
2652 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 10, NO. 8, AUGUST 2011

Lower Bounds on the Correlation Property for
OFDM Sequences with Spectral-Null Constraints
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Abstract—Sequences with specific autocorrelation (AC) and
cross-correlation (CC) properties are crucial components in
radar and wireless communications. In this paper, we derive
the theoretical bounds on the AC and CC for OFDM sequences
with constraints of spectral nulls, e.g., the mandatory nulls on the
DC sub-carrier and guardbands in OFDM systems. The bounds
and trade-off limits are provided for the properties of sequences,
including the peak AC and CC levels, the cardinality of the
sequence set, the sequence length, and the temporal length of
the low correlation zone. We also investigate the trade-offs of
correlations among sequence sets. The presented trade-off limits
can serve as guidelines for applications where the performance
measures or design criteria are related to the peak AC and CC
levels.

Index Terms—Null-subcarrier, autocorrelation, cross-
correlation, complementary sequences, zero correlation zone,
low correlation zone.

I. INTRODUCTION

IN many communication and radar applications, it is desired
to design a set of sequences whose autocorrelation (AC)

function is impulse-like and whose cross-correlation (CC)
function is low or zero at all time delays. Such sequences are
used to perform fundamental communication functionalities,
e.g., synchronization, frequency offset estimation, and channel
estimation. In these applications, the impulse-like AC property
avoids self-interference caused by multi-paths, while the zero
CC property prevents the interference from other co-channel
users or antennas. However, as proved by Welch and Sarwate
[1], [2], the AC and CC properties for an arbitrary set of
sequences are constrained; there are trade-offs among the
maximum correlation, sequence length, and the cardinality of
the sequence set. Based on the constraints, the impulse-like
AC and zero CC at all temporal shifts for a set of sequences
are not simultaneously achievable.

In recent years, families of sequences referred to as zero-
correlation zone (ZCZ) sequences and low-correlation zone
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(LCZ) sequences have attracted numerous research interests.
Without violating the Welch bound, these sequences exhibit
zero correlation or low correlation for all time delays within
a desired temporal window. The sequences have been inves-
tigated for applications, including the spreading sequences
for quasi-synchronous code division multiple access (QS-
CDMA) systems [3], [4], and the training sequences for
single-input single-output (SISO) and multi-input multi-output
(MIMO) systems [5]–[11]. In [5], it was shown that training
sequences with the impulse-like AC property minimize the
average Cramér-Rao lower bound (CRLB) for the carrier
frequency offset (CFO) estimation in SISO frequency-selective
Rayleigh fading channels. The other work [6] investigated the
CFO estimation for MIMO cases and showed that the ZCZ
sequences minimize a channel-independent CRLB. For the
application of channel estimation, the previous studies [7]–
[11] have shown that the ZCZ sequences which have zero AC
(excluding a peak at zero correlation lag) and zero CC for all
lags within the maximum channel delay spread are the optimal
training signals to minimize the estimation variance.

Lower bounds and trade-offs for the parameters of the
ZCZ/LCZ sequence families are derived in [12]–[14], and are
also summarized in [15]. Such bounds show the fundamental
limits among the sequence parameters and serve as guidelines
for sequence design in applications. For example, to obtain
a set of 𝑀 ZCZ sequences with length 𝐿, the bounds show
that the size of the zero-correlation zone, 𝑍cz, must be no
greater than 𝐿

𝑀 . In the application using the ZCZ sequences
as the training sequences over an 𝑀 -by-𝑁 MIMO channel
with maximum channel delay spread equal to 𝜏max, it has
been shown that the least-squares channel estimator achieves
the minimum possible CRLB if 𝜏max < 𝑍cz. To achieve the
CRLB, the ZCZ sequences must be chosen with parameters
satisfying 𝐿

𝑀 > 𝜏max. In addition to the application for the
case of ZCZ sequences, the trade-off bounds are applicable for
various applications whose performance measures or design
criteria are related to the peak AC and CC levels.

Motivated by the training sequence design in MIMO sys-
tems, in this work we aim to find out the trade-offs for the
parameters of the ZCZ/LCZ sequence families when spectral-
null constraints are taken into consideration. In OFDM sys-
tems, certain sub-carriers are reserved and are prohibited to
transmit signals [16]. For example, the DC sub-carrier is
reserved, i.e., spectrally nulled, to avoid offsets in the D/A
and A/D converter in RF systems. In addition, the guardbands
at spectrum edges are reserved to prevent interferences on ad-
jacent frequency channels. Figure 1 illustrates the arrangement
of null sub-carriers in IEEE 802.11a standard. The previous
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Fig. 1. Null sub-carriers in IEEE 802.11a standard.

investigations on AC and CC properties on generic sequences
are not directly applicable to such OFDM systems due to the
constraints on OFDM spectral nulls. While the past research
works on AC and CC properties have substantially contributed
to the design and theoretical understanding of the sequences,
however, the studies on the sequences with constraints of spec-
tral nulls are rare. As a direct solution for obtaining sequences
satisfying the spectral-null constraints, it is feasible to filter
the existing bound-achieving sequences through a spectrum
mask that specifies the null constraints [8]. However, since
the original bound-achieving sequences are not optimized
under the explicit constraints of the spectral nulls, the filtered
sequences may not exhibit correlation properties as well as
the original sequences do. An intriguing question that then
follows is what the trade-off limit of the spectrum-constrained
sequence set is. Whether the filtered sequences achieve this
theoretical limit also remains to be answered. To the best of
our knowledge, this is the first work that investigates the lower
bounds and trade-offs for the maximum AC and CC of the
OFDM sequences with spectral-null constraints. The results
for both periodic and aperiodic correlation functions will be
presented.

Furthermore, we investigate the trade-off limit for the AC
and CC properties among sequence sets. Each set consists
of 𝐾 sequences transmitted over 𝐾 parallel channels. The
well-known Golay complementary sets [17] are special cases
with 𝐾 = 2 and zero aperiodic AC for all non-zero lags.
In [18], the authors proposed a two-sided pilot structure
and applied one complementary sequence set as the training
signal for SISO channel estimation. They suggested a criterion
based on the AC of the pilot sequences and showed that
the complementary sequence set minimizes both the design
criterion and the CRLB of the estimation variance. Extending
to the MIMO case, the work [19] utilized multiple uncor-
related Golay complementary sets of polyphase sequences to
estimate frequency-selective MIMO channels. We will present
the trade-off among the sequence parameters and correlation
properties given that each transmitted sequence must follow
the spectral-null constraints.

The rest of this paper is organized as follows. In Section II,
we define notations and review the properties that are used in
the subsequent discourse. Section III presents our main results
on the trade-offs for the spectrally constrained sequences for
both the periodic and aperiodic correlations. In Section IV, we
investigate the bounds and tradeoffs for a group of sequence
sets. In Section V, we demonstrate families of sequences
which achieve the derived bounds. The concluding remarks
are given in Section VI.

II. PRELIMINARIES

As introduced in Section I, two classes of correlation
properties are investigated in this work:

∙ Correlation among the sequences in a sequence set;
∙ Correlation among sequence sets.

In this section, we present fundamental definitions and prop-
erties for the correlation among sequences within a sequence
set, by mostly following the conventions in [1] and [11]. The
mathematical definition for the correlation among sequence
sets will not be given until Section IV, to avoid the confusion
between the two classes of correlation properties.

In this paper, vectors and matrices representing sequences
and sequence sets are written in boldface with matrices in
capitals, and all vectors are column vectors. The sequences
and their elements discussed in this paper are complex-valued.
The Euclidean norm of each sequence is normalized to 1. The
Hermitian and transpose operators over matrices or vectors are
denoted by (⋅)𝐻 and (⋅)𝑇 , respectively.

Definition 1: (Periodic CC) Let (𝑛)𝐿 denote 𝑛 (mod 𝐿).
The periodic CC function of two length-𝐿 sequences u =
[𝑢(0), . . . , 𝑢(𝐿−1)]𝑇 and v = [𝑣(0), . . . , 𝑣(𝐿−1)]𝑇 is defined
by

𝜃u,v(𝜏) =

𝐿−1∑
𝑖=0

𝑢((𝑖+ 𝜏)𝐿)𝑣
∗(𝑖), 𝜏 = 0, . . . , 𝐿− 1. (1)

The periodic AC function of u is 𝜃u,u(𝜏). ■
Definition 2: (Aperiodic CC) The aperiodic CC function of

two length-𝐿 sequences u and v is defined by

𝜃u,v(𝜏 ) =

⎧⎨
⎩

𝐿−𝜏−1∑
𝑖=0

𝑢(𝑖+ 𝜏 )𝑣∗(𝑖), 𝜏 = 0, . . . , 𝐿− 1;

𝐿+𝜏−1∑
𝑖=0

𝑢(𝑖)𝑣∗(𝑖− 𝜏 ), 𝜏 = −𝐿+ 1, . . . ,−1.

(2)

■
Definition 3: (Low/zero correlation zone sequence set) Let

𝒮 denote a set of 𝑀 complex-valued sequences of length 𝐿.
We consider the integer time delay 𝜏 within the maximum
range of interest 𝐿cz, i.e., ∣𝜏 ∣ < 𝐿cz. The maximum magni-
tude of the AC function, denoted by 𝜃𝑎, and the maximum
magnitude of the CC function, denoted by 𝜃𝑐, are defined as

𝜃𝑎 = max
u∈𝒮;0<∣𝜏 ∣<𝐿cz

∣𝜃u,u(𝜏)∣; (3)

𝜃𝑐 = max
u,v∈𝒮;u ∕=v;∣𝜏 ∣<𝐿cz

∣𝜃u,v(𝜏)∣. (4)

The sequence set 𝒮 is then said to be a low correlation zone
(LCZ) sequence set with parameters (𝑀,𝐿,𝐿cz, 𝜃𝑎, 𝜃𝑐). The
interval ∣𝜏 ∣ < 𝐿cz is called the low correlation zone, and 𝐿cz
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is referred to as the size of the low correlation zone. For the
special case with 𝜃𝑎 = 𝜃𝑐 = 0, the sequence set 𝒮 is said to
be a zero correlation zone (ZCZ) sequence set with parameters
(𝑀,𝐿,𝑍cz, 0, 0), where 𝑍cz ≡ 𝐿cz. ■

Similar to Definition 3, for aperiodic correlation 𝜃u,v(𝜏),
given the delay interval ∣𝜏 ∣ < 𝐿cz, we have the following
corresponding parameters: 𝜃𝑎 and 𝜃𝑐.

The following two definitions are related to the spectral-null
constrained OFDM sequences, i.e., the main subjects in this
work.

Definition 4: (Discrete Fourier Transform (DFT), Inverse-
DFT (IDFT), and OFDM sequences) We suppose that the sub-
carriers in an OFDM system are indexed by 0, 1, . . . , 𝐿 − 1.
An OFDM sequence u = [𝑢(0), . . . , 𝑢(𝐿−1)]𝑇 is synthesized
by taking 𝐿-point IDFT on a length-𝐿 frequency-domain
sequence uf = [𝑈(0), . . . , 𝑈(𝐿− 1)]:

𝑢(𝑛) =
1

𝐿

𝐿−1∑
𝑘=0

𝑈(𝑘)𝑒𝑗2𝜋
𝑘𝑛
𝐿 , (5)

where 𝑈(𝑘) is the symbol carried by the 𝑘-th sub-carrier. We
define F as the linear transformation matrix such that u =
F−1uf. The matrix F is referred to as the DFT matrix, and
the vector uf is referred to as the 𝐿-point DFT of u. ■

Definition 5: (Spectral-null constraints) Following Defini-
tion 4, we define a set Ω to specify spectral-null constraints.
The set Ω consists of all the indexes of the sub-carriers allowed
to be active. The set Ω is a subset of {0, . . . , 𝐿− 1} and is of
cardinality ∣Ω∣. The complement set Ω′ ≡ {0, . . . , 𝐿− 1} ∖Ω
specifies the indexes of the sub-carriers that must be nulled.
In other words, for a length-𝐿 OFDM sequence u, 𝑈(𝑘) is
zero for all 𝑘 ∈ Ω′. ■

The following property and definitions were introduced in
[1] and will be used in later sections.

Definition 6: Given 𝒮, a set of sequences of the same length
and the same Euclidean norm of 1, we define 𝐵𝑘(𝒮) as

𝐵𝑘(𝒮) ≡
∑

u,v∈𝒮
∣u𝐻v∣2𝑘. (6)

■
Property 1: Consider a set of length-𝐿 sequences 𝒮. The

cardinality of the set is ∣𝒮∣. Welch showed that the sum of the
inner products of any u,v pairs in 𝒮 follows the inequality
below [1]:

𝐵𝑘(𝒮) ≥ ∣𝒮∣2(
𝐿+𝑘−1

𝑘

) , (7)

where 𝑘 can be any positive integer.
Definition 7: We define 𝐷−1 as the delay operator that

cyclically shifts down the components of a vector by one place
and 𝐷−𝑖 = 𝐷−1 ⋅𝐷−1 ⋅ ⋅ ⋅𝐷−1︸ ︷︷ ︸

𝑖−𝑓𝑜𝑙𝑑

as the operator that shifts

down the components of a vector cyclically by 𝑖 places. ■

III. BOUNDS FOR OFDM SEQUENCES WITH

SPECTRAL-NULL CONSTRAINTS

In this section, we consider the trade-off among the corre-
lation properties and sequence parameters on a set of OFDM
sequences satisfying the same spectral-null constraints. To

facilitate the subsequent discussion, we let 𝒮Ω denote a set of
length-𝐿 OFDM sequences satisfying the same spectral-null
constraints specified by Ω. The cardinality of Ω is ∣Ω∣ ≤ 𝐿.

In the following, we first generalize the inequality in
Property 1 to the spectrally constrained OFDM sequences.
Utilizing this generalized inequality, we next derive the corre-
lation trade-off when the periodic correlation or the aperiodic
correlation is considered.

A. Sum of inner products inequality for spectrally constrained
sequences

The following lemma generalizes Property 1 to the case
with spectral-null constraints.

Lemma 1: (Sum of inner products inequality)
Given Ω and any OFDM-sequence set 𝒮Ω satisfying the null

constraints specified by Ω, we have

𝐵𝑘(𝒮Ω) ≥ ∣𝒮Ω∣2(∣Ω∣+𝑘−1
𝑘

) , (8)

where 𝑘 can be any positive integer.
Proof: From Definition 6, we have

𝐵𝑘(𝒮Ω) =
∑

u,v∈𝒮Ω

∣u𝐻v∣2𝑘 (9)

=
∑

u,v∈𝒮Ω

∣( 1√
𝐿
Fu)𝐻(

1√
𝐿
Fv)∣2𝑘 (10)

=
∑

u,v∈𝒮Ω

∣u𝐻
d vd∣2𝑘 ≥ ∣𝒮Ω∣2(∣Ω∣+𝑘−1

𝑘

) , (11)

where the DFT matrix F is a scaled unitary matrix, and the
unit-norm vectors ud and vd are the ∣Ω∣-by-1 subvectors that
lie in the rows of 1√

𝐿
Fu and 1√

𝐿
Fv indexed by Ω. The

derivation of (10) utilizes the property that the linear trans-
formation of 1√

𝐿
F is inner-product preserving. The inequality

(11) results from Property 1.
Hereafter we refer to (8) as sum of inner products inequality.

Property 1 can be treated as a special case of (8) with ∣Ω∣ = 𝐿,
i.e., all sub-carriers are allowed to be active.

B. Periodic correlation bounds

Here we consider the periodic correlation properties among
the sequences in 𝒮Ω. The sequence parameters and the se-
quence correlation properties must obey the theorem below.

Theorem 1: (Generalized periodic correlation bounds)
The set 𝒮Ω can be treated as an LCZ sequence set with pa-

rameters (𝑀,𝐿,𝐿cz, 𝜃𝑎, 𝜃𝑐) and 𝑀 = ∣𝒮Ω∣. These parameters
must satisfy the following inequality:

𝑝𝑎 ⋅ 𝜃2𝑘𝑎 + 𝑝𝑐 ⋅ 𝜃2𝑘𝑐 + 𝑝𝑠 ≥ (𝑀𝐿cz)
2(∣Ω∣+𝑘−1

𝑘

) , (12)

where

𝑝𝑎 = 𝑀𝐿cz(𝐿cz − 1),

𝑝𝑐 = 𝑀𝐿cz(𝑀𝐿cz − 𝐿cz), (13)

𝑝𝑠 = 𝑀𝐿cz,

and 𝑘 can be any positive integer. ■
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Proof: Similar to the approach in [1], we consider a set
ℰΩ ≡ {𝐷𝑖u ∣ ∀u ∈ 𝒮Ω, ∀𝑖 = 0, . . . , 𝐿cz − 1}, which is of
cardinality ∣ℰΩ∣ =𝑀𝐿cz. The periodic AC and CC values for
sequences in 𝒮Ω with ∣𝜏 ∣ < 𝐿cz are the inner products of the
sequence pairs from the set ℰΩ [1].

This theorem is proved by deriving the lower and upper
bounds of 𝐵𝑘(ℰΩ). By applying the sum of inner-products
inequality for spectrally constrained sequences in (8) to the
set ℰΩ, we have

𝐵𝑘(ℰΩ) ≥ (𝑀𝐿cz)
2(∣Ω∣+𝑘−1

𝑘

) . (14)

We note that (8) is applicable to ℰΩ because the DFT of
the sequence 𝐷𝑖u must meet the spectral-null constraints
specified by Ω, irrespective of the phase rotation in the
frequency domain induced by the time-shifting operator, 𝐷𝑖

[20]. The upper bound of 𝐵𝑘(ℰΩ) can be derived as follows.
We categorize the pairs (x,y) for all x,y ∈ ℰΩ into three
sets:

𝒫𝑠 = {(𝐷𝑖u, 𝐷𝑗v)∣∀u,v ∈ 𝒮Ω; u = v;

∀ 𝑖 = 𝑗, 𝑖 = 0, . . . , 𝐿cz − 1}; (15)

𝒫𝑎 = {(𝐷𝑖u, 𝐷𝑗v)∣∀u,v ∈ 𝒮Ω; u = v;

∀ 𝑖, 𝑗 = 0, . . . , 𝐿cz − 1; 𝑖 ∕= 𝑗}; (16)

𝒫𝑐 = {(𝐷𝑖u, 𝐷𝑗v)∣∀u,v ∈ 𝒮Ω; u ∕= v;

∀ 𝑖, 𝑗 = 0, . . . , 𝐿cz − 1}. (17)

The cardinalities of 𝒫𝑠, 𝒫𝑎, and 𝒫𝑐 are denoted by 𝑝𝑠, 𝑝𝑎,
and 𝑝𝑐, respectively. As a result, the sum 𝐵𝑘(ℰΩ) is upper
bounded by

𝑝𝑎 ⋅ 𝜃2𝑘𝑎 + 𝑝𝑐 ⋅ 𝜃2𝑘𝑐 + 𝑝𝑠 ≥ 𝐵𝑘(ℰΩ). (18)

Combining (14) and (18), the proof is completed.
Corollary 1: (Generalized bounds for ZCZ seqences)
For the case with 𝜃𝑎 = 𝜃𝑐 = 0, (12) becomes(∣Ω∣+ 𝑘 − 1

𝑘

)
≥𝑀𝐿cz. (19)

The trade-off bound with 𝑘 = 1 is the tightest one among all
𝑘’s due to

(∣Ω∣+𝑘−1
𝑘

) ≥ ∣Ω∣ for all positive integers 𝑘 and ∣Ω∣.
The bound ∣Ω∣ ≥ 𝑀𝐿cz implies that, to obtain a set of 𝑀
ZCZ sequences with a ZCZ size of 𝐿cz, the number of active
sub-carriers should be no less than 𝑀𝐿cz. ■

The following corollaries further show that the previous
bounds in existing literature for spectrum-unconstrained se-
quences are special cases of the bounds in Theorem 1.

Corollary 2: (Tang-Fan-Matsufuji bound)
For the special case with ∣Ω∣=𝐿, i.e., all sub-carriers can be

active, the inequality in (12) leads to the Tang-Fan-Matsufuji
bound presented in [12]. ■

Corollary 3: (Welch bound and Sarwate bound)
For the special case with ∣Ω∣=𝐿 and 𝐿cz=𝐿, the inequality

in (12) leads to the Welch bound [1] and Sarwate bound [2].
■

C. Aperiodic correlation bounds

Before presenting the aperiodic correlation bounds for the
spectral-constrained sequences, we briefly review the correla-

tion bounds for the case without spectral-null constraints. We
define z̃(u) = [𝑢(0), . . . , 𝑢(𝐿 − 1),01×(𝐿cz−1)]

𝑇 as a vector
padded by 𝐿cz − 1 zeros. The length of z is 𝐿 + 𝐿cz − 1.
Consider a set ℰ̂ ≡ {𝐷𝑖z̃(u) ∣ ∀u ∈ 𝒮, 𝑖 = 0, . . . , 𝐿cz − 1}.
The aperiodic AC and CC values for sequences in 𝒮 with
∣𝜏 ∣ < 𝐿cz are the inner products of the sequence pairs from
the set ℰ̂ [1]. By applying Property 1 to the set ℰ̂ , we have

𝐵𝑘(ℰ̂) ≥ (𝑀𝐿cz)
2(

𝐿+(𝐿cz−1)+𝑘−1
𝑘

) ; (20)

𝐵𝑘(ℰ̂) ≤ 𝑝𝑎 ⋅ 𝜃2𝑘𝑎 + 𝑝𝑐 ⋅ 𝜃2𝑘𝑐 + 𝑝𝑠 (21)

≤ (𝑝𝑎 + 𝑝𝑐)𝜃
2𝑘
max + 𝑝𝑠, (22)

where 𝑝𝑎, 𝑝𝑐, and 𝑝𝑠 are given in (13), and 𝜃max =
max{𝜃𝑎, 𝜃𝑐}. Combining the inequalities (20) and (22) leads
to the aperiodic correlation bound for LCZ sequences pre-
sented in [13].

In contrast to the above derivation, to further take the
spectral-null constraints into account, we intend to construct
a 2𝐿-by-1 vector z(u) as:

z(u) = [𝑢0, . . . , 𝑢𝐿−1,01×𝐿]
𝑇 , (23)

where 𝐿 zeros are padded. Consider a set ℰ̂Ω ≡
{𝐷𝑖z(u) ∣ ∀u ∈ 𝒮Ω, 𝑖 = 0, . . . , 𝐿cz − 1}. The AC and CC
values for ∣𝜏 ∣ < 𝐿cz are the inner products of the sequence
pairs from the set ℰ̂Ω. The 𝑚-th element of the 2𝐿-point DFT
of z(u) can be expressed as

𝑍u(𝑚) =
𝐿−1∑
𝑛=0

𝑢(𝑛)𝑒−𝑗2𝜋𝑚𝑛
2𝐿 . (24)

It is clear that

𝑍u(2𝑚) =

𝐿−1∑
𝑛=0

𝑢(𝑛)𝑒−𝑗2𝜋 𝑚𝑛
𝐿 , (25)

which is the 𝐿-point DFT of the vector u. Therefore, the 2𝐿-
point DFT of any sequence in ℰ̂Ω has at least 𝐿 − ∣Ω∣ zeros
at the indexes specified by 2𝑚 for all 𝑚 ∈ Ω′. Consequently,
the sum of inner product inequality (8) can be directly applied
to ℰ̂Ω, and we have

𝐵𝑘(ℰ̂Ω) ≥ (𝑀𝐿cz)
2(∣Ω∣+𝐿+𝑘−1

𝑘

) . (26)

Compared to the lower bound in (20), which was derived
without considering the spectral nulls, the lower bound in (26)
is tighter for ∣Ω∣ < (𝐿cz − 1). On the other hand, the upper
bound of 𝐵𝑘(ℰ̂Ω) is given by

𝐵𝑘(ℰ̂Ω) ≤ 𝑝𝑎 ⋅ 𝜃2𝑘𝑎 + 𝑝𝑐 ⋅ 𝜃2𝑘𝑐 + 𝑝𝑠. (27)

By combining (20), (26), and (27), we have the following
generalized bounds on the aperiodic correlation properties for
spectrally constrained sequences.

Theorem 2: (Generalized aperiodic correlation bounds)
The set 𝒮Ω can be treated as an LCZ sequence set with

sequence parameters (𝑀,𝐿,𝐿cz, 𝜃𝑎, 𝜃𝑐) and𝑀 = ∣𝒮Ω∣. These
parameters must satisfy the following inequality:

𝑝𝑎 ⋅ 𝜃2𝑘𝑎 + 𝑝𝑐 ⋅ 𝜃2𝑘𝑐 + 𝑝𝑠 ≥ (𝑀𝐿cz)
2

min{(∣Ω∣+𝐿+𝑘−1
𝑘

)
,
(
𝐿+𝐿cz+𝑘−2

𝑘

)} ,
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where 𝑝𝑎, 𝑝𝑐, and 𝑝𝑠 are given in (13), and 𝑘 can be any
positive integer.

The relationship between the previous bounds in [1], [2],
[13] and our generalized bounds for the aperiodic correlation
is similar to that stated in corollaries 2 and 3 for the periodic
case.

IV. CORRELATION BOUNDS FOR SEQUENCE SETS

TRANSMITTED OVER PARALLEL CHANNELS

In [1], Welch had studied the theoretical bounds on the
aperiodic correlation properties of sequence sets transmitted
over multi-channels. Suppose 𝐾 sequences are transmitted
through 𝐾 separate channels. Each sequence is of length
𝐿. We denote the set of the 𝐾 sequences by a 𝐾-by-𝐿
matrix, U, whose 𝑖-th row vector is the 𝑖-th sequence. The
receiving terminal matches these signals by the sequences
of another sequence set V and sums the matched outputs.
The sum is said to be the correlation of the two sets U
and V. This concept was first introduced by Golay [17] for
𝐾 = 2 and was generalized to the cases with 𝐾 > 2 in [21].
More precisely, the aperiodic correlation between two sets,
U = [u0,u1, . . . ,u𝐾−1]

𝑇 and V = [v0,v1, . . . ,v𝐾−1]
𝑇 , is

defined as

Θ̂U,V(𝜏) =

𝐾−1∑
𝑖=0

𝜃u𝑖v𝑖(𝜏). (28)

The periodic correlation between two sets U and V is defined
as

ΘU,V(𝜏) =
𝐾−1∑
𝑖=0

𝜃u𝑖v𝑖(𝜏). (29)

In this section, we aim to find the trade-off limit for the
multi-channel periodic/aperiodic correlation properties under
the spectral-null constraints. We let Ω indicate the specific sub-
carriers allowed to be active, and every sequence follows the
same spectral-null constraints. Suppose there are𝑀 spectrum-
constrained sequence sets. Each set, represented by a 𝐾-by-𝐿
matrix, contains 𝐾 sequences. All the sequences are of length
𝐿 and of Euclidean-norm of 1. We define a super set 𝒮mul

Ω

consisting of the 𝑀 sequence sets. Considering the integer
time delay 𝜏 within the maximum range of interest 𝐿cz, i.e.,
∣𝜏 ∣ < 𝐿cz, we define the maximum magnitude of the periodic
AC function, denoted by Θ𝑎, and the maximum magnitude of
the periodic CC function, denoted by Θ𝑐, as

Θ𝑎 = max
U∈𝒮mul

Ω ;0<∣𝜏 ∣<𝐿cz

∣ΘU,U(𝜏)∣; (30)

Θ𝑐 = max
U,V∈𝒮;U∕=V;∣𝜏 ∣<𝐿cz

∣𝜃U,V(𝜏)∣. (31)

Similarly, for aperiodic correlation Θ̂U,V(𝜏), given the delay
interval ∣𝜏 ∣ < 𝐿cz, we have the corresponding parameters, Θ̂𝑎

and Θ̂𝑐. The next theorem presents the bounds for the cor-
relation among the spectral-constrained sequence sets within
𝒮mul
Ω .
Theorem 3: (Multi-channel correlation bounds)
For the super set 𝒮mul

Ω with cardinality ∣𝒮mul
Ω ∣ = 𝑀 , the

inequalities below holds:

𝑝𝑎 ⋅Θ2𝑘
𝑎 + 𝑝𝑐 ⋅Θ2𝑘

𝑐 + 𝑝𝑠 ≥ (𝑀𝐿cz)
2(

𝐾∣Ω∣+𝑘−1
𝑘

) ; (32)

𝑝𝑎 ⋅ Θ̂2𝑘
𝑎 + 𝑝𝑐 ⋅ Θ̂2𝑘

𝑐 + 𝑝𝑠

≥ (𝑀𝐿cz)
2

min{(𝐾(𝐿+∣Ω∣)+𝑘−1
𝑘

)
,
(
𝐾(𝐿+𝐿cz−1)+𝑘−1

𝑘

)} , (33)

where 𝑝𝑎, 𝑝𝑐, and 𝑝𝑠 are given in (13), and 𝑘 can be any
positive integer.

Proof: We first derive the bounds for the periodic case.
In order to apply the sum inner product inequality for vectors
to derive the trade-off limit, we follow Welch’s method that
vectorizes the matrices representing the sequence sets [1].
Given a sequence set U, we define a vector s(U) formed
by stacking the column vectors of U as

s(U) = [𝑢0(0) ⋅ ⋅ ⋅𝑢𝐾−1(0), 𝑢0(1) ⋅ ⋅ ⋅𝑢𝐾−1(1), ⋅ ⋅ ⋅
⋅ ⋅ ⋅ , 𝑢0(𝐿− 1) ⋅ ⋅ ⋅ 𝑢𝐾−1(𝐿− 1)]𝑇 . (34)

From (34), the periodic CC between U and V can be
expressed as

∣ΘU,V(𝜏)∣ = ∣[s(V)]𝐻 [𝐷𝜏𝐾s(U)]∣. (35)

Consider a set ℰmul
Ω ≡ {𝐷𝑖𝐾s(U) ∣ ∀U ∈ 𝒮mul

Ω , 𝑖 =
0, . . . , 𝐿cz − 1}. The cardinality of ℰmul

Ω is ∣ℰmul
Ω ∣ = 𝑀𝐿cz.

It then follows that the periodic AC and CC values among the
sequence sets in 𝒮mul

Ω with ∣𝜏 ∣ < 𝐿cz are the inner products
of the sequence pairs in the set ℰmul

Ω .
It can be proved that the𝐾𝐿-point DFT of each sequence in

ℰmul
Ω has at least 𝐾(𝐿−∣Ω∣) zeros at the indexes 𝑘’s satisfying

(𝑘)𝐿 ∈ Ω′. The proof is detailed in Appendix. Applying the
sum of inner product inequality to ℰmul

Ω and combining the
upper bound and lower bound of ℬ𝑘(ℰmul

Ω ) lead to the result
in (32).

Next we prove the bounds for the aperiodic case. We
construct a 2𝐾𝐿-by-1 vector z(U) as [(s(U))𝑇 ,01×𝐾𝐿]

𝑇 ,
where 𝐾𝐿 zeros are padded. Consider a set ℰ̂mul

Ω ≡
{𝐷𝑖𝐾z(U) ∣ ∀U ∈ 𝒮mul

Ω , 𝑖 = 0, . . . , 𝐿cz − 1}. It then follows
that the aperiodic AC and CC values for sequence sets in
𝒮mul
Ω with ∣𝜏 ∣ < 𝐿cz are the inner products of the sequence

pairs from the set ℰ̂mul
Ω . It can also be proved that the 2𝐾𝐿-

point DFT of each sequence in ℰ̂mul
Ω has at least 𝐾(𝐿− ∣Ω∣)

zeros at the indexes 2𝑘’s satisfying (𝑘)𝐿 ∈ Ω′. We leave the
proof also in Appendix. Applying the sum of inner product
inequality (8) over ℰ̂mul

Ω and following the similar techniques
presented in Section III-C complete the proof.

It can be easily verified that Theorem 1 and Theorem 2
arise as special cases in Theorem 3 with 𝐾 = 1.

V. EXAMPLES OF BOUND-ACHIEVING SEQUENCES

In this section, we present two families of ZCZ/LCZ
sequences achieving the derived bounds under spectral-null
constraints. The sequences are generated by filtering the
periodic ZCZ sequences proposed in [11], which achieve the
original Welch bound in [1] and have zero CC for all delays,
through the spectral-null mask.

We first construct 𝑀 ZCZ sequences, denoted by
{x0, . . . ,x𝑀−1}, in the frequency domain. Each of them is of
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Fig. 2. ZCZ sequences in the frequency domain.

length 𝐿 = 𝛼𝑀 with a positive integer 𝛼. The 𝐿-point DFT
of x𝑖, denoted by [𝑋𝑖(0), . . . , 𝑋𝑖(𝑘), . . . , 𝑋𝑖(𝐿− 1)]𝑇 , is set
according to the rule below [11]:

𝑋𝑖(𝑘) =

√
𝐿

𝛼
⋅
𝛼−1∑
𝑤=0

𝛿(𝑘 − (𝑀𝑤 + 𝑖)), (36)

where 𝛿(⋅) is the Kronecker delta function. For each sequence,
equal power is assigned at equally-spaced sub-carriers with
spacing 𝑀 . Figure 2 illustrates these sequences in the fre-
quency domain for the case of 𝑀 = 4 and 𝛼 = 16. It can
be proved that such sequences exhibit impulse-like periodic
AC and zero periodic CC for all correlation lags within a
zero-correlation zone of size 𝛼 [11]. Based on this type of
ZCZ sequences, we present two families of bound-achieving
sequence sets under spectral-null constraints in the following.

A. Bound-achieving sequences constrained by equally spaced
nulls

Following the construction of ZCZ sequences above, we
note that in the scenario with 𝛼 equally spaced spectral-nulls,
only one of the generated ZCZ sequences violates the spectral-
null constraints. The other 𝑀 − 1 sequences satisfying the
constraints form a ZCZ sequence set with parameters (𝑀 −
1, 𝐿, 𝑍cz, 0, 0), where 𝑍cz = 𝛼. On the other hand, given 𝜃𝑎 =
𝜃𝑐 = 0, the proposed tradeoff bound in Theorem 1 for a set
of 𝑀 − 1 sequences becomes 𝑍cz ≤ 𝐿−𝛼

𝑀−1 = 𝛼. Therefore,
the derived bound further shows that the set of the 𝑀 − 1
sequences satisfying the spectral-null constraints is a bound-
achieving ZCZ sequence set.

B. Bound-achieving sequences constrained by successive nulls

We consider another scenario with 𝑀 successive spec-
tral nulls. We will construct a set of 𝑀 sequences,
{y0, . . . ,y𝑀−1}, having zero periodic cross-correlation. Each
sequence is of length 𝐿 = 𝑀𝐿cz. As will be shown, its
maximum AC magnitude is minimized within an LCZ size
𝐿cz.
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Fig. 3. Bound-achieving sequences in the frequency domain. The first 𝑀
sub-carriers (with 𝑀=4) of each sequence are restricted to be nulled.

Similar to Section V-A, we construct these sequences
in the frequency domain. Let {(𝜎 − 𝑀)𝐿, . . . , (𝜎 − 1)𝐿}
denote the set of null sub-carrier indexes, where 𝜎 can
be arbitrary integer. The 𝐿-point DFT of y𝑖, denoted by
[𝑌𝑖(0), . . . , 𝑌𝑖(𝑘), . . . , 𝑌𝑖(𝐿 − 1)]𝑇 , is given by:

𝑌𝑖(𝑘) =

√
𝐿

𝐿cz − 1
⋅
𝐿cz−2∑
𝑤=0

𝛿(𝑘 − (𝑀𝑤 + 𝜎 + 𝑖)𝐿). (37)

Figure 3 illustrates the𝑀 sequences in the frequency domain.
For each sequence y𝑖, 𝐿cz−1 sub-carriers are made active and
allocated with equal power. Following Parseval’s theorem, we
have

𝐿−1∑
𝑛=0

∣𝑦𝑖(𝑛)∣2 =
1

𝐿

𝐿−1∑
𝑘=0

∣𝑌𝑖(𝑘)∣2. (38)

It can be verified that the generated sequences satisfy the basic
assumption ∣y𝐻

𝑖 y𝑖∣ = 1.
The sequences generated by the rule in (37) are of zero

periodic cross-correlation because 𝑌𝑖(𝑘)𝑌 ∗
𝑗 (𝑘) is zero for all

𝑘 given 𝑖 ∕= 𝑗[11]. The magnitude of the periodic AC function
𝜃y𝑖,y𝑖(𝜏) can be evaluated by

∣𝜃y𝑖,y𝑖(𝜏)∣ =

∣∣∣∣∣ 1𝐿
𝐿−1∑
𝑘=0

∣𝑌𝑖(𝑘)∣2𝑒𝑗2𝜋 𝑘𝜏
𝐿

∣∣∣∣∣ (39)

=
1

𝐿cz − 1

∣∣∣∣∣
𝐿cz−2∑
𝑘=0

𝑒𝑗2𝜋
𝑘𝜏
𝐿cz

∣∣∣∣∣ (40)

=

{
1, if 𝜏 = 𝑚𝐿cz, 𝑚 ∈ ℤ;

1
𝐿cz−1 , otherwise. (41)

Equation (39) can be proved by the well-known fact
𝜃y𝑖,y𝑖(𝜏) = 𝑦𝑖(𝜏)⊛𝑦∗𝑖 (−𝜏), where ⊛ is a circular convolution
operator. It can then be verified that such a set of sequences
achieves the bound in (12) for 𝑘 = 1, with 𝜃𝑎 = 1

𝐿cz−1 and
𝜃𝑐 = 0.

We note that the general achievability of the proposed
bounds is neither claimed nor proven in this paper. The
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sequence sets presented in this section are examples that
achieve the proposed bounds. The existence and design of
bound-achieving sequence sets with spectral constraints are
open issues and left as future works.

C. Discussion on the performance of using bound-achieving
sequences

At the end of this section, we rephrase the meaning of
“bound-achieving" and discuss the performance of the spec-
trally constrained OFDM sequences meeting the proposed
bound in practical applications. In general, the proposed
bound for spectral-constrained LCZ sequences is a necessary
condition for the existence of the LCZ sequences, in terms
of the sequence parameters, maximum correlation levels, and
the spectral constraints. Nevertheless, the “bound-achieving"
characteristic does not directly imply the optimal performance
in applications, as the optimality of performance is highly
dependent on the criterion of interest in the applications.

Specially, for the applications investigated in [7]–[11], [18],
[19], it has been proved that, to achieve the CRLB, the
training sequences should be the ZCZ sequences whose zero-
correlation zone is of size 𝑍cz greater than the maximum
channel delay spread 𝜏max. Meanwhile, the proposed bound
provides a necessary condition for the existence of the desired
ZCZ sequences with 𝑍cz > 𝜏max. If there are bound-achieving
ZCZ sequences that satisfy the required spectral-null con-
straints and 𝑍cz > 𝜏max, the sequences are the optimal training
sequences in the sense of achieving the CRLB. Furthermore,
the bound-achieving characteristic implies that if we add more
spectral-null constraints, or request more ZCZ sequences or a
larger zero-correlation zone, it is impossible to maintain the
ZCZ property to achieve the CRLB.

On the other hand, the bound-achieving LCZ sequences,
whose maximum AC or CC magnitude within the low-
correlation zone is greater than zero, are not guaranteed to
be optimal in the applications studied in [7]–[11], [18], [19].
Further proof is needed to verify whether or not these bound-
achieving sequences can achieve the optimal performance,
although the performance of these estimators may be reason-
ably good under the condition that the maximal AC and CC
levels are quite small. The exact estimation variance can be
calculated by the formula provided in [7]–[11], [18], [19].

VI. CONCLUSION AND FUTURE WORK

In this paper, we provide bounds on the sequence cor-
relations, the cardinality of the sequence set, the sequence
length, and the temporal length of the low correlation zone, for
OFDM sequences constrained by spectral nulls. The bounds
on both periodic correlations and aperiodic correlations are
presented. The presented bounds and trade-offs can serve as
guidelines for sequence design in applications under spectral-
null constraints. Exemplary sequences achieving the derived
bounds are demonstrated. The open issues and future works
include the general achievability of the derived bounds and the
synthesis of sequence sets achieving or close to the bounds.

APPENDIX A
ZEROS IN THE DFT OF s(U) AND z(U)

We let 𝑊𝑁 = 𝑒𝑗
2𝜋
𝑁 be a primitive 𝑁 -th root of unity where

𝑁 is a positive integer. The 𝐾𝐿-point DFT of s(U), denoted
by [𝑆(0), 𝑆(1), . . . , 𝑆(𝐾𝐿− 1)]𝑇 , is computed by

𝑆(𝑘) =

𝐾𝐿−1∑
𝑛=0

𝑠(𝑛)𝑊−𝑘𝑛
𝐾𝐿 (A.1)

=

𝐿−1∑
𝑛=0

𝑢0(𝑛)𝑊
−𝑘𝑛𝐾
𝐾𝐿 +

𝐿−1∑
𝑛=0

𝑢1(𝑛)𝑊
−𝑘(𝑛𝐾+1)
𝐾𝐿

+ ⋅ ⋅ ⋅+
𝐿−1∑
𝑛=0

𝑢𝐾−1(𝑛)𝑊
−𝑘(𝑛𝐾+𝐾−1)
𝐾𝐿 (A.2)

=

𝐾−1∑
𝑚=0

𝑊−𝑚𝑘
𝐾𝐿

𝐿−1∑
𝑛=0

𝑢𝑚(𝑛)𝑊−𝑘𝑛
𝐿 (A.3)

=

𝐾−1∑
𝑚=0

𝑊−𝑚𝑘
𝐾𝐿 𝑈𝑚((𝑘)𝐿), (A.4)

where [𝑈𝑚(0), . . . , 𝑈𝑚(𝑘), . . . , 𝑈𝑚(𝐿−1)] is the 𝐿-point DFT
of u𝑚. From (A.4) and the assumption that, for all 𝑚, 𝑈𝑚(𝑘)
is zero for all 𝑘 ∈ Ω′, we conclude that 𝑆((𝑘)𝐿) = 0 for all
(𝑘)𝐿 ∈ Ω′. Thus, the 𝐾𝐿-point DFT of s(U) must have at
least𝐾(𝐿−∣Ω∣) zeros, at the indexes 𝑘’s satisfying (𝑘)𝐿 ∈ Ω′.

For the vector z(U), a zero-padded version of s(U) with
a doubled sequence length, its 2𝐾𝐿-DFT must have at least
𝐾(𝐿−∣Ω∣) zeros, at the indexes specified by 2𝑘 for all (𝑘)𝐿 ∈
Ω′. We have proved this characteristic in (25) in Section III-C.

REFERENCES

[1] L. R. Welch, “Lower bounds on the maximum cross correlation of
signals," IEEE Trans. Inf. Theory, vol. 20, pp. 396-399, May 1974.

[2] D. V. Sarwate, “Bounds on cross correlation and autocorrelation of
sequences," IEEE Trans. Inf. Theory, vol. 25, pp. 720-724, Nov. 1979.

[3] X. Deng and P. Fan, “Spreading sequence sets with zero correlation
zone," Electron. Lett., vol. 36, pp. 993-994, May 2000.

[4] S. Park, S. Park, I. Song, and N. Suehiro, “Multiple-access interference
reduction for QS-CDMA systems with a novel class of polyphase
sequences," IEEE Trans. Inf. Theory, vol. 46, pp. 1448-1458, July 2000.

[5] H. Minn, X. Fu, and V. Bhargava, “Optimal periodic training signal
for frequency offset estimation in frequency-selective fading channels,"
IEEE Trans. Commun., vol. 54, pp. 1081-1096, June 2006.

[6] M. Ghogho and A. Swami, “Training design for multipath channel
and frequency-offset estimation in MIMO systems," IEEE Trans. Signal
Process., vol. 54, pp. 3957-3965, Oct. 2006.

[7] S. Crozier, D. Falconer, and S. Mahmoud, “Least sum of squared errors
(LSSE) channel estimation," in IEE Proc.-F, vol. 138, pp. 371-378, Aug.
1991.

[8] E. Larsson and J. Li, “Preamble design for multiple-antenna OFDM-
based WLANs with null subcarriers," IEEE Signal Process. Lett., vol. 8,
pp. 285-288, Nov. 2001.

[9] E. Larsson and P. Stoica, Space-Time Block Coding for Wireless Com-
munications. Cambridge University Press, 2003.

[10] A. Van Zelst and T. Schenk, “Implementation of a MIMO OFDM-based
wireless LAN system," IEEE Trans. Signal Process., vol. 52, pp. 483-
494, Feb. 2004.

[11] L. Tsai and Y. Su, “Transform domain approach for sequence design
and its applications," IEEE J. Sel. Areas Commun., vol. 24, pp. 75-83,
Jan. 2006.

[12] X. Tang, P. Fan, and S. Matsufuji, “Lower bounds on correlation of
spreading sequence set with low or zero correlation zone," Electron.
Lett., vol. 36, pp. 551-552, Mar. 2000.

[13] X. Tang and P. Fan, “Bounds on aperiodic and odd correlations of
spreading sequences with low and zero correlation zone," Electron. Lett.,
vol. 37, pp. 1201-1203, Sep. 2001.



TSAI et al.: LOWER BOUNDS ON THE CORRELATION PROPERTY FOR OFDM SEQUENCES WITH SPECTRAL-NULL CONSTRAINTS 2659

[14] D. Peng and P. Fan, “Generalised Sarwate bounds on periodic auto-
correlations and cross-correlations of binary sequences," Electron. Lett.,
vol. 38, pp. 1521-1523, Nov. 2002.

[15] P. Fan, “Spreading sequence design and theoretical limits for quasisyn-
chronous CDMA systems," EURASIP J. Wireless Commun. Netw., no. 1,
pp. 19-31, 2004.

[16] “IEEE Standard for Information Technology–Telecommunications and
Information Exchange Between Systems-Local and Metropolitan Area
Networks-Specific Requirements-Part 11: Wireless LAN Medium Ac-
cess Control (MAC) and Physical Layer (PHY) Specifications," IEEE
Std 802.11, 1997.

[17] M. Golay, “Complementary series," IRE Trans. Inf. Theory, vol. 7,
pp. 82-87, Apr. 1961.

[18] P. Spasojevic and C. Georghiades, “Complementary sequences for ISI
channel estimation," IEEE Trans. Inf. Theory, vol. 47, pp. 1145-1152,
Mar. 2001.

[19] S. Wang and A. Abdi, “MIMO ISI channel estimation using uncorrelated
Golay complementary sets of polyphase sequences," IEEE Trans. Veh.
Technol., vol. 56, pp. 3024-3039, Sep. 2007.

[20] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing.
Prentice Hall Press, 2009.

[21] C. Tseng and C. Liu, “Complementary sets of sequences," IEEE Trans.
Inf. Theory, vol. 18, pp. 644-652, Sep. 1972.

Lung-Sheng Tsai (S’05) received the B.S. degree
in Electrical Engineering from the National Tsing
Hua University, Taiwan, in 2002, the M.S. degree in
Communication Engineering from National Chiao
Tung University, Taiwan, in 2004, and the Ph.D.
degree in Graduate Institute of Communication En-
gineering from National Taiwan University, in 2010.
He is currently with the Research Center for In-
formation Technology Innovation, Academia Sinica,
Taiwan. His research interests include multi-antenna
systems and communication sequences design.

Wei-Ho Chung (M’11) was born in Kaohsiung,
Taiwan, in 1978. He received the B.Sc. and M.Sc.
degrees in Electrical Engineering from National
Taiwan University, Taipei City, Taiwan, in 2000
and 2002 respectively, and the Ph.D. degree in
Electrical Engineering Department at University of
California, Los Angeles, USA, in 2009. From 2002
to 2005, he was a system engineer at ChungHwa
TeleCommunications Company. From 2007 to 2009,
he was a Teaching Assistant at UCLA. In 2008, he
worked on CDMA systems in Qualcomm Inc. Since

January 2010, Dr. Chung has been a faculty member holding the position as
an assistant research fellow in Research Center for Information Technology
Innovation, Academia Sinica, Taiwan. His research interests include wireless
communications, signal processing, statistical detection and estimation theory,
and networks. Dr. Chung received the Taiwan Merit Scholarship, sponsored
by the National Science Council of Taiwan, from 2005 to 2009.

Da-shan Shiu (M’08) received the Ph.D. degree
in Electrical Engineering and Computer Sciences
from University of California, Berkeley in 1999 and
B.S.E.E. degree from National Taiwan University
in 1993, respectively. From 1999 until 2004, he
was with Qualcomm. He joined the Department
of Electrical Engineering and the Graduate Insti-
tute of Communication Engineering as an Assistant
Professor in the fall of 2004 and is currently an
Associate Professor. His current research interests
include smart antenna systems, MIMO space-time

signal processing, next generation wireless network, and mesh wireless
network.


