions) [50], and therefore footprints are appended in
the same way as CONV (Section 4.3). Figure 12 (left) illustrates an FC layer implemented as a matrix
multiply operation, and footprint kernels and channels are appended as described in Section 4.3. A
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pooling (POOL) layer typically obtains input from a CONV layer and already contains footprints as
shown in Figure 12(right). Each IFM channel is grouped according to the pooling window size and
processed along the channel dimension, where a job is a pooling window computation (executed
by the CPU if unsupported by the accelerator) and the job output is preserved onto OB, with PB
unused. Upon power resumption, as each pooling window is indicated by a footprint, the position
of FL in OB is used to derive the interrupted job and recover the POOL layer computation.
JAPARI can also be extended to support depthwise and pointwise convolution, used in models

designed for resource constrained systems [32]. Appending footprints for pointwise convolution is
the same as the process for CONV with kernel dimensions (N ×1×1). For depthwise convolution, a
footprint kernel (1×K×K) is appended to each weight kernel and, subsequently, a footprint channel
(K×K) is appended to each kernel, as well as a footprint channel (W ×H ) is appended to each
IFM channel. It is worth noting that the aforementioned layer types (and their variants) cover a
majority of those typically used in tiny machine learning applications [9]. Model augmentation
opens up an avenue for DNN models to adapt to intermittent computing. Future efforts may further
simplify JAPARI or propose compatible model augmentation techniques for other newer layer
types targeting such lightweight applications.

4.5.2 Support for Other Accelerator Types: An augmented DNN model can be executed in exactly
the same manner as a standard DNN model. This is because fundamentally, model augmentation
simply increases the number of computation units in a model without corrupting the original
network architecture, and also because JAPARI assumes a generic tile-based inference execution
model that can be implemented on a majority of lightweight embedded platforms. However, to
allow for simultaneous preservation of job outputs and footprints, an important requirement is
that the CPU or accelerator, when computing an augmented tile, outputs interleaved job outputs
and footprints, either directly to persistent NVM or to a VM region accessible by the application
layer. Therefore, JAPARI requires the augmented OFM tile to be computed in the channel-major
order (i.e., with respect to the inter and intra-tile loop orders).

Off-the-shelf MCUs are a popular choice for intelligent edge systems due to their generality and
ease of programmability, and to support tiny ML applications, recent MCUs have started to include
lightweight computational accelerators [16, 35, 39, 64, 67]. Such accelerators efficiently perform
common vector and matrix computations, and place the job outputs into a shared VM region that
is accessible by the CPU. Moreover, there are also a wide range of conventional off-the-shelf MCUs
that have CPUs with specialized instructions (e.g., ARM Cortex-M4 [7] and RISC-V [23]), which
are used to accelerate the multiply accumulate operations required for DNN inference. For such
systems, the CPU can preserve the job outputs that may reside in registers or VM to NVM. JAPARI
directly supports all aforementioned types of off-the-shelf MCUs, as they can be programmed to
process a tile in any computation order.
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Early FPGA-based custom accelerators focused on exploiting data reuse [11, 13, 21, 59, 73, 74],
resulting in accelerator designs optimized for a particular computation order. In order for JAPARI
to support such accelerators that do not follow the channel-major computation order, the footprint
appending (Section 4.3) and footprint representation (Section 4.4) schemes need to be appropriately
adapted to the used order. Recent custom accelerators have focused on new strategies such as
exploiting model sparsity [26, 48] and variable bitwidths [61, 62] to further improve inference
performance and energy efficiency. Accelerators that exploit model sparsity rely on a special
irregular data format to represent sparse matrices. To support such accelerators, JAPARI can be
adapted to use a dynamic footprint representation scheme, where the values assigned to the footprint
kernels and channels change based on the sparsity of the weight kernels and IFMs, at runtime.
Variable bitwidth accelerators may encounter integer overflow during footprint representation,
and to address this, JAPARI divides and processes a layer as multiple sub-layers (Section 5.1).

Using our JAPARI middleware, AI programmers can easily deploy their DNN models on common
MCUs or FPGAs supporting flexible computation orders, to achieve high inference performance
under intermittent power. However, it is worth noting that custom hardware accelerators could also
be designed to explicitly track their computation progress across power cycles, and such solutions
would be valuable for intermittent inference provided that the sales volume is sufficient to amortize
the associated engineering cost [19].

5 JAPARI IMPLEMENTATION
We realized JAPARI on the Texas Instruments (TI) MSP430FR5994 [36], with a TI Low Energy
Accelerator (LEA) and 8KB SRAM (4KB VM shared between the CPU and LEA). To support
reasonably large DNN models we use 1MB external NVM (Cypress CY15B108Q serial FRAM [1]). A
custom LEA driver was also developed to efficiently use the DMA and operate LEA asynchronously.

5.1 Accelerated Tile Computation
Due to the limited VM space, a K×K kernel convolution is computed as the sum of K2 separate 1×1
convolutions [5], with a stride of 1. Accordingly, an IFM tile (Tn×Tw×Th ), a kernel tile (Tm×Tn×1×1)
and a partially computed OFM tile (Tm×Tc×Tr ) are fetched for the four inner-most intra-tile loops
(Figure 1) and passed onto the LEA for computation. This process is repeated K×K times to compute
an (augmented) OFM tile. The absolute values (cnt ) of footprints continuously increase within
a layer and therefore may suffer from an integer overflow on the 16-bit MCU. To address this,
JAPARI divides a large layer into multiple sub-layers, tracks their indices in NVM, and resets
the cnt value and PB buffer at the start of each sub-layer as if it were a new layer (Section 4.4).
The LEA commands LEACMD__MPYMATRIXROW (vector-matrix multiply) and LEACMD__ADDMATRIX
(vector addition) are respectively used to implement the psum and acum operations (Section 4.3.1).

To enable the tiled input data to fit in VM, the tile parameters that respectively define the spatial
size and output channel size were set as Th =Tw =Tr =Tc = 4 and Tm = 8. The job computation
latency for psum on the LEA is calculated as 3

2×(Tn + 1) clock cycles [34], and the job preservation
latency on the external NVM is calculated as DMA invocation overhead plus NVM write overhead,
i.e.,2+16= 18 clock cycles [1, 37]. An accelerator invocation takes 16 clock cycles and an NVM
invocation takes 40 clock cycles. These two are omitted in the above calculation as JAPARI incurs
them only once at the start of accelerator computation and output preservation, respectively. To
preserve all accelerator outputs of the same operation using only a single transfer command, the
job computation latency must be less than the job preservation latency (Section 4.3.2); therefore,Tn
was set to 8, as 3

2×(8 + 1)<18.
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5.2 Accelerator Output Preservation
The external NVM is interfaced via SPI (serial peripheral interface) at the same clock speed as
the MCU (16 MHz). The SPI peripheral on the MCU was configured to cooperate with the DMA
controller to transmit/receive data to/from the external NVM one byte at a time, without CPU
intervention. For accelerator output preservation, the DMA controller copies a byte of the output
data from VM to the SPI transmit buffer, and the SPI peripheral transmits the byte of data to the
external NVM and notifies the DMA controller to copy the next byte. This process is repeated until
all accelerator outputs are transferred, whereupon the DMA controller notifies the CPU.
An accelerator output (i.e., a job output or footprint) is 2 bytes on the LEA. As power may fail

during the byte-wise data transfer, we preserve the byte containing the sign bit of a footprint last,
ensuring the incompletely preserved footprint will not be incorrectly identified as the latest footprint
(Section 4.4.2). To protect idempotence (i.e., the same outcome will be produced despite repeated
execution) during partial sum accumulation and accelerator output preservation (Section 4.3.1), the
JAPARI implementation uses a double buffering mechanism similar to that in [24, 54], where two
OB buffers are alternately used. JAPARI ensures an operation invocation reads from and writes to
the counterpart positions in different OB buffers, thereby avoiding write-after-read dependencies.

6 PERFORMANCE EVALUATION
6.1 Experimental Setup

Table 1. Specifications of the experimental platform

Hardware
MCU TI MSP430FR5994
Volatile memory 8KB SRAM
Non-volatile memory Cypress CY15B108QI 1MB FRAM
Accelerator TI Low-Energy Accelerator

Energy
Boost converter TI BQ25504
Switch on/off voltage 2.8 V / 2.4 V
Capacitance 100 µF and 1 mF
Continuous power 1.65 W = 3.3 V × 0.5 A
Intermittent power 3 mW = 1 V × 3 mA

Our experimental environment is summarized in Table 1. We evaluated JAPARI on the TI
MSP430FR5994 with the LEA, internal VM, and external NVM, as described in Section 5. Intermittent
execution was emulated using a Keithley 2280S power supply, a BQ25504 energy management unit,
and a capacitor (energy buffer). A power source of 3 mW (1 V, 3 mA) was used, representative of the
power output of a 6cm2 sized solar cell [17] under indoor light, which is insufficient to complete a
single inference in one power cycle. Experiments were conducted under intermittent power, using
different capacitor sizes (100 µF and 1 mF), and under continuous power (1.65 W). Small capacitors
are favorable due to their short recharge time, low energy leakage, and small area [4], but they
cause frequent power failures and require more power cycles to complete an inference. A capacitor
of 100 µF was selected as it is the smallest size suggested to operate the used energy management
unit, as per its specification [38], and the capacitor size of 1 mF is sufficiently large to observe the
trade-off between preservation and re-execution overhead under different energy budgets.
Table 2 shows the three DNN models used in our evaluation, namely a convolutional neural

network (CNN) used for image classification (denoted ICS) [27], a CNN used for human activity
detection (denoted HAR) [31], and a fully connected DNN used for speech keyword spotting
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Table 2. DNN models used for performance evaluation

Model Layers Job count
CNN for Image Classification (ICS) [27]
Dataset: CIFAR-10 [47]
Size: 250 KB

CONV × 3
POOL × 2
FC × 2

1.47 M

DNN for Speech Keyword Spotting (SKS) [75]
Dataset: Speech commands [70]
Size: 400 KB

FC × 4 49.9 K

CNN for Human Activity Recognition (HAR) [31]
Dataset: Smartphone sensors [6]
Size: 15 KB

CONV × 3
POOL × 3
FC × 1

45 K

(denoted SKS) [75]. These models are representative of those typically used in tiny machine
learning applications [9] and fit within our 1MB external NVM. To allow for the models to run
on the TI embedded device (without floating-point arithmetic support), they were compressed
by quantizing their inputs and weight parameters to a 16-bit fixed point representation (Q15.1
format) from the 32-bit floating point representation used during training, without a significant
loss of accuracy. All models use dense convolution with a stride of 1 and no zero-padding. Each
model was repeatedly executed for 100 runs (end-to-end inferences), which is sufficient to mitigate
experimental variances while reproducing the results.
JAPARI is compared against TL-A and HAWAII2. TL-A is a task-based intermittent inference

approach with support for acceleration, similar in concept to TAILS [24]. TL-A performs a one-
time calibration to find a task size that fits the energy budget. HAWAII [43] is a state-of-the-art
footprint-based approach, which separately preserves job outputs and footprints, to enable hardware
accelerated intermittent inference. The progress preservation granularity of HAWAII and JAPARI
varies based on the batch size B (Section 4.3.2), which ranges between one sub-operation (1 job) and
one operation (Tm jobs), and that of TL-A varies based on the task size T , which ranges between
one operation and one layer, because task partitioning cannot be performed at the sub-operation
granularity (in that peripheral sub-operations cannot be directly invoked in an application).

JAPARI is evaluated in terms of runtime overhead and inference time. In our first experiment, we
evaluate the runtime overhead incurred by JAPARI to preserve inference progress in comparison
with the baselines, and therefore we measure the energy consumption to complete one end-to-end
inference under continuous power. The TI EnergyTrace tool [33] was used to measure energy
consumption. As JAPARI is developed for intermittent inference, in our second experiment, we
measure inference time under intermittent power, which is defined as the average time required to
compute one end-to-end inference. Lastly, we conduct a breakdown analysis of model augmentation
overhead, in terms of computations and data transfers, which allows us to explore opportunities
for further improvement.

6.2 Runtime Overhead
Figure 13 shows the runtime overhead of each approach, across all evaluated DNN models and
different progress preservation granularities (batch size B in HAWAII and JAPARI or task size T
in TL-A), in terms of the energy consumption required to complete a single end-to-end inference
under continuous power. Results are shown for the preservation granularity of one job, half an

2HAWAII was originally implemented using 1D convolution [44]. For a fair comparison, we implement HAWAII and TL-A
using tiled convolution with vector-matrix multiply, similar to JAPARI, as described in Section 5.1. Moreover, to avoid an
incompletely preserved progress indicator, as discussed in Section 5.2, they use a shadowing mechanism similar to that in
[12] to atomically preserve every indicator (a set of loop indices in TL-A or a footprint in HAWAII) into NVM.
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Fig. 13. Runtime overhead under continuous power

operation, and one operation (8 jobs). The relative energy consumption reductions of JAPARI
against the baselines are indicated above the bar plots. As TL-A has a minimumT of one operation,
TL-A cannot be evaluated when the preservation granularity is finer than one operation. Under the
same preservation granularity (B = T ), TL-A requires higher energy consumption than JAPARI
and HAWAII, because the convolution inter/intra-tile loop indices are incremented and preserved
in NVM at the task boundary, which is more costly than preserving a single footprint. Moreover,
unlike HAWAII and JAPARI which preserve job outputs in parallel to job computations, TL-A
preserves all job outputs only after the completion of the entire operation. TL-A also has extra
task management overhead (e.g., task creation and transition), where the overhead can increase
dramatically as the task size is reduced [54].
HAWAII’s energy consumption increases drastically as B decreases, because of the extra data

transfer overhead related to separate job output and footprint preservation, whereas JAPARI’s
energy consumption shows a linear yet moderate increase with respect to B, due to the reduction
of data transfer overhead brought by simultaneous preservation (Section 4.3.2). The energy
consumption reduced by JAPARI is more evident in the ICS and HAR models, which largely
comprise CONV layers (Table 2) and therefore are heavily accelerated. Such models incur higher
data transfer overhead related to a larger number of jobs, but JAPARI trades additional computations
for a reduction in data transfer overhead. Moreover, as CONV layers typically have fewer weight
parameters and more weight reuse than FC layers, JAPARI incurs lower data access and footprint
appending overhead.
Overall, JAPARI shows the lowest energy consumption among all evaluated approaches, in all

scenarios. JAPARI consumes 40% to 63% less energy than TL-A, and 3% to 68% less energy than
HAWAII, depending on the DNN model and progress preservation granularity.

6.3 Inference Time
Figure 14 shows the inference time under intermittent power for each evaluated approach, under
different DNN models, energy buffer capacities, and progress preservation granularities. The
relative inference time reductions of JAPARI against the baselines are indicated above the bar plots.
JAPARI shows a shorter inference time than TL-A, which is mainly because the latter incurs task
re-execution overhead when the unpreserved progress is lost upon power failure. TL-A dynamically
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calibrates the task size (T ) at the start of each experiment run, based on the energy budget. Re-
execution overhead typically increases with T , but factors such as supply voltage variations and
current leakage can vary the available energy budget of a capacitor from run to run [2, 53].

JAPARI also shows a shorter inference time thanHAWAII. Themain reason is that the latter incurs
higher preservation overhead than the former (Section 6.2). JAPARI more obviously outperforms
HAWAII under the ICS and HAR models than under the SKS model, because HAWAII incurs
higher preservation overhead for the former models, as discussed in Section 6.2. The inference
time reductions of JAPARI over HAWAII are more obvious when the preservation overhead of
HAWAII is considerably higher under a finer preservation granularity and especially dominant
under a smaller capacitor. Note that using a fine preservation granularity may incur unnecessary
preservation overhead under a relatively large capacitor yet, contrarily, a coarse preservation
granularity would suffer from large progress loss if the capacitor is relatively small. There is a
tradeoff between preservation overhead and re-execution overhead (Section 4.3.2).
Overall, JAPARI shows the shortest inference time among all evaluated approaches, in all

scenarios. Compared with TL-A and HAWAII, JAPARI respectively reduces the inference time
by 42% and 25% on average. JAPARI substantially improves intermittent inference for common
neural networks used in lightweight IoT applications [9], especially convolutional architectures that
typically require heavy acceleration, where a speedup of 3 times is achievable when fine-grained
progress preservation is used under a small capacitor.

6.4 Breakdown Analysis
In this section we first breakdown the computation and data transfer overhead of intermittent
inference under a frequent power failure condition (i.e., using a 100µF capacitor) for JAPARI and
HAWAII, across the different DNN models and progress preservation granularities. Next, we report
the hardware resource utilization of the platform, in terms of the accelerator and NVM under the
same experimental configurations.

6.4.1 Extra Job Computation and Data Transfer: Figure 15 shows the breakdown of the computation
and data transfer overhead of both approaches, where the relative overhead increases in JAPARI
compared to HAWAII are indicated above the plots. As shown in Figure 15(a), both JAPARI and
HAWAII incur an equal number of accelerator invocations because model augmentation does not
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corrupt the original model architecture (Section 4.3). Compared with HAWAII, JAPARI incurs more
jobs with each accelerator invocation, in order to compute the footprint kernels and channels
appended onto the original DNN model. However, an accelerator invocation takes more clock
cycles than a job computation (Section 5.1), and therefore the number of accelerator invocations is
the dominant factor that impacts the computation overhead.

(a) Accelerator (b) NVM

Fig. 15. Computation and data transfer overhead breakdown

As shown in Figure 15(b), JAPARI incurs a significantly lower number of NVM invocations
than HAWAII, because JAPARI preserves all pairs of job outputs and footprints using only a single
data transfer command. Both HAWAII and JAPARI write an equal amount of data to NVM, as
they compute and preserve the same number of output features and footprints during inference.
Interestingly, JAPARI reads more data from NVM than HAWAII because the augmentation carried
out on one layer increases the amount of tile input data fetched for the subsequent layer, particularly
for networks with low data reuse, such as SKS with primarily FC layers. However, an NVM
invocation takes more clock cycles than an NVM write or read (Section 5.1), and therefore the
number of NVM invocations is the dominant factor that impacts the NVM data transfer overhead.
Overall, compared with HAWAII, JAPARI can compute at most double the number of jobs

(Section 4.3.2), but the additional job computations are compensated by a reduction in the number
of NVM invocations by 20% to 86%, which considerably reduces the NVM data transfer overhead,
particularly when fine-grained preservation is used. Therefore, as reported in Section 6.3, compared
with HAWAII, JAPARI significantly improves the end-to-end inference time, as the NVM data
transfer overhead dominates the active inference time, where the system is powered ON.

6.4.2 Hardware Resource Utilization: Figure 16 shows the accelerator and NVM utilization, for
JAPARI and HAWAII, across the same experimental conditions as in Section 6.4.1. We define the
accelerator and NVM utilization, as the total active time of the respective hardware component,
over the total system power ON duration, across multiple power cycles taken to complete an
inference. Note that the combined utilization of both components may not equal to 100%, due to
parallel computations and data transfers, and CPU-based operations executed during inference.
In all cases, both HAWAII and JAPARI have a very low accelerator utilization (1% to 7%), while

the NVM is heavily utilized (70% to 99%), primarily because NVM access is generally slower than
accelerator computation, and therefore NVM data transfers related to job output and footprint
preservation typically dominate the active inference time. The NVM utilization increases inversely
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Fig. 16. Hardware resource utilization

with the preservation batch size as more footprints are preserved during inference, but this trend
is much less apparent in JAPARI than in HAWAII, as JAPARI significantly reduces the NVM data
transfer overhead, as discussed in Sections 6.2 and 6.4.1.
Typically, the NVM is slower than the accelerator as in our experimental platform. However,

assuming an uncommon platform, where the NVM data transfer is faster than the accelerator
computation, JAPARI may require more data transfer commands for job output and footprint
preservation, increasing the NVM utilization and also the inference time. Even in such a case,
JAPARI would still have a shorter inference time than HAWAII, because JAPARI preserves a pair
of job output and footprint simultaneously using only one data transfer command (Section 4.3.2),
thus reducing the progress preservation overhead.
Overall, JAPARI is able to exploit an underutilized accelerator by converting the data transfers

required for progress preservation into computations, thereby reducing the NVM utilization. These
relative hardware utilization differences, which lead to significant improvements in inference
time (Section 6.3), are particularly evident when the preservation granularity is small and under
convolutional networks that require heavy acceleration.

7 DISCUSSION
Through extensive experiments, we demonstrate the potential of model augmentation realized via
our JAPARI middleware. However, several opportunities remain to further improve the performance
of JAPARI. Based on Section 3, the inference time reduction of JAPARI could be even higher than
in Section 6.3, but JAPARI incurs additional footprint appending and footprint searching overhead
unaccounted for in the former section. VM write overhead is incurred during footprint appending
(Section 4.3), which may particularly impact performance for models with large kernel and IFM
sizes, and the footprint searching overhead is incurred during system recovery and may increase
with the preservation buffer size (Section 4.4).

Our prototype platform (TI MSP430FR5994) also introduces additional overhead when fetching
tiled input data. The DMA controller only supports data transfers with a stride of one, and hence
footprints from the previous layer can only be excluded after the entire tiled input data is fetched
into VM. Due to this reason, JAPARI incurs additional NVM reads to fetch augmented tile input
data, as discussed in Section 6.4.1. If the platform supports 2D DMA data transfers (e.g., Cypress
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PSoC 62 [18]), then we can fetch only the required output features, excluding footprints, from the
previous layer, thus avoiding these additional NVM reads. However, as shown in Section 6.4.2,
the inference time is still bounded by NVM data transfers, and therefore there still exists more
opportunity to convert more data transfers into accelerator computations.

8 CONCLUDING REMARKS
This paper presents the concept of model augmentation to adapt DNN models to intermittent
power, which is orthogonal to existing model compression techniques for adapting DNN models to
resource-constrained devices. The JAPARI middleware is developed to realize model augmentation.
In contrast to existing intermittent inference approaches, which track progress indicators (loop
indices [24] or footprints [43]) independently of the accelerator outputs, JAPARI allows footprints
to be intrinsically integrated into the inference process to indicate the accelerator progress, thereby
amortizing the overhead required to enable intermittent DNN inference.
Evaluations were conducted on a Texas Instruments device featuring a low-energy accelerator

and hybrid memory. By trading extra accelerator computations for a reduction in the invocation of
data transfer commands, JAPARI3 can reduce the energy consumption and significantly shorten the
inference time, compared to existing task-based and footprint-based inference approaches [24, 43].
The improvements are more evident for highly accelerated DNN models executed using a finer
preservation granularity, under a smaller capacitor.
The JAPARI middleware stack, which transparently performs model augmentation, has been

made open [45], facilitating the development of intermittent-aware DNN inference systems that
require short inference latency even under frequent power disruptions.
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