
Intermittent-Aware Neural Network Pruning
Chih-Chia Lin1,2, Chia-Yin Liu2, Chih-Hsuan Yen1,2, Tei-Wei Kuo1,4, Pi-Cheng Hsiu1,2,3

1National Taiwan University, 2Academia Sinica,3National Chi Nan University, Taiwan
4Mohamed bin Zayed University of Artificial Intelligence, UAE

Abstract—Deep neural network inference on energy harvesting tiny de-
vices has emerged as a solution for sustainable edge intelligence. However,
compact models optimized for continuously-powered systems may become
suboptimal when deployed on intermittently-powered systems. This paper
presents the pruning criterion, pruning strategy, and prototype imple-
mentation of iPrune, the first framework which introduces intermittency
into neural network pruning to produce compact models adaptable to
intermittent systems. The pruned models are deployed and evaluated on
a Texas Instruments device with various power strengths and TinyML
applications. Compared to an energy-aware pruning framework, iPrune
can speed up intermittent inference by 1.1 to 2 times while achieving
comparable model accuracy.

Index Terms—Neural network pruning, deep learning, intermittent
computing, battery-less devices

I. INTRODUCTION

Advancements in model compression techniques are pushing deep
neural network (DNN) inference to tiny devices [16], to enhance
application responsiveness and user privacy while mitigating com-
munication bandwidth usage. To maintain environmental sustainabil-
ity, energy harvesting is deemed a promising alternative to battery
charging [9], thereby enabling maintenance-free tiny devices with an
extended lifespan. However, battery-less devices powered by ambient
energy, which is inherently weak and unstable, suffer from frequent
power failure and resumption. Consequently, DNN inference on
such tiny devices has to be executed intermittently [5], [10], and
intermittent-aware deep learning has emerged as a critical research
topic to allow DNN models to be deployed and efficiently executed
on battery-less tiny devices.

Intermittent deep inference enables DNN models to be executed on
tiny devices with ambient power [5], [7], [10], [19]. Generally, exist-
ing approaches perform progress preservation and progress recovery.
During inference, progress preservation continually saves some form
of progress indicator along with the computed accelerator outputs
into nonvolatile memory (NVM), thereby reducing the amount of
progress lost in volatile memory (VM) when power fails. Upon
power resumption, progress recovery utilizes the progress indicator to
correctly resume, rather than re-execute from scratch, the interrupted
inference. The difference among intermittent inference approaches
lies in the used progress indicator, which directly affects how much
data is preserved during inference and how much progress is re-
executed during recovery. For example, SONIC/TAILS [5] adopts
multiple loop indices as the progress indicator, preserved along with
numerous accelerator outputs when each task is finished. During
progress recovery, the entire atomic task interrupted should be re-
executed. By contrast, HAWAII [10] uses a job counter as the
progress indicator to track every accelerator output, where an ac-
celerator operation comprises multiple sub-operations, each of which
is referred to as a job and produces an accelerator output. Upon
power resumption, only the interrupted job needs to be re-executed.
These approaches simply take a given (unpruned) DNN model and
execute it intermittently.

Neural network pruning removes relatively unimportant weight
parameters from a pre-trained DNN model to trade off model
accuracy for less hardware requirements [4], [6]. Generally, pruning
approaches are different in the used pruning criterion and pruning
strategy. The pruning criterion is used to estimate the importance of
weights given a specific objective. For example, magnitude-based
pruning tends to remove weights with relatively small absolute
values [6], while energy-aware pruning prefers to remove weights
with relatively high energy consumption [18]. On the other hand,
the pruning strategy determines which weights to remove and how.
Particularly, one-shot pruning prunes a pre-trained model only once
and then retrains the pruned model to recover the accuracy loss [4],
while iterative pruning removes a small percentage of the weights in
each iteration to avoid an unrecoverable drop in accuracy [14]. More-
over, the pruning granularity affects the regularity and sparsity of the
pruned model [12]. Fine-grained pruning removes individual weights,
causing the pruned model to lack regularity and rely on specialized
hardware for acceleration [6]. In contrast, coarse-grained pruning
maintains the model regularity for ease of hardware acceleration, but
at the cost of lower sparsity under the same accuracy loss [15]. Most
recently, network pruning is used to produce multiple shared-weight
models with different amounts of energy consumption [8], allowing
dynamic model switching according to the available power strength.
However, how to compress a model to specially adapt to intermittent
systems has received little attention.

This paper presents an early attempt to address intermittent-
aware neural network pruning. We observe that DNN inference
behaves differently in hardware usage on continuously-powered and
intermittently-powered systems. For conventional DNN inference, as
the accelerator outputs are normally kept in VM whenever possible
to maximize data reuse, the inference latency is mostly contributed
by NVM reads and accelerator computations. In contrast, intermittent
DNN inference requires the accelerator outputs and the corresponding
progress indicators to be instantly written back into NVM, resulting
in numerous NVM writes that dominate the inference latency. Conse-
quently, a pruned model optimized for continuously-powered systems
may be suboptimal when deployed and executed on intermittently-
powered systems.

To realize intermittent-aware pruning, we develop iPrune, a simple
yet effective framework inspired by the observation above to produce
compact models that can reduce intermittent inference latency while
maintaining model accuracy. Specifically, iPrune introduces a pruning
criterion that reflects the impact of different weights on the intermit-
tent inference latency despite varied power strengths. Furthermore,
iPrune adopts a multi-step pruning strategy, with respective guidelines
for network-, layer-, and block-level pruning, to remove more weights
on layers with high intermittent inference latency but low sensitivity
to model accuracy. The pruned models produced by iPrune are
run by a HAWAII-extended intermittent inference engine [1] and
deployed on a Texas Instruments MSP430 device. Experiments are
conducted with various power strengths and representative TinyML

979-8-3503-2348-1/23/$31.00 © 2023 IEEE

applications [3]. Compared to a framework similar in concept to
energy-aware pruning [18] intended for continuously-powered sys-
tems, iPrune can produce more compact models with 1.1 to 2 times
faster intermittent inference and comparable accuracy.

The remainder of this paper is organized as follows. Section II
provides background information and explains the motivation. In
Section III, we present the pruning criterion, pruning strategy, and
implementation issues behind iPrune. The experimental results are
reported in Section IV. Section V contains some concluding remarks.

II. BACKGROUND AND MOTIVATION

A. Tiny Deep Learning

A deep neural network (DNN) comprises an input layer and an
output layer, as well as multiple hidden layers such as convolutional
(CONV), fully connected (FC), and pooling (POOL) layers. Each
hidden layer performs specific operations on input feature maps
(IFMs) to generate output feature maps (OFMs) for the subsequent
layers, while possessing a set of tunable parameters called weights for
optimization [17]. To adapt a DNN model to resource-constrained tiny
devices, neural network pruning is widely used to reduce its model
size and computational complexity without significant accuracy loss,
by removing redundant weights [6]. Accordingly, to determine which
weights to be pruned, a pruning criterion is essential to estimate the
importance of each weight in terms of a specific objective, and those
weights with relatively less importance will be pruned according
to a pruning strategy to achieve the objective while maintaining
model accuracy. However, the pruned weights will be indicated with
zeros, occupying storage resources despite having no significance
for computation. Thus, the pruned model is typically stored in a
compressed format, where an indexing scheme is used to record the
positions of non-zero weights and thereby skip zero weights during
inference.

0 00 00 0

0

0

0

0

0

0

IFMs OFMsFilter Weights
Indexing schemeDMA

CPU
Hardware

Accelerator

1
Fetch

1

Command 3

Write back
6

Nonvolatile Memory

6

4
2

Notify 5

Volatile Memory

Fig. 1. Inference flow of a pruned DNN layer.

Figure 1 shows the inference flow of a pruned DNN layer on
a tiny device. Due to the limited VM capacity, IFMs, OFMs, and
model parameters (e.g., weights and biases), are stored in NVM
and processed as logically partitioned tiles in VM for performance
consideration [2]. To compute an OFM tile, the indexing scheme is
referred to correctly fetch the corresponding IFM tile and weight
tile, as well as biases and previously computed partial sums, from
NVM to VM. Then, a hardware accelerator, increasingly available
on off-the-shelf MCUs, is used to offload the expensive multiply and
accumulate (MAC) operations to accelerate tile computation. Typi-
cally, completing an OFM tile requires several accelerator operations,
each of which contains multiple atomic sub-operations. One single
accelerator output represents the minimum intermediate output (e.g.,
a partially accumulated or fully completed output feature) produced
by an accelerator sub-operation in a VM region shared with the CPU.
To leverage data reuse, the produced accelerator outputs would be

stored to accumulate in VM and written back to NVM only when
the OFM tile is fully completed [2]. Data transfers between VM and
NVM can be expedited via a direct memory access (DMA) controller.
One data transfer command transfers the data stored in contiguous
memory locations, and its latency includes the DMA invocation, the
NVM invocation, and the NVM read/write latency, which depends
on the amount of transferred data.

B. Intermittent Deep Inference

Deep inference behaves differently between continuously-powered
and intermittently-powered systems. Intermittent systems operate via
ambient power, with the harvested energy buffered into an energy
buffer (e.g., a capacitor). The system is powered on when the
energy buffer is fully charged and powered off when the energy
buffer is depleted [5], [10]. Typically, an end-to-end inference would
require dozens to a few hundreds of power cycles to complete.
Each power failure interrupts inference progress and causes data loss
in VM. Therefore, storing accelerator outputs for accumulation in
VM, like the inference flow presented in Section II-A, may lead to
nontermination as the interrupted inference needs to be performed
from scratch in every power cycle. To continue inference across
power cycles, intermittent systems utilize NVM to perform progress
preservation. Specifically, each accelerator output (or a batch of
accelerator outputs) is paired with a progress indicator to track the
inference progress, and they are immediately written from VM back
to NVM in parallel to tile computation during inference. Upon power
resumption, progress recovery is performed where, after system
reboot, the progress indicators are used to identify the last preserved
accelerator output and correctly resume the interrupted inference.
The progress related to unpreserved accelerator outputs is simply
re-executed. State-of-the-art intermittent inference approaches differ
in the used progress indicators, such as loop indices [5], layer/job
counters [10], or states [19], which directly affect the progress
preservation and recovery costs.

1 2

DMA/NVM Invocation Acc. Input

1 2

NVM Read

NVM Write

Computation

Acc. OutputSub-OP

3 4

3 4 5

5 6

Progress Indicator

6

(a) Continuously-powered system.

1

1

1

NVM Read

NVM Write

Computation

3

1 2 2 3 3 4 4

5

5 5 6 6

2

2 4 6

3 4 5 6

(b) Intermittently-powered system.

Fig. 2. Hardware usage on different inference systems.

This work is motivated by the difference between the hardware
usage behavior on continuously-powered and intermittently-powered
inference systems. As illustrated in Figure 2(a), the inference latency
of a continuously-powered system is more contributed by NVM reads
and accelerator computations than NVM writes, because accelerator
outputs can be stored and accumulated in VM for better data
reuse. In contrast, NVM writes dominate the inference latency of
an intermittently-powered system, as shown in Figure 2(b), because
progress preservation is indispensable to continued inference progress
across power cycles, causing numerous NVM writes to immediately
backup the accelerator outputs and their progress indicators back into

NVM. Existing pruning approaches are designed to improve inference
latency on continuously-powered systems by reducing the numbers of
NVM reads and accelerator computations. Although these approaches
can greatly reduce the DNN model size, the pruned DNN model,
when deployed on intermittent systems, may suffer from high latency,
raising the need for a new network pruning approach that reduces the
number of NVM writes to accelerate intermittent DNN inference.

III. INTERMITTENT-AWARE NEURAL NETWORK PRUNING

A. Design Overview

This section presents an intermittent-aware pruning framework
called iPrune, which follows the estimate-prune-retrain principle of
classic pruning frameworks [18], to reduce the intermittent inference
latency while maintaining the model accuracy. iPrune adopts iterative
pruning [14] to iteratively eliminate a small percentage of the model
weights at a time, thereby achieving less pruning-induced accuracy
loss than a threshold (ϵ), within which the loss remains possible to
recover via fine-tuning. Since the accuracy typically fluctuates across
iterations, to permit a brief rally in the early iterations, the model
is pruned iteratively until the accuracy drop exceeds the threshold
for twice (i.e., with a given second chance), and then the most
compact model with accuracy recovered is adopted as the pruned
model. As shown in Figure 3, for each iteration, iPrune first performs
layer-wise criterion estimation to evaluate the intermittent inference
latency of each layer, as well as analyze the sensitivity to model
accuracy degradation once weights in the layer are pruned. Then,
the estimated latency and sensitivity are used to determine an overall
pruning ratio for the remaining network, the pruning ratios allocated
among layers, and the to-be-pruned weight blocks within each layer.
Finally, the network is actually pruned and fine-tuned to remediate
accuracy degradation.

A pre-trained network

Per-layer ratio allocation

Network pruning

Criterion estimation

Sensitivity analysis

Overall ratio selection
Fine-tuning

Recoverable
accuracy loss?

A compact model

No

YesWeight block determination

RetrainingPruning

Estimation

Fig. 3. The iPrune Framework.

However, realizing iPrune raises several design challenges. One
major challenge is to determine an appropriate criterion that reflects
the impact of different weights on intermittent inference latency.
The total latency of NVM writes, which dominates the intermittent
inference latency (as observed in Section II-B), cannot be directly
adopted as a criterion because the number of incurred NVM writes
may vary with intermittency and the amount of data transferred by
each NVM write may also be different. Thus, the pruning criterion
should be capable of estimating inference latency, despite the variety
of intermittency. Another challenge is then to exploit the criterion
to determine which weights to be pruned, so as to reduce the
inference latency while maintaining model accuracy. For latency
reduction, we would ideally remove the weights that contribute the
most inference latency, but these weights may also significantly
impact model accuracy. Thus, the pruning strategy should jointly
consider latency and accuracy. Our pruning criterion and strategy are
respectively presented in Sections III-B and III-C, while Section III-D
discusses some implementation issues.

B. Pruning Criterion

The intermittent DNN inference latency depends significantly on
both the progress preservation and recovery costs, as accelerator
computation and progress preservation are pipelined and performed
in parallel (Figure 2(b)). For progress preservation, although the total
latency of NVM writes is difficult to estimate due to intermittency, the
total amount of data written back to NVM is not significantly affected
by intermittency. Since all accelerator outputs and corresponding
progress indicators are written back instantly to accumulate inference
progress, the preservation overhead decreases with the decrement of
accelerator outputs and associated progress indicators. As a result, the
preservation overhead correlates to the number of accelerator outputs,
which can be calculated easily based on the DNN model structure and
the inference engine configuration (e.g., the tile size and dataflow).

Apart from the latency caused by progress preservation, the cri-
terion should also be capable of reflecting the latency of progress
recovery. Under weaker power, the intermittent system will experi-
ence more frequent power failures, and the recovery cost incurred
during an end-to-end inference will also increase as a consequence.
The recovery cost depends on the number of power failures and the
cost per power failure. Upon power resumption, the recovery cost per
power failure is largely contributed by the data re-fetch latency, which
can roughly be regarded as a constant cost when the data of a fixed tile
size that fully utilizes the VM is always fetched for tile computation.
Thus, reducing the number of power failures will improve the in-
termittent inference latency. Unlike continuously-powered inference,
where the accelerator is often fully utilized, intermittently-powered
inference typically incurs a high NVM utilization due to numerous
NVM writes. Since those NVM writes account for a large portion
of energy consumption, the number of power failures decreases with
less accelerator outputs written back to NVM. As a result, both the
progress preservation and recovery costs are correlated to the number
of accelerator outputs, and iPrune can use it as the pruning criterion.

C. Pruning Strategy

Using the pruning criterion, our pruning strategy strives to reduce
the number of accelerator outputs of a given model to improve inter-
mittent inference latency while maintaining model accuracy. iPrune
adopts iterative pruning, which allows pruning-induced accuracy loss
to be recoverable by fine-tuning [14]. Firstly, for each iteration,
iPrune determines an overall pruning ratio (Γ), so as to remove an
appropriate percentage of the weights in the whole network. Secondly,
given the overall ratio, iPrune allocates per-layer pruning ratios
(γi) to all n layers in consideration of both latency and accuracy.
Lastly, iPrune decides which weights to be pruned in each layer in
accordance with the allocated pruning ratio and pruning granularity.
The three-step pruning strategy is illustrated in Figure 4 and detailed
below.

For an iteration, using a large pruning ratio may cause a consider-
able accuracy drop. In contrast, using a small ratio would take much
time to complete the whole pruning process and sometimes even not
make pruning progress. Therefore, an appropriate ratio (Γ) should be
selected for each iteration. Ideally, a small pruning ratio is set if the
weights selected to prune will result in a large drop in accuracy, and
vice versa. It has been observed that the degree of redundancy differs
between layers, leading to different degrees of sensitivity to model
accuracy, where the sensitivity of a layer represents how significant
the weights of the layer may affect accuracy [6]. When the layers with
more accelerator outputs are sensitive to pruning, a larger pruning
ratio will cause a more significant drop in accuracy because our
strategy attempts to eliminate more accelerator outputs. Thus, we

S
en

si
tiv

ity

Layer 1 Layer 2 Layer 3

Unpruned Pruned

A
cc

.
O

ut
pu

ts

0
0
0

0
0
0

0
0
0

0 0
0 0

0

0 0
0 0

0

0 0
0 0

0

0 0
0 0

0

0 0
0 0

0 0
0

0
0

0
0

0
0

Layer 1 Layer 2 Layer 3

Fig. 4. A three-step strategy for network-, layer-, and block-level pruning based on per-layer latency and sensitivity.

propose our first guideline, wherein the overall pruning ratio should
be set at a smaller value if the layer with the most accelerator outputs
has a higher pruning sensitivity. According to the guideline, iPrune
first performs sensitivity analysis on each layer to rank all n layers by
sensitivity. Then, given an upper bound (Γ̂) on the overall pruning
ratio, iPrune maps n ratios within the upper bound evenly to the
layers based on their ranks in decreasing order (i.e., the layer with
rank i is mapped to i × Γ̂

n
). Finally, the ratio mapped to the layer

with the most accelerator outputs is selected as the overall pruning
ratio (Γ) in this iteration.

Given the overall ratio (Γ), iPrune then allocates a pruning ratio
to each layer. Intuitively, to eliminate more accelerator outputs, we
should prune those weights which produce more accelerator outputs.
Accordingly, our second guideline is to allocate a higher pruning
ratio to a layer with a larger number of accelerator outputs. Note that
the layer-wise criterion estimation is adopted because the numbers of
accelerator outputs contributed by intra-layer weights are the same
but may be different across inter-layer weights. However, determining
an appropriate pruning ratio (γi) for each layer (i) by trial and error
is extremely time-consuming. Thus, iPrune employs a search-based
algorithm, with the objective of minimizing the number of accelerator
outputs while maintaining the model accuracy, to find a set of pruning
ratios such that

∑n
i=1 γiki = ΓK, where K denotes the total number

of weights and ki denotes the number of weights in each layer i.
Given the pruning ratio (γi) of a layer (i), iPrune determines which

weights in the layer to prune eventually. Coarse-grained pruning may
cause a higher accuracy drop. In contrast, fine-grained pruning can
achieve a greater sparsity without a noticeable accuracy drop but may
not be hardware-friendly. In other words, using a pruning granularity
inconsistent with the inference engine and hardware platform may
produce no significant reduction in latency [12]. In intermittent deep
inference, if the weights computed by an accelerator operation are
not removed altogether, even though the computational complexity
required for each accelerator output can be reduced, the accelerator
operation still needs to be invoked and may produce the original
number of accelerator outputs. As a consequence, the number of
NVM writes is not effectively reduced. Thus, our third guideline
is that the pruning granularity should be a block of weights to be
computed by one single accelerator operation. Accordingly, iPrune
evaluates the impact of each weight block on model accuracy and
sequentially removes weight blocks with the minimum impact until
the pruning ratio (γi) of the layer is achieved.

D. Implementation Issues

Our implementation involves both server and device sides. On
the server side, our iPrune implementation adopts simulated anneal-
ing [11] to search for per-layer pruning ratios (γi, ∀i), but any search
algorithm could be used instead. By default, the upper bound (Γ̂) on
the overall pruning ratio in an iteration is empirically set at 40%,

and the threshold (ϵ) of recoverable accuracy loss is set at 1%,
according to some experimental results in related studies [14], [18].
To estimate the impact of a weight block on model accuracy, we use
a commonly-used metric, namely the root mean square (RMS) of a
set of values [20]. The pruning granularity in iPrune is configured
as one accelerator operation that computes a weight block, with the
same loop tiling and ordering used in [2] for matrix multiplication.

On the device side, the pruned models are run by HAWAII [10],
which comprises an intermittent-aware inference engine and library
developed for battery-less tiny devices. In HAWAII, each network
layer is represented by a weight matrix, regardless of zero or nonzero
weights. To store and compute sparse matrices more efficiently,
we integrate a commonly-used indexing scheme, called Block Com-
pressed Sparse Row (BSR), into HAWAII. BSR represents a matrix
by three one-dimensional arrays, one for storing the nonzero weight
blocks while the other two for jointly indexing each nonzero weight
block in the original matrix. Thus, the inference progress is jointly
indicated by the current indices of the three arrays. During progress
recovery, the interrupted job in the last incomplete weight block can
be derived by the job counter preserved in NVM immediately before
power failure. Although two extra NVM reads are required to locate
any nonzero weight block, thereby correctly fetching the related tile
input into VM, the BSR format can avoid considerable computations
with zeros and unnecessary NVM writes given sufficiently high
sparsity. In addition, to further speed up intermittent inference, we
enhance HAWAII with several implementation optimizations adopted
in [19], including accelerated vector-matrix multiplication, tile input
data transformation, and tile size selection to fully utilize the VM and
maximize data reuse, as well as support for multiple path networks.
The enhanced HAWAII is denoted as HAWAII+.

IV. EVALUATION

A. Experimental Setup

We run the model pruned by iPrune with HAWAII+. The pruned
model, together with the inference engine, is stored in a 512KB
external FRAM (NVM) module and executed on a Texas Instruments
(TI) MSP430 device, equipped with a Low Energy Accelerator
(LEA) and 8KB internal SRAM (VM). The device is powered by
a TI BQ25504 energy management unit, which comprises a 100 µF
capacitor to buffer energy and a power switch to respectively turn on
or off the device when the capacitor is fully charged or depleted. To
emulate representatives of solar energy under different conditions, we
use a B&K Precision programmable power supply to generate differ-
ent power strengths. Under continuous power (1.65W), the device
can operate continuously. In contrast, both strong power (8mW)
and weak power (4mW) are insufficient to operate the device
continuously, resulting in repeated yet unpredictable power failures.
Note that HAWAII+ still performs immediate progress preservation
under continuous power, as it assumes no prior knowledge of the

TABLE II
TINYML APPLICATIONS USED FOR EVALUATION

Applications Layers Model Size MACs Acc. Outputs Diversity
SQN: Image Recognition CONV x 11 147 KB 4442 K 1483 K Low
Dataset: CIFAR-10 POOL x 2
HAR: Human Activity Detection CONV x 3 28 KB 321 K 77 K Medium
Dataset: Accelerometer sensor data POOL x 3

FC x 1
CKS: Speech Keyword Spotting CONV x 2 131 KB 2811 K 1582 K High
Dataset: Speech commands FC x 3

TABLE I
SPECIFICATIONS OF THE EXPERIMENTAL ENVIRONMENT

Hardware
MCU TI MSP430FR5994
Volatile memory 8KB SRAM
Non-volatile memory Cypress CY15B104Q 512KB FRAM
Accelerator TI Low-Energy Accelerator

Energy
Power supply B&K Precision 9171B
Boost converter TI BQ25504
Switch on/off voltage 2.8 V / 2.4 V
Capacitance 100 µF
Continuous power 1.65 W = 3.3 V × 0.5 A
Strong power 8 mW = 1 V × 8 mA
Weak power 4 mW = 1 V × 4 mA

ambient power strength at runtime. Table I details our experimental
environment.

We select three DNN models typically used in TinyML applica-
tions [3] and fit within the 512KB NVM. As shown in Table II,
they are respectively used for image recognition (referred to as
SQN), human activity detection (referred to as HAR), and speech
keyword spotting (referred to as CKS). These models vary in their
architectures, sizes, and number of MAC computations. In a model,
layers can have a diverse number of accelerator outputs, which
depends on not only the model architecture but also the tile size
and the types of accelerator operations used by HAWAII+ for each
layer. SQN, HAR, and CKS are respectively representatives of models
with low, medium, and high diversity among layers. To deploy these
models on the MSP430 device, the model parameters are quantized
from the 32-bit floating point representation used during pruning to a
16-bit fixed point representation (Q15.1 format), without a significant
accuracy loss.

There is no intermittent-aware pruning framework that considers
intermittency during pruning. Consequently, we choose energy-aware
pruning [18] intended for continuously-powered systems as a rel-
atively suitable comparison, since energy consumption also affects
intermittent inference latency. Note that iPrune is not developed to
compete with state-of-the-art pruning frameworks, but to evaluate the
performance gains when network pruning is optimized for intermit-
tency. Our iPrune is compared with ePrune, which attempts to prune
more on layers with higher energy consumption1 while maintaining
accuracy. The original unpruned model (denoted as Unpruned) is also
deemed a baseline. All the models are run with HAWAII+. First, we
investigate some characteristics of the models pruned by different
frameworks. We then deploy the models on the MSP430 device and
measure the inference latency under different power strengths.

B. Pruned Models

Table III shows some concerned characteristics of the respective
models pruned by ePrune and iPrune, as well as the unpruned
models. The model accuracy is evaluated by each respective dataset in

1The MSP430 device’s energy model was profiled by a set of micro-
benchmarks provided in [13].

TABLE III
CHARACTERISTICS OF THE PRUNED MODELS

Models Accuracy Model Size MACs Acc. Outputs

SQN
Unpruned 76.3% 147 KB 4442 K 1483 K
ePrune 75.5% 56 KB 1617 K 561 K
iPrune 75.5% 55 KB 1560 K 518 K

HAR
Unpruned 92.5% 28 KB 321 K 77 K
ePrune 92.7% 14 KB 183 K 56 K
iPrune 92.7% 9 KB 108 K 44 K

CKS
Unpruned 87.5% 131 KB 2811 K 1582 K
ePrune 87.6% 75 KB 1047 K 987 K
iPrune 87.7% 67 KB 1149 K 509 K

Table II. In comparison with the unpruned model, the models pruned
by ePrune and iPrune both achieve comparable accuracy, because
they use the same recoverable threshold (ϵ) to restrain accuracy loss.
Specifically, iPrune shows an accuracy loss of 0.8% for the SQN
model, but an accuracy gain of 0.2% for the HAR and CKS models
although, by design, iPrune does not improve the model accuracy.
Moreover, both ePrune and iPrune can substantially reduce the model
size, which includes all model parameters and indexing structures in
the BSR format. However, compared with ePrune, iPrune achieves
a further reduction of 36% at most and 16% on average in the
model size. The reason for the reduction is that iPrune usually selects
a smaller overall ratio (Γ) than ePrune, as the first few layers in
modern network architectures usually have more accelerator outputs
and higher sensitivity to pruning. Consequently, iPrune can perform
more pruning iterations than ePrune before the accuracy loss becomes
hard to recover.

A reduced model size is also beneficial to the decrement of MACs.
Surprisingly, although 10% more MACs are necessary for the CKS
model pruned by iPrune than by ePrune, iPrune shows a computation
reduction of 0.4% for the SQN model and even 40% for the HAR
model. As for the number of accelerator outputs, iPrune achieves a
reduction of 48% at most and 26% on average, compared with ePrune.
The reduction is more manifest with increased diversity among layers,
because iPrune will allocate more diverse per-layer pruning ratios (γ)
to different layers, with larger ratios allocated to layers having more
accelerator outputs. As a result, the layers with the largest pruning
ratios may vary with different pruning frameworks, and the pruned
models can thus be very different.

C. Inference Latency

Figure 5 shows the intermittent inference latency, defined as the
average time (in seconds) required to complete one single end-to-
end inference, for different TinyML applications under various power
strengths. The numbers above the bar plots indicate how many times
a model pruned by iPrune can run faster than the counterpart pruned
by ePrune and the unpruned model. As expected, both ePrune and
iPrune can drastically reduce the inference latency for all evaluated
models under all power strengths, showing the efficacy of neural
network pruning even for TinyML applications. Furthermore, iPrune
achieves larger inference latency reductions than ePrune across all

Continuous Strong Weak
0

300

600

900

In
fe

re
nc

e
la

te
nc

y
(s

ec
)

2.6x
2.6x

2.9x

1.1x 1.1x

1.3x

SQN

Continuous Strong Weak
0

15

30

45

1.7x
1.7x

1.6x

1.3x
1.3x

1.4x

HAR

Continuous Strong Weak
0

300

600

900

2.8x
2.9x

2.5x

1.7x
1.7x

2.0x

CKS
Unpruned ePrune iPrune

Fig. 5. Inference latency of various TinyML applications with pruned models under different power strengths.

evaluation conditions, which correlates well with the reduced model
size, the decrement of accelerator outputs, and sometimes also the
decrement of MACs, as discussed in Section IV-B.

We observe that the reduction in inference latency is more obvious
when a model has greater diversity among layers, where iPrune and
ePrune would prune more weights on different layers and gener-
ate significantly different models. Generally, the reduction remains
consistent under various power strengths. Under weaker power, the
device experiences more frequent power failures, resulting in a higher
recovery cost during an end-to-end inference, and thus higher latency.
As discussed in Section III-B, iPrune incurs less power failures by
eliminating more accelerator outputs, while both incur similar data re-
fetching latency during each progress recovery. iPrune shows a further
improvement over ePrune when the power is weak. Overall, iPrune
can speed up intermittent DNN inference of the unpruned models by
1.7 to 2.9 times, and by 1.1 to 2 times compared to ePrune, depending
on the evaluated TinyML application.

V. CONCLUSION

This paper advocates that intermittent DNN inference should
use custom models, rather than directly running existing compact
models pruned for continuously-powered systems. To demonstrate
the efficacy of this proposition, we develop iPrune, which explores
the hardware usage behavior induced for enabling intermittency, to
eliminate more accelerator outputs while balancing the inference
latency and model accuracy. The models pruned by iPrune are run
with a hardware accelerated intermittent inference engine, HAWAII+,
and deployed on a Texas Instruments MSP430 device under various
power strengths to run representative TinyML applications [3]. Our
experimental results show that an intermittent-aware pruning frame-
work, even as simple as iPrune, can significantly improve intermittent
inference latency, and the improvement remains consistent under
various power strengths.

Our iPrune framework has been made open along with
HAWAII+ [1], facilitating the development of increasingly compli-
cated intelligent applications on intermittent tiny devices2. We hope
this work brings new thinking and motivates further research on
the adaptation of various model compression techniques, like matrix
decomposition and weight sharing [17], to intermittent systems.

VI. ACKNOWLEDGEMENT

This work was supported in part by National Science and Technol-
ogy Council, Taiwan, under Grant NSTC 110-2222-E-001-003-MY3
and by Academia Sinica under Grant AS-TP-110-M07.

REFERENCES

[1] “The iPrune open project,” https://github.com/EMCLab-Sinica/iPrune.

2Interested readers may refer to a solar-powered inference system developed
with iPrune and HAWAII+ at https://youtu.be/sJgtzkPylpA.

[2] A. Anderson, A. Vasudevan, C. Keane, and D. Gregg, “High-
Performance Low-Memory Lowering: GEMM-based Algorithms for
DNN Convolution,” in Proc. of IEEE SBAC-PAD, 2020, pp. 99–106.

[3] C. R. Banbury, V. J. Reddi, M. Lam, W. Fu, A. Fazel, J. Holle-
man, X. Huang, R. Hurtado, D. Kanter, A. Lokhmotov, D. Patterson,
D. Pau, J. sun Seo, J. Sieracki, U. Thakker, M. Verhelst, and P. Yadav,
“Benchmarking TinyML Systems: Challenges and Direction,” in Proc.
of MLSys, 2020.

[4] J. Frankle and M. Carbin, “The Lottery Ticket Hypothesis: Finding
Sparse, Trainable Neural Networks,” in Proc. of ICLR, 2019.

[5] G. Gobieski, B. Lucia, and N. Beckmann, “Intelligence Beyond the
Edge: Inference on Intermittent Embedded Systems,” in Proc. of ACM
ASPLOS, 2019, pp. 199–213.

[6] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning Both Weights and
Connections for Efficient Neural Networks,” in Proc. of NIPS, 2015, pp.
1135–1143.

[7] S. Islam, J. Deng, S. Zhou, C. Pan, C. Ding, and M. Xie, “Enabling
Fast Deep Learning on Tiny Energy-Harvesting IoT Devices,” in Proc.
of IEEE/ACM DATE, 2022, pp. 921–926.

[8] S. Islam, S. Zhou, R. Ran, Y.-F. Jin, W. Wen, C. Ding, and M. Xie,
“EVE: Environmental Adaptive Neural Network Models for Low-power
Energy Harvesting System,” in Proc. of ACM/IEEE ICCAD, 2022, pp.
1–8.

[9] H. Jayakumar, K. Lee, W. S. Lee, A. Raha, Y. Kim, and V. Raghunathan,
“Powering the Internet of Things,” in Proc. of ACM ISLPED, 2014, pp.
375–380.

[10] C.-K. Kang, H. R. Mendis, C.-H. Lin, M.-S. Chen, and P.-C. Hsiu,
“Everything Leaves Footprints: Hardware Accelerated Intermittent Deep
Inference,” IEEE TCAD, vol. 39, no. 11, pp. 3479–3491, 2020.

[11] N. Liu, X. Ma, Z. Xu, Y. Wang, J. Tang, and J. Ye, “AutoCompress:
An Automatic DNN Structured Pruning Framework for Ultra-High
Compression Rates,” in Proc. of AAAI, 2020, pp. 4876–4883.

[12] H. Mao, S. Han, J. Pool, W. Li, X. Liu, Y. Wang, and W. J. Dally, “Ex-
ploring the Granularity of Sparsity in Convolutional Neural Networks,”
in Proc. of IEEE CVPRW, 2017, pp. 1927–1934.

[13] H. R. Mendis, C.-K. Kang, and P.-C. Hsiu, “Intermittent-Aware Neural
Architecture Search,” ACM TECS, vol. 20, no. 5s, pp. 1–27, 2021.

[14] J. T. C. Min and M. Motani, “DropNet: Reducing Neural Network
Complexity via Iterative Pruning,” in Proc. of ICML, 2020, pp. 9356–
9366.

[15] W. Niu, X. Ma, S. Lin, S. Wang, X. Qian, X. Lin, Y. Wang, and B. Ren,
“PatDNN: Achieving Real-Time DNN Execution on Mobile Devices
with Pattern-Based Weight Pruning,” in Proc. of ASPLOS, 2020, pp.
907–922.

[16] M. Shafique, T. Theocharides, V. J. Reddy, and B. Murmann, “TinyML:
Current Progress, Research Challenges, and Future Roadmap,” in Proc.
of ACM/IEEE DAC, 2021, pp. 1303–1306.

[17] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient Processing of
Deep Neural Networks: A Tutorial and Survey,” Proc. of the IEEE, vol.
105, no. 12, pp. 2295–2329, 2017.

[18] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing Energy-Efficient Con-
volutional Neural Networks Using Energy-Aware Pruning,” in Proc. of
IEEE CVPR, 2017, pp. 6071–6079.

[19] C.-H. Yen, H. R. Mendis, T.-W. Kuo, and P.-C. Hsiu, “Stateful Neural
Networks for Intermittent Systems,” IEEE TCAD, vol. 41, no. 11, pp.
4229–4240, 2022.

[20] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
“Scalpel: Customizing DNN pruning to the underlying hardware paral-
lelism,” in Proc. of ACM/IEEE ISCA, 2017, pp. 548–560.

