
6284 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016

Novel Polynomial Basis With Fast Fourier
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Abstract— In this paper, we present a fast Fourier transform
algorithm over extension binary fields, where the polynomial is
represented in a non-standard basis. The proposed Fourier-like
transform requires O(h lg(h)) field operations, where h is the
number of evaluation points. Based on the proposed Fourier-like
algorithm, we then develop the encoding/decoding algorithms
for (n = 2m, k) Reed–Solomon erasure codes. The proposed
encoding/erasure decoding algorithm requires O(n lg(n)), in both
additive and multiplicative complexities. As the complexity lead-
ing factor is small, the proposed algorithms are advantageous
in practical applications. Finally, the approaches to convert
the basis between the monomial basis and the new basis are
proposed.

Index Terms— Fast Fourier transform, polynomial basis, finite
field, Reed-Solomon code.

I. INTRODUCTION

LET Fq , q = pm , denote an extension finite field of
dimension m over Fp. A polynomial a(x) ∈ Fq[x]

of degree less than h < q in the monomial basis is
written by

a(x) = a0 + a1x + a2x2 + · · · + ah−1xh−1,

with each ai ∈ Fq . Given a set of evaluation points
E = {ei }h−1

i=0 ,∀ei ∈ Fq , the multipoint polynomial evaluation
is the task of evaluating a(x) at E . A primitive algorithm
requires O(h2) field operations of Fq . However, the task
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can be completed faster if we carefully choose the set of
evaluation points. Assume h is a divisor of q−1. The discrete
Fourier transform (DFT) is the algorithm of evaluating a(x) at
E = {ωi }h−1

i=0 , where ω is the h-th root of unity. We refer to this
class of DFTs as multiplicative DFT, as those evaluation points
form a multiplicative group. Fast Fourier transforms (FFT)
are the algorithms for performing DFT with lower arithmetic
complexities.

FFT over finite fields is a traditional algebra problem.
Specifically, a significant application of FFTs over finite
fields is the coding algorithms of algebraic codes such as
Reed-Solomon (RS) codes. As the codes are usually con-
structed over extension binary fields F2m , m ∈ N, FFTs over
extension binary fields naturally receive higher attentions than
over other fields. In 1971, Pollard [1] showed that if q − 1 is
a smooth number (the number that can be factored into small
primes), there exists an FFT algorithm with the complexity
O(h lg(h)). However, as 2m − 1 usually cannot be factorized
into the product of small primes, this approach is inapplicable
for fileds F2m . Currently, the asymptotically fastest approach
is based on Bluestein’s FFT [2] (or Rader’s FFT), and the con-
volution in the algorithm is computed by Schönhage’s polyno-
mial multiplication [3]. This requires O(h lg(h) lg lg(h)) with
huge leading constant.

If the set of evaluation points E forms an additive group,
the transform is termed as additive DFT. Additive FFT over
fields was firstly invented by Wang and Zhu [4] in 1988.
Later, the faster approaches were proposed by [5] and [6].
Currently, the asymptotically fastest approach is proposed by
Gao and Mateer [7]. They gave an O(h lg2(h)) approach for
arbitrary m, as well as an O(h lg(h) lg lg(h)) approach for m
a power of two.

The traditional definition of FFTs, as well as most poly-
nomial arithmetic, presumes that the input polynomials are
written in the monomial basis. An important property of the
monomial basis is the total order in degrees. In particular, for a
polynomial basis G(x) = {g0(x), g1(x), . . . , gn−1(x)} ordered
by degrees, deg(gi(x)) ≤ deg(gi+1(x)), we define that G(x)
is with full degree when deg(gi (x)) = i . This basis possesses
a property that, for a polynomial

b(x) =
n−1∑

i=0

bi gi(x),
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we have bi = 0 for i > deg(b(x)). Thus, the degree of b(x)
can be determined by using O(n).

In this paper, a full-degree basis is introduced for additive
DFTs. In the first part of this paper, an O(h lg(h)) additive
Fourier-like transform is proposed, where the basis to represent
the input polynomial is nonstandard. The existing works on
FFTs over extension binary fields are tabulated in Table II.
To show the applicability of the new basis, the second part of
this paper applies the new basis to the (n, k) RS erasure codes
over F2m , resulting in an O(n lg(k)) encoding algorithm, and
an O(n lg(n)) erasure decoding algorithm.

In the final part of this paper, the basis conversion algo-
rithms for the polynomials are proposed. For arbitrary m, two
approaches are devised. Both approaches use O(n lg2(n)) field
operations. For m a power of two, a faster approach requiring
O(n lg(n) lg lg(n)) is presented. Further, we also generalize the
new basis to over Fpm . With the new basis, the complexity
of the proposed Fourier-like transform is O(n · p logp(n)).
By letting p a constant, the complexity can be written as
O(n log(n)). Also Notice that the new basis can also be used to
improve the complexities of RS error decoding algorithms [8].

The rest of this paper is organized as follows.
Section II gives the definition of the new polynomial basis.
In Section III, a Fourier-like algorithm is proposed based
on the new basis. Section IV presents the fast approach to
perform the formal derivative in the new basis. Based on
above results, Section V presents the encoding and erasure
decoding for Reed-Solomon codes. The discussions are placed
in Section VI. SectionVII reviews some related literature. The
basis conversion algorithms are presented in Section VIII.
Section IX concludes this work. The generalization of the
new basis over Fpm is addressed in Appendix.

II. POLYNOMIAL BASIS

This section introduces a new polynomial basis.
Section II-A reviews the definition of subspace polynomials
and the polynomial basis is introduced in Section II-B.

A. Subspace Polynomial

Let Fpm denote an binary extension field. Let

vm = (v0, v1, . . . , vm−1) (1)

denote a basis of Fpm , whereas all vi ∈ Fpm are linearly
independent over Fp . Let {ωi }p

m−1
i=0 denote the set of elements

of Fpm . Each ωi is defined as

ωi = i0v0 + i1v1 + · · · + im−1vm−1, (2)

where i j ∈ Fp , and

i = i0 + i1 · p + i2 · p2 + · · · + im−1 · pm−1.

Let

Vk = Span(v0, v1, . . . , vk−1) = {
k−1∑

j=0

a j · v j |a j ∈ Fp} (3)

denote a k-dimensional subspace in Fpm , where k ≤ m. These
Vk form a strictly ascending chain as

{0} = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vm = Fpm .

The subspace polynomial [5], [7] is defined as

Definition 1 (Subspace Polynomial [5], [7]): Given a
subspace Vk of Fpm , the subspace polynomial is defined as

sVk
k (x) =

∏

w∈Vk

(x − w). (4)

Clearly, deg(sVk
k (x)) = pk.

The subspace polynomial depends on the chosen sub-
space of the field. If not specified, throughout this paper,
sk(x) = sVk

k (x) denotes the subspace polynomial to the
subspace Vk defined in (3).

The properties of subspace polynomials are given as
follows.

Lemma 1 [5], [6]: The subspace polynomial can be written
as a recursive form:

s0(x) = x;
s j (x) =

∏

i∈Fp

s j−1(x − i · v j−1) j = 1, 2, . . . , m. (5)

Lemma 2 [6], [7], [9], [10]: sk(x) is an Fp-linearlized
polynomial for which
(1). sk(x) is a sparse polynomial with no more than k + 1
non-zero terms. That is,

sk(x) =
k∑

i=0

sk,i x pi
, (6)

where sk,i ∈ Fpm for 0 ≤ i ≤ k.
(2).

sk(x + y) = sk(x)+ sk(y), ∀x, y ∈ Fpm . (7)

(3). Given a basis v j = (v0, v1, . . . , v j−1) of a subspace

Vj = Span(v j ),

a subspace W j−1 is defined as

W j−1 = Span(w j−1),

where

w j−1 = (sV1
1 (v1), sV1

1 (v2), . . . , sV1
1 (v j−1)),

and

sV1
1 (x) = x(x − v0).

Then, the subspace polynomials for Vj and W j−1 satisfy

s
Vj
j (x) = s

W j−1
j−1 (sV1

1 (x)). (8)

B. Polynomial Basis

In this subsection we only consider the case p = 2, and the
general case for arbitrary prime p is given in Appendix D.
Based on the subspace polynomials, a polynomial basis is
defined as

X
vm = (

Xvm
0 (x), Xvm

1 (x), . . . , Xvm
2m−1(x)

)

in F2m [x]/(x2m − x). For simplicity, we continually use s j (x)
to indicate the subspace polynomials in F2m [x]/(x2m− x). Let

s̄ j (x) = s j (x)

s j (v j )
,
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where v j is defined in (1), and hence

s̄ j (v j ) = 1. (9)

Xvm
i (x) is defined as

Xvm
i (x) =

m−1∏

j=0

(s̄ j (x))i j , (10)

where i = i0 + i1 · 2 + i2 · 22 + · · · + im−1 · 2m−1, for
i j ∈ {0, 1}. Notice that (s̄ j (x))0 = 1. It can be seen
that this basis is full degree deg(Xi (x)) = i , and thus it
can determine all polynomials of F2m [x]/(x2m − x). If not
specified, throughout this paper,

X = (X0(x), X1(x), . . . , X2m−1(x))

denotes the polynomial basis with respective to the basis
v defined in (1). Note that Xi can be treated as the binary
representation of i with basis s̄ j (x), j = 0, 1, . . . , m − 1.

A polynomial in X is written by

D(x) =
2m−1∑

i=0

di Xi (x),

with each di ∈ F2m . In this paper, the coefficients of D(x) is
denoted as a vector D = (d0, d1, . . . , d2m−1).

III. TRANSFORM IN THE NEW BASIS

Given a polynomial D(x) = ∑2k−1
i=0 di Xi (x) of degree

deg(D(x)) < 2k = h in the basis X and β ∈ F2m , this section
presents a algorithm to compute {D(ω)|ω ∈ Vk + β}.
A. Recursive Structure in Polynomial Basis

The polynomial D(x) can be formulated as a recursive
function. Let

D(x) = �0
0(x).

The recursive function is defined as

�r
i (x) = �r

i+1(x)+ s̄i (x)�r+2i

i+1 (x), for 0 ≤ i ≤ k − 1;
(11)

�r
k(x) = dr , for 0 ≤ r ≤ 2k − 1. (12)

By induction, the coefficients of �r
i (x) are denoted as

�r
i = {d j ·2i+r | j = 0, . . . , 2k−i − 1)}. (13)

Lemma 3: From (11) and (12), we have D(x) = �0
0(x).

Proof: Assume

�r
i (x) =

2k−i−1∑

j=0

d j ·2i+r X j ·2i (x), (14)

for 0 ≤ i ≤ k − 1 and 0 ≤ r ≤ 2i − 1. From (14), it
can be verified that D(x) = �0

0(x), and (13) is correct. In
the following, the validity of (14) is proved by mathematical
inductions with decreasing index. For the basis case, we
consider i = k in (14), that gives

�r
k(x) =

0∑

j=0

d j ·2k+r X j ·2k (x) = dr X0(x) = dr , (15)

and thus (12) holds.

Assume (14) is valid for i = �+ 1. When i = �, (11) can
be written as

�r
�(x) = �r

�+1(x)+ s̄�(x)�r+2�

�+1 (x)

=
2k−�−1−1∑

j=0

d j ·2�+1+r X j ·2�+1(x)

+s̄�(x)

2k−�−1−1∑

j=0

d j ·2�+1+2�+r X j ·2�+1(x)

=
2k−�−1−1∑

j=0

d(2 j )·2�+r X(2 j )·2�(x)

+s̄�(x)

2k−�−1−1∑

j=0

d(2 j+1)·2�+r X(2 j )·2�(x)

=
2k−�−1−1∑

j=0

d(2 j )·2�+r X(2 j )·2�(x)

+
2k−�−1−1∑

j=0

d(2 j+1)·2�+r X(2 j+1)·2�(x)

=
2k−�−1∑

j=0

d j ·2�+r X j ·2�(x), (16)

and thus (14) is valid for i = �. This completes the proof. �
As mentioned previously, Xi can be treated as the binary

representation of i with basis s̄ j (x), j = 0, 1, . . . , m− 1. The
idea behind the recursion is that first combining the terms with
only difference in s̄1(x) and then combing the resultant terms
with only difference in s̄2(x), and so on. In the following, we
demonstrate this idea by an example. For example, if h = 8,
we have

D(x) =
7∑

i=0

di Xi (x)

= d0 + d1s̄0(x)+ d2s̄1(x)+ d3s̄0(x)s̄1(x)+ d4s̄2(x)

+ d5s̄0(x)s̄2(x)+ d6s̄1(x)s̄2(x)+ d7s̄0(x)s̄1(x)s̄2(x)

= (d0 + d4s̄2(x)+ s̄1(x) (d2 + d6s̄2(x)))

+ s̄0(x) (d1 + d5s̄2(x)+ s̄1(x) (d3 + d7s̄2(x)))

=
(
�0

2(x)+ s̄1(x)�2
2(x)

)

+ s̄0(x)
(
�1

2(x)+ s̄1(x)�3
2(x)

)

= �0
1(x)+ s̄0(x)�1

1(x) = �0
0(x). (17)

�m
i (x) possesses the following equality that will be utilized

in the algorithm:
Lemma 4: ∀a ∈ Vm = Fpm and ∀b ∈ Vi , 0 ≤ i ≤ k − 1,

�m
i (a + b) = �m

i (a). (18)
Proof: By definition, s̄i (b) = 0, ∀b ∈ Vi . From Lemma 2,

we have

s̄i (a + b) = s̄i (a)+ s̄i (b) = s̄i (a), ∀b ∈ Vi . (19)
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The proof is based on the mathematical induction on i . In the
base case i = k − 1, (11) can be written as

�m
k−1(x) = �m

k (x)+ s̄k−1(x)�m+2k−1

k (x)

= dm + s̄k−1(x)dm+2k−1 . (20)

From (19), we have

�m
k−1(a + b) = dm + s̄k−1(a + b)dm+2k−1

= dm + s̄k−1(a)dm+2k−1

= �m
k−1(a), ∀b ∈ Vk−1. (21)

Thus (18) holds for i = k − 1.
Assume (18) holds for i = j + 1. When i = j , we have

�m
j (a + b) = �m

j+1(a + b)+ s̄ j (a + b)�m+2 j

j+1 (a + b)

= �m
j+1(a)+ s̄ j (a)�m+2 j

j+1 (a)

= �m
j (a), ∀b ∈ Vj . (22)

This completes the proof. �

B. Proposed Algorithm

The proposed FFT algorithm is similar to that for complex
fields. The algorithm is with a divide-and-conquer fashion.
Hence, we need to determine the recursive equation for each
iteration. Let

V k
j = Span(v j , v j+1, . . . , vk−1), 0 ≤ j ≤ k ≤ m − 1. (23)

denote an (k − j)-dimensional subspace in F2m . These
subspaces form a strictly ascending chain as

{0} = V k
k ⊂ V k

k−1 ⊂ V k
k−2 ⊂ · · · ⊂ V k

0 .

Let

�β(i, r) = {�r
i (ω)|ω ∈ V k

i + β}, i = 0, . . . , k − 1; (24)

�β(k, r) = {dr }. (25)

The objective of algorithm is to compute the values in set
�β(0, 0). In the following, we rearrange �β(i, r) into two
parts: �β(i + 1, r) and �β(i + 1, r + 2i ), by taking at most
2k−i additions and 2k−i−1 multiplications.

As

V k
i = V k

i+1 ∪ (V k
i+1 + vi ),

(24) can be divided into two individual subsets

�
(0)
β (i, r) = {�r

i (ω)|ω ∈ V k
i+1 + β}, (26)

and

�
(1)
β (i, r) = {�r

i (ω + vi )|ω ∈ V k
i+1 + β}. (27)

To evaluate each element of �
(0)
β (i, r), by recursive function

given in (11), we have

�r
i (ω) = �r

i+1(ω)+ s̄i (ω)�r+2i

i+1 (ω) ∀ω ∈ V k
i+1 + β. (28)

It can be seen that �r
i+1(ω) ∈ �β(i + 1, r), and �r+2i

i+1 (ω) ∈
�β(i + 1, r + 2i ), for ω ∈ V k

i+1 + β. The constant factor
s̄i (ω) can be precomputed and stored. Hence, for each element

Algorithm 1 Transform of the Basis X

Input: FFTh(�r
i , β, i, r): �r

i is defined in (13), h = 2k

denotes the size of the transform, and β ∈ F2m

Output: �β(i, r) = {�r
i (ω)|ω ∈ V k

i + β}
1: if i = k then return dr

2: end if
3: Call �β(i + 1, r) ← FFTh/2(�

r
i+1, β, i + 1, r), where

�r
i+1 ⊂ �r

i

4: Call �β(i + 1, r + 2i )← FFTh/2(�
r+2i

i+1 , β, i + 1, r + 2i ),

where �r+2i

i+1 ⊂ �r
i

5: for j = 0, . . . , 2k−i−1 − 1 do
6:

�r
i (ω j2i+1)

← �r
i+1(ω j2i+1)+ s̄i (ω j2i+1)�r+2i

i+1 (ω j2i+1)

7: �r
i (ω j2i+1+2i )← �r

i (ω j2i+1)+�r+2i

i+1 (ω j2i+1)
8: end for
9: return

�β(i, r) = {�r
i (ω j2i )|i = 0, . . . , 2k−i−1 − 1}

∪{�r
i (ω j2i + vi )|i = 0, . . . , 2k−i−1 − 1}

of �
(0)
β (i, r), the calculation requires a multiplication and an

addition.
To evaluate each element of �

(1)
β (i, r), we have

�r
i (ω + vi ) = �r

i+1(ω + vi )+ s̄i (ω + vi )�
r+2i

i+1 (ω + vi ),

(29)

for ω ∈ V k
i+1 + β. By Lemma 4, we have

�r
i+1(ω + vi ) = �r

i+1(ω);
�r+2i

i+1 (ω + vi ) = �r+2i

i+1 (ω).

Furthermore, the factor can be rewritten as

s̄i (ω + vi ) = si (ω + vi )

si (vi )
= si (ω)+ si (vi )

si (vi )

= si (ω)

si (vi )
+ 1 = s̄i (ω)+ 1. (30)

With above results, (29) can be rewritten as

�r
i (ω + vi ) = �r

i+1(ω)+ (s̄i (ω)+ 1) �r+2i

i+1 (ω)

= �r
i+1(ω)+ s̄i (ω)�r+2i

i+1 (ω)+�r+2i

i+1 (ω)

= �r
i (ω)+�r+2i

i+1 (ω). (31)

It can be seen that �r
i (ω) ∈ �

(0)
β (i, r), and �r+2i

i+1 (ω) ∈ �β

(i+1, r+2i), for ω ∈ V k
i+1+β. Hence, it requires an addition.

Algorithm 1 depicts the steps of the algorithm. We call the
procedure by the following instruction

�β(0, 0)← FFTh(�0
0, β, 0, 0),

where �β(0, 0) is the desired output, and �0
0 is the set

including the coefficients of the input polynomial D(x).
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C. Complexity

We start to discuss the computational and space complexi-
ties of the proposed Fourier-like transform. For the computa-
tional complexity, let A(h) and M(h) respectively denote the
number of additions and multiplications used in the algorithm.
From (110) and (31), the recurrence relation is formulated as

A(h) = 2× A(h/2)+ h; A(1) = 0;
M(h) = 2× M(h/2) + h/2; M(1) = 0. (32)

The solution is given by

A(h) = h lg(h); M(h) = h

2
lg(h).

Note that if ω + β = 0 in (110), the formula can be
simplified to

�r
i (ω + β) = �r

i+1(ω + β), (33)

which does not involve any arithmetic operations. This case
occurs when the set of evaluation points is defined as Vk .
In this case, the number of saved operations is less than h
in both additions and multiplications, and thus the big-O
complexity is unchanged.

Assume the factor s̄i (ω) in (110) is pre-computed and
stored. We consider the number of factors to be stored.
In (110), the set of the factors is

{s̄i (ω)|ω ∈ V k
i+1 + β},

that has 2k−i−1 elements.
As shown in the algorithm, �β(i, r) is divided into

two parts: �
(0)
β (i, r) and �

(1)
β (i, r), where �

(0)
β (i, r) involves

the constant factors but �
(1)
β (i, r) does not. Let N(h), with

h = 2k−i , denote the number of constant factors used in the
computation of �β(i, r). The recurrence relation is given by

N(h) = 2N(h/2) + h/2, N(1) = 0,

and the solution is N(h) = h − 1, which is linear complexity.

D. Inverse Transform

In the inverse transform, the input is {D(ω)|ω ∈ Vk + β},
and the objective is to calculate the coefficients of D(x). The
inversion can be done by backtracking the transform. In the
inverse transform, �β(i, r) is given, and the objective is to
compute �β(i + 1, r) and �β(i + 1, r + 2i ).

For �β(i + 1, r + 2i ), (31) is reformulated as

�r+2i

i+1 (ω) = �r
i (ω)+�r

i (ω + vi ), (34)

where �r
i (ω) ∈ �

(0)
β (i, r), and �r

i (ω + vi ) ∈ �
(1)
β (i, r). This

takes an addition. For �β(i + 1, r), (110) is reformulated as

�r
i+1(ω) = �r

i (ω)+ s̄i (ω)�r+2i

i+1 (ω), (35)

where �r
i (ω) ∈ �

(0)
β (i, r), and �r+2i

i+1 (ω) ∈ �β(i + 1, r + 2i ).
This takes an addition and a multiplication. Consequently, the
inverse algorithm has the same computational complexity with
the transform. The steps are shown in Algorithm 2.

Figure 1 depicts an example of the proposed trans-
form of length h = 8. Figure 1(a) shows the transform

Algorithm 2 Inverse Transform of the Basis X

Input: IFFTh(�β(i, r), β, i, r): �β(i, r) = {�r
i (ω)|ω ∈ V k

i +
β}, h = 2k denotes the size of the transform, and β ∈ F2m

Output: �r
i defined in (13)

1: if i = k then return dr

2: end if
3: for j = 0, . . . , 2k−i−1 − 1 do
4: �r+2i

i+1 (ω j2i+1)← �r
i (ω j2i+1)+�r

i (ω j2i+1+2i )

5: �r
i+1(ω j2i+1)← �r

i (ω j2i+1)+ s̄i (ω j2i+1)�r+2i

i+1 (ω j2i+1)
6: end for
7: Call �r

i+1 ← IFFTh/2(�β(i + 1, r), β, i + 1, r)

8: Call �r+2i

i+1 ← IFFTh/2(�β(i + 1, r + 2i ), β, i + 1, r + 2i )

9: return �r
i = �r

i+1 ∪�r+2i

i+1

Fig. 1. Data flow diagram of proposed Fourier-like transform and its inversion
of length h = 8. (a) The Fourier-like transform. (b) The inverse Fourier-like
transform.

FFT(�0
0, β, 0, 0). The dotted line arrow denotes that the

element should be multiplied with the factor s̄ j (•) upon
adding together with other element. For simplicity, we use
the notations

�r
i, j = �r

i (ω j + β), s̄ j
i = s̄i (ω j ).

The two gray blocks indicate the calls FFT(�0
1, β, 1, 0) and

FFT(�1
1, β, 1, 1) in Algorithm 1. The inversion is shown in

Figure 1(b).
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IV. FORMAL DERIVATIVE

In this section, the algorithm for the formal derivative in the
new basis is proposed. Section IV-A gives the closed form.
By directly following the formula, the formal derivative
requires O(h lg(h)) in both additive and multiplicative com-
plexity. Section IV-B presents an improved approach, that
requires O(h lg(h)) additions and O(h) multiplications.

A. The Closed Form

First we present a Lemma that will be used in the
closed-form.

Lemma 5: The formal derivative of sk(x) is a constant
given by

s′k(x) =
∏

w∈Vk\{0}
w. (36)

Proof: To begin with, we recall the definition of the formal
derivative. Let B(x) = b · x j denote a polynomial of F2m [x].
It is well known if j is even, then B ′(x) = 0, or else B ′(x) =
b · x j−1. From Lemma 2, the non-zero terms of sk(x) are
among the degrees of 1, 2, 4, . . . , 2k . Thus, s′k(x) is a constant,
which is the coefficient of sk(x) with degree 1. The value is

∑

�∈Vk

∏

w 	=�

w =
∏

w∈Vk\{0}
w.

This completes the proof. �
Since s′k(x) is a constant, we define s̄′k = s′k(x)/sk(vk). From

Lemma 5, the formal derivative of Xi (x) becomes

X ′i (x) =
m−1∑

�=0

i�s̄′�(x)
∏

j 	=�

(s̄ j (x))i j

=
m−1∑

�=0

i�s̄′�(x)Xi−2� (x)

=
∑

�∈Ii

s̄′� Xi−2� (x), (37)

where

Ii = { j | j ∈ {0, 1, . . . , m − 1}, i j = 1}
includes the non-zero indices of the binary representation of i .
For example, if i = 13 = 20+22+23, we have I13 = {0, 2, 3},
and

X ′13(x) = s̄′0 s̄2(x)s̄3(x)+ s̄′2 s̄0(x)s̄3(x)+ s̄′3s̄0(x)s̄2(x)

= s̄′0 X12(x)+ s̄′2 X9(x)+ s̄′3 X5(x). (38)

From (37), the formal derivative of D(x) is given by

D′(x) =
h−1∑

i=0

di X ′i (x) =
h−1∑

i=0

di

∑

�∈Ii

s̄′� Xi−2� (x). (39)

In (39), for a specified X j it can come from Xi−2� when
i − 2� = j and � does not belong to I j . Recall that 2k = h,
i.e. log h = k. Hence, (39) can be further rearranged as

D′(x) =
h−1∑

j=0

X j (x)
∑

�∈I c
j

s̄′� · d j+2� , (40)

where I c
j is the complement of I j defined as

I c
j = Zk \ I j .

From (40), each coefficient of D′(x) requires at most k− 1
additions and k multiplications, whereas the set of constants
{s̄′�}k−1

�=0 can be precomputed and stored. Since h = 2k , this
requires O(h lg(h)) operations, in both additive complexity
and multiplicative complexity.

B. Algorithm With Lower Multiplicative Complexity

This subsection presents an improved approach on per-
forming formal derivative in O(h lg(h)) additions and O(h)
multiplications. Let

B =
⎧
⎨

⎩Bi =
∏

j∈Ii

s̄′j

⎫
⎬

⎭

h−1

i=0

, (41)

and

dd
i = di · Bi , i = 0, 1, . . . h − 1. (42)

By plugging di = dd
i B−1

i to (40), we have

D′(x) =
h−1∑

j=0

X j (x)
∑

�∈I c
j

dd
j+2� s̄

′
�

B j+2�

. (43)

As

B j+2� =
∏

m∈I j+2�

s̄′m = s̄′�
∏

m∈I j

s̄′m = s̄′� B j ,

(43) can be rewritten as

D′(x) =
h−1∑

j=0

X j (x)
∑

�∈I c
j

dd
j+2� s̄

′
�

s̄′� B j

=
h−1∑

j=0

X j (x)
∑

�∈I c
j

dd
j+2�

B j

=
h−1∑

j=0

X j (x)

∑
�∈I c

j
dd

j+2�

B j

=
h−1∑

j=0

X j (x)
ds

j

B j
,

=
h−1∑

j=0

X j (x)d ′j , (44)

where

ds
j =

∑

�∈I c
j

dd
j+2� j = 0, 1, . . . , h − 1, (45)

d ′j = ds
j/B j i = 0, 1, . . . , h − 1. (46)

Based on the above formulas, the approach consists of three
steps. Assume the set B was precomputed and stored. The first
step is to compute {dd

i }h−1
i=0 defined in (42). The second step

is to compute {ds
j }h−1

j=0 defined in (45), and the final step is to

compute the result {d ′j }h−1
j=0 defined in (46). For the complexity,
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Fig. 2. Data flow diagram of formal derivative of length h = 8. (a) Direct
approach. (b) Improved approach.

the first and the third steps require h multiplications. In the
second step, it takes around 1

2 h lg(h) additions.
Next an example is given to demonstrate how to

obtain D′(x). If h = 8 and the set B includes 8 elements
defined as

B0 = 1; B1 = s̄′0; B2 = s̄′1; B3 = s̄′0s̄′1;
B4 = s̄′2; B5 = s̄′0s̄′2; B6 = s̄′1s̄′2; B7 = s̄′0s̄′1s̄′2. (47)

In the first step, each dd
i is computed by

dd
i = di Bi , i = 0, 1, . . . , 7.

In the second step,

ds
0 = dd

1 + dd
2 + dd

4 ; ds
1 = dd

3 + dd
5 ;

ds
2 = dd

3 + dd
6 ; ds

3 = dd
7 ;

ds
4 = dd

5 + dd
6 ; ds

5 = dd
7 ;

ds
6 = dd

7 ; ds
7 = 0. (48)

In the final step, D′8(x) is computed by

D′8(x) = X0(x)
ds

0

B0
+ X1(x)

ds
1

B1
+ X2(x)

ds
2

B2

+ X3(x)
ds

3

B3
+ X4(x)

ds
4

B4
+ X5(x)

ds
5

B5
+ X6(x)

ds
6

B6
.

Figure 2(b) shows the improved version for h = 8 in graphical
diagrams.

V. REED-SOLOMON ERASURE CODES

In this section, we propose the encoding and erasure
decoding algorithms for (n = 2m , k) single extended
Reed-Solomon (RS) codes over binary extension fields. There
exist two major viewpoints for the Reed-Solomon codes,
termed as polynomial evaluation approach and generator poly-
nomial approach. In this paper, we follow the polynomial
evaluation approach, which treats the codeword symbols as the
evaluation values of a polynomial f (x) ∈ F2m [x] of degree
k ≤ 2m − 1. The codeword is defined as

f = ( f (ω0), f (ω1), . . . , f (ω2m−1)),

where ωi ∈ F2m defined in (2). The message is denoted as

m = (m0, m1, . . . , mk−1)

for each mi ∈ F2m . In the systematic construction,
we require

f (ωi ) = mi , i = 0, 1, . . . , k − 1. (49)

In decoding, when any k out of n = 2m symbols are
received, one can uniquely reconstruct f (x) via polyno-
mial interpolation, and thus the erasures can be computed
accordingly.

In the following, the algorithms for encoding and erasure
decoding are proposed. The proposed encoding algorithm is
designed only when k is a power of two and n = 2m .
If the given k is not a power of two, there are two methods to
perform the encoding procedure. In the first method, the code
can be obtained by using shortening technique. Precisely, some
zeros are appended to the message vector such that the size is
a power of two. Let

m̄ = (m0, m1, . . . , mk−1, mk, . . . , mk′−1),

with mk = · · · = mk′−1 = 0 and k ′ = 2
log2(k)�. Then
m̄ is coded by (n, k ′) RS encoding algorithm. After obtain-
ing the codeword, the zero symbols {mi }k′−1

i=k are removed.
In decoding, the received codeword is decoded by (n, k ′) RS
erasure decoding algorithms by appending the removed zero
symbols to the received codeword.

In the second method, the erasure decoding algorithm can
be applied to compute the parities of a codeword. Precisely,
we create a “received codeword” by filling the message part
with message symbols, and the parity part are marked with
erasures. Then the erasure decoding algorithm is applied on
this “received codeword” to get the values of the erasures that
are the parity symbols.

A. Encoding Algorithm

Given β ∈ F2m and D(x) ∈ F2m [x]/(x2m − x) with
deg(D(x)) < h, the notation FFTβ

h (•) denotes that the pro-
posed transform with shifting β is applied to the input vector •
of size h. Precisely, the transform

D̄← FFTβ
h (D)

returns a vector

D̄ = (D(ω0 + β), D(ω1 + β), . . . , D(ωh−1 + β)).
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Algorithm 3 Reed-Solomon Encoding Algorithm
Input: a k-element message vector m
Output: an n-element systematic codeword f
1: m̄ ← IFFT0

k(m)
2: for i ← 1, . . . , (n/k − 1) do
3: m̄i ← FFTi·k

k (m̄)
4: end forreturn f ← (m, m̄1, m̄2, . . . , m̄n/k−1)

In contrast, the inverse transform is denoted as

D← IFFTβ
h (D̄).

Algorithm 3 illustrates the pseudocode of the encoding algo-
rithm. Line 1 computes the coefficients of

m̄(x) =
k−1∑

i=0

m̄i Xi (x). (50)

It is clear that deg(m̄(x)) ≤ k − 1 and

m̄(ωi ) = mi , i = 0, 1, . . . , k − 1. (51)

Thus, we conclude that m̄(x) = f (x), and the parity-check
symbols can be computed by applying the transforms on m̄
(see Lines 2-4). The parity-check symbols are obtained in
blocks with size k and there are n/k − 1 blocks.1 In Line 5,
those vectors are assembled to get the codeword vector f .

For the computational complexity, the proposed encoding
algorithm requires a k-element IFFT and (n/k − 1) times of
k-element FFT. Thus, the encoding algorithm has the
complexity

O((n/k)k lg (k)) = O(n lg (k)).

B. Erasure Decoding Algorithm

The decoding algorithm is based on our previous work [11],
that requires the polynomial evaluations and it’s derivatives.
The code considered in [11] is based on Fermat number
transforms (FNT) over F2m+1. In this paper, the FNT [11]
is replaced with the proposed transform. However, since
the transform is in a different basis, the formula should be
reformulated to fit the format.

Assume the received codeword f̄ has n − k erasures. The
error locator polynomial is defined as

�(x) =
∏

ω∈R

(x + ω),

where

R = {ri }n−k−1
i=0

denotes the set of evaluation points for erasures.
Let

f̂ (x) = f (x)�(x)

of degree deg( f̂ (x)) = deg( f (x))+ deg(�(x)) ≤ n − 1. The
formal derivative of f̂ (x) is

f̂ ′(x) = f ′(x)�(x)+ f (x)�′(x). (52)

1Since k and n are both powers of 2, n is divisible by k.

By substituting x = ω ∈ R into (52), we have

f̂ ′(ω) = f (ω)�′(ω)

⇒ f (ω) = f̂ ′(ω)

�′(ω)
, ∀ω ∈ R. (53)

Based on the above formulas, the decoding procedure consists
of three major stages: First, compute the coefficients of f̂ (x);
second, compute the formal derivative of f̂ (x); and third,
compute the erasures through (53). The details are given
in Algorithm 4.

Line 1 computes two sets �̄ and �′, where

�̄ = {�(ω)|ω ∈ F2m\R} (54)

and

�′ = {�′(ω)|ω ∈ R}. (55)

Notice that this step does not use the codeword symbols.
Thus, if we have many codewords with the same locations of
erasures, �̄ and �′ can be computed once and used in each
codeword. Line 2 computes the evaluations of f̂ (x) at F2m ,
in which the factor �(r) is taken from �̄. Line 3 applies
IFFT on � to obtain �̄ = (φ̄0, φ̄1, . . . , φ̄n−1), which forms a
polynomial

�̄(x) =
n−1∑

i=0

φ̄i Xi (x),

such that �̄(ω j ) = f̂ (ω j ), for 0 ≤ j ≤ n − 1. Thus, we
conclude �̄(x) = f̂ (x). In Line 4, the formal derivative of
�̄(x) can be computed by the method in Section IV, resulting
in �̄′ = (φ̄′0, φ̄′1, . . . , φ̄′n−1) forming a polynomial

�̄′(x) =
n−1∑

i=0

φ̄′i Xi (x).

Line 5 applies FFT on �̄′ to obtain �d, which is a vector
consists of { f̂ ′(r)|r ∈ F2m }. In Line 6, �d

j is an element of
�d, and �′( j) ∈ R.

The complexity of this algorithm is dominated by
Steps 1, 3, 4 and 5, whereas Step 2 only takes k multiplications
and Step 6 only takes n − k divisions. By the proposed FFT
and IFFT algorithms, Step 3 and Step 5 can be performed in
O(n lg (n)) field operations. By Section IV, Step 4 requires
O(n lg(n)) field additions and O(n) field multiplications.
In Step 1, we employ the algorithm shown in Appendix, which
requires O(n lg(n)) additions in modulo (2m−1). In summary,
this algorithm has the complexity of O(n lg (n)).

VI. DISCUSSIONS AND COMPARISONS

A. Complexities of Polynomial Operations

By using the proposed Fourier-like transforms, the fast
polynomial multiplications in the proposed basis can be
derived. Table I tabulates the complexities of some polynomial
operations in the monomial basis and the proposed basis over
binary extension fields. In particular, the polynomial addition
is simple by adding the coefficients of two polynomials,
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Algorithm 4 Reed-Solomon Erasure Decoding Algorithm

Input: Received codeword f̄ , and the positions of erasures
R = {ri }n−k−1

i=0
Output: The erasures { f ( j)| j ∈ R}
1: Compute

�̄ ← {�(ω)|ω ∈ F2m\R} (56)
�′ ← {�′(ω)|ω ∈ R} (57)

2: Compute �← ( f̂ (ω0), f̂ (ω1), . . . , f̂ (ωn−1)) by

f̂ (r) =
{

0 ∀r ∈ R
f (r)�(r) otherwise

(58)

3: Compute

�̄← IFFT0
n(�) (59)

4: Compute the formal derivative of �̄, denoted as �̄′
5: Compute

�d ← FFT0
n(�̄
′) (60)

6: Compute the erasures via

f ( j) = �d
j

�′( j)
, ∀ j ∈ R

TABLE I

COMPLEXITIES OF OPERATIONS IN POLYNOMIAL BASIS OVER F2m

so the complexity is O(h) in both basis. The formal deriv-
ative in proposed basis requires O(h lg(h)) field operations.
In contrast, the formal derivative in monomial basis only
requires O(h).

Next we consider the polynomial multiplication. For then
monomial basis, the asymptotically fastest algorithm was
proposed by Schönhage [3], in 1977. The algorithm takes
O(h lg(h) lg lg(h)) field operations. For the proposed basis,
the fast approach is based on the Fourier-like transform. Let
a(x) = ∑h−1

i=0 ai · Xi (x) and b(x) = ∑h−1
i=0 bi · Xi (x). Its

product c(x) = a(x) · b(x) can be computed as

c = IFFTβ(FFTβ(a)⊗ FFTβ(b)),

where ⊗ performs pairwise multiplication on two vectors.
a (b) is the vector of coefficients of a(x) (b(x)) by appending
zeros on high degrees such that its length is up to 2 j ,
where 2 j is the smallest integer that is larger than or equal
to 2h − 1. This requires one 2 j -point IFFT, two 2 j -point
FFTs and 2 j multiplications, and thus the complexity is
O(2 j lg(2 j )) = O(h lg(h)).

B. Discussions About RS Algorithms

Traditionally, the polynomials for RS codes are represented
in the monomial basis. However, Algorithm 4 uses the new
basis to represent f̂ (x). Assume the basis of f̂ (x) is settled as
the monomial basis. In this case, Lines 3, 4, 5 shall be replaced
with the arithmetic algorithms for the monomial basis.

Particularly, the formal derivative in Line 4 takes O(n). For
Line 3 and Line 5, we shall choose the finite field FFT in the
monomial basis, that takes O(n lg(n) lg lg(n)) field operations.
Thus, the complexity of this algorithm is O(n lg(n) lg lg(n)).
The same result is concluded in Algorithm 3. If m̄(x) in (50)
is represented in the monomial basis, the encoding algorithm
shall take O(n lg(n) lg lg(n)).

As the proposed algorithm employs a portion of the algo-
rithm proposed by Didier [12], we briefly introduce Didier’s
approach as follows. In 2009, Didier [12] proposed an erasure
decoding algorithm for Reed-Solomon codes based on fast
Walsh-Hadamard transforms. The algorithm [12] consists of
two major parts: the first part is to compute the polynomial
evaluations of the error locator polynomial (see Appendix).
The second part is decomposing the Lagrange polynomial
into several logical convolutions, which are then respectively
computed with fast Walsh-Hadamard transforms. The first part
requires O(n lg(n)), and the second part requires O(n lg2(n)),
so the overall complexity is O(n lg2(n)). For the proposed
algorithm, the first part of algorithm given in [12] is employed.
Furthermore, we design another decoding structure based on
the proposed basis. The proposed transform only requires
O(n lg(n)), so that the proposed approach can reduce the
complexity from O(n lg2(n)) to O(n lg(n)).

To demonstrate the real performance, the proposed algo-
rithm was implemented in C and was run on a PC with
Intel core i7-950 CPU. While n = 216, k/n = 1/2, the
program took about 1.12 seconds to generate a codeword,
and 3.06 seconds to decode an erased codeword on average.
On the other hand, we also ran the program written by
the author in [12] on the same platform. In our simulation,
the program implemented the algorithm given in [12] took
about 52.91 seconds in both encoding and erasure decoding
under the same parameter setting. Thus, the proposed erasure
decoding is around 17 times faster than that given in [12]
for n = 216.

VII. LITERATURE REVIEW

In [13], the codewords of RS codes are treated as a sequence
of evaluations of polynomials interpreted by the messages.
From this viewpoint, the encoding process can be treated as
an oversampling process through discrete Fourier transform
over finite fields. Some studies [14]–[16] indicated that, if an
O(n lg(n)) finite field FFT is available, the error-correction
decoding can be reduced to O(n lg2(n)). An n-point radix-2
FFT butterfly diagram requires n lg(n) additions and 1

2 n lg(n)
multiplications. This FFT butterfly diagram can be directly
applied on Fermat prime fields F2m+1, m ∈ {1, 2, 4, 8, 16}.
In this case, the transform, referred to as Fermat number
transform (FNT), also requires n lg(n) field additions and
1
2 n lg(n) field multiplications. By employing FNTs, a number
of fast approaches [14], [17], [18] had been presented to
reduce the complexity of encoding and decoding of RS codes.
Some FNT-based RS erasure decoding algorithms had been
proposed [11], [19], [20] in O(n lg(n)) field operations. Thus
far, no existing algorithm for (n, k) RS codes has decoding
complexity achieving lower than 
(n lg(n)) operations, in
a context of a fixed coding rate k/n. However, the major
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TABLE II

COMPLEXITIES OF n-POINT FFTs OVER F2m

drawback of FNT is that the number of possible values of
each symbol is 2m + 1, that cannot be losslessly stored in m-
bit binary digit. Thus, the FNT-based codes are impractical in
applications.

In real applications, RS codes are usually constructed over
extension binary fields. This arises the attentions of FFTs
over extension binary fields. Table II tabulates the arithmetic
complexities of FFT algorithms over extension binary fields.
Table II shows that no FFT algorithm has achieved O(n lg(n))
in both additive and multiplicative complexities. This implies
that when the polynomials in RS codes are in monomial basis,
the complexity will fail to reach O(n lg(n)).

There exist faster approaches for some non-MDS codes.
Such codes, termed as fountain codes [21], require a little more
than k codeword symbols to recover the original message. Two
remarkable classes of fountain codes are LT code [22] and
Raptor code [23]. Due to the low complexity, fountain codes
have significant merits in many applications. However, MDS
codes have some irreplaceable properties, so that RS codes are
still used nowadays.

VIII. BASIS CONVERSION

This section gives two approaches to convert the repre-
sentation of a polynomial from the monomial basis m(x) =
{1, x, . . . , x2m−1} to X. Specifically, the input is defined as
D(x) = ∑n−1

i=0 ai x i , where the size of input is a power of
two n ∈ {2 j }mj=1. The conversion algorithm outputs {āi}n−1

i=0

such that D(x) = ∑n−1
i=0 āi Xi (x). In particular, the first

approach is for arbitrary m with O(n lg2(n)) field operations.
The second approach is only for m a power of two, and
its complexity is O(n lg(n) lg lg(n)). The ideas of both algo-
rithms are based on [7]. In particular, the FFTs in [7] are
algebraically similar to the approach by combining the pro-
posed transforms with the basis conversion algorithms in this
section.

A. First Approach (For Arbitrary m)

Given D(x) = ∑n−1
i=0 di x i , we want to find out

{(di,0, di,1)}n/2−1
i=0 such that

D(x) =
n/2−1∑

i=0

(di,0 + di,1
x

v0
)(s1(x))i . (61)

Notably, x/v0 = s0(x)/s0(v0) and s1(x) = x2 + v0x . Then
(61) can be rewritten as

D(x) =
n/2−1∑

i=0

di,0(s1(x))i + x

v0

n/2−1∑

i=0

di,1(s1(x))i

= D0(s1(x))+ x

v0
· D1(s1(x)), (62)

where

D j (x) =
n/2−1∑

i=0

di, j x j j = 0, 1. (63)

Lemma 6: Let vm = (v0, v1, . . . , vm−1) and

wm−1 = (w1, w2, . . . , wm−1)

= (sV1
1 (v1), sV1

1 (v2), . . . , sV1
1 (vm−1)), (64)

where sV1
1 (x) = x(x − v0). Let

W j = Span(w1, w2, . . . , w j−1) j = 1, 2, . . . , m − 1.

A polynomial basis with respective to wm−1 is denoted as

X
wm−1 =

(
Xwm−1

0 (x), Xwm−1
1 (x), . . . , Xwm−1

2m−1−1
(x)

)
,

where

Xwm−1
i (x) =

m−2∏

j=0

(
s̄

W j
j (x)

)i j
(65)

and

s̄
W j
j (x) = s

W j
j (x)

s
W j
j (w j+1)

. (66)

Then X2i (x) = Xwm−1
i (s1(x)), for i = 0, 1, . . . , 2m−1 − 1.

Proof: For simplicity, the subspace polynomial s
Vj
j (x)

with respective to Vj = Span(v0, . . . , v j−1) is denoted
as s j (x). From (8), we have

s
W j
j (w j+1) = s

W j
j (s1(v j+1)) = s j+1(v j+1),

and thus (66) can be written as

s̄
W j
j (x) = s

W j
j (x)

s
W j
j (w j+1)

= s
W j
j (x)

s j+1(v j+1)
. (67)
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By substituting s1(x) into (67), we have

s̄
W j
j (s1(x)) = s

W j
j (s1(x))

s j+1(v j+1)

= s j+1(x)

s j+1(v j+1)
(By (8))

= s̄ j+1(x). (68)

By substituting s1(x) into (65), we have

Xwm−1
i (s1(x)) =

m−2∏

j=0

(
s̄

W j
j (s1(x))

)i j

=
m−2∏

j=0

(
s̄ j+1(x)

)i j (By (68))

= X J (x), (69)

where

J = i0 · 2+ i1 · 22 + i2 · 23 + · · · + im−2 · 2m−1.

Thus,

J = 2(i0 + i1 · 2 + · · · + im−2 · 2m−2) = 2i,

and (69) becomes X2i (x) = Xwm−1
i (s1(x)). This completes the

proof. �
Assume D j (x), j = 0, 1, in the basis X is denoted as

D j (x) =
n/2−1∑

i=0

d̄i, j Xw
i (x) j = 0, 1, (70)

where w is defined in Lemma 6. Then (62) can be
rewritten as

D(x) =
n/2−1∑

i=0

d̄i,0 Xw
i (s1(x))+ x

v0

n/2−1∑

i=0

d̄i,1 XW

i (s1(x))

=
n/2−1∑

i=0

d̄i,0 X2i (x)+ x

v0

n/2−1∑

i=0

d̄i,1 X2i (x) (By Lemma 6)

=
n/2−1∑

i=0

d̄i,0 X2i (x)+
n/2−1∑

i=0

d̄i,1 X2i+1(x)

=
n−1∑

i=0

āi Xi (x). (71)

Thus, the coefficients in (70) are the desired results. To
convert D j (x) from the monomial basis (63) to X in
(70), the same approach (61) can be applied recursively to
each D j (x). The method to calculate (61) is addressed as
follows.

1) Computation of (61): To solve (61), the Taylor expan-
sion in Appendix B can be applied. In order to reduce
multiplications while applying Taylor expansions, we need to
twist polynomial D(x). By substituting x = v0 · y into (61),

Algorithm 5 First Approach of Basis Conversion Algorithm
Input: B2(D, γ , n, v), where D is the coefficients of D(γ ·

x) =∑n−1
i=0 di x i , n is a power of two, and v is the basis

Output: (d̄0, d̄1, . . . , d̄n−1), such that D(x) =∑n−1
j=0 d̄ j X j (x)

1: if n = 1 then return d0
2: end if
3: Compute D(v0 · x)←∑n−1

i=0 di · (v0/γ )i · xi

4: Call Taylor expansion (Appendix B) to find out
{(d ′i,0, d ′i,1)}n/2−1

i=0 such that

D(v0 · x)←
n/2−1∑

i=0

(d ′i,0 + d ′i,1 · y)(x + x2)i

5: Obtain D0(v
2
0 x) and D1(v

2
0 x) as in (73)

6: Compute w as in (64)
7: Call

U0 ← B2(D0, v
2
0 , n/2, v̄ )

U1 ← B2(D1, v
2
0 , n/2, v̄ ),

to obtain

Ui = (u0,i , u1,i , . . . , un/2−1,i ), ∀i = 0, 1

return (u0,0, u0,1, u1,0, u1,1, . . . , un/2−1,0, un/2−1,1)

we have

D(v0 · y) =
n/2−1∑

i=0

(di,0 + di,1 · y)(s1(v0 · y))i

=
n/2−1∑

i=0

(di,0 + di,1 · y)(v2
0(y + y2))i

=
n/2−1∑

i=0

(di,0v
2i
0 + di,1v

2i
0 · y)(y + y2)i

= D0(v
2
0(y + y2))+ y · D1(v

2
0(y + y2)), (72)

where

D j (v
2
0 x) =

n/2−1∑

i=0

di, j (v
2
0 x)i

=
n/2−1∑

i=0

d ′i, j x i , i = 0, 1. (73)

From (72), Taylor expansions can be applied to the twisted
polynomial D(v0 · y) = ∑n−1

i=0 (div
i
0)yi , an the result forms

two polynomials D0(v
2
0 x) and D1(v

2
0 x). The detailed steps

are summarized in Algorithm 6.
2) Complexity: Based on Appendix B and the above dis-

cussions, computing (61) requires O(n lg(n)) additions and
O(n) multiplications. This leads the recurrence relation

A(n) = 2 · A(n/2)+O(n lg(n)),

M(n) = 2 · M(n/2)+O(n).

Thus A(h) = O(n lg2(n)) and M(h) = O(n lg(n)).
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B. Second Approach (For m a Power of Two)

This approach is based on Canter basis [5]. Thus, upon
describing the algorithm, the definition as well as the proper-
ties of the Cantor basis is addressed below.

Definition 2 (Cantor Basis [5]): For m a power of 2, the
Cantor basis C = (c0, c1, . . . , cm−1), where each ci ∈ F2m , is
constructed by following

c0 = 1;
c2

i − ci = ci−1 i = 1, 2, . . . , m − 1. (74)
Let sC

i (x) denote the subspace polynomial in the Cantor
basis C . sC

i (x) possesses the following properties.
Lemma 7 [5]: (i). Let s(x) = x2−x. Then sC

i (x) possesses
a recursive form given by

sC
0 (x) = x;

sC
i (x) = s(sC

i−1(x)) i = 1, 2, . . . , m. (75)

(ii). For i a power of 2 and i ≤ m,

sC
i (x) = x2i + x . (76)

The polynomial basis over the Cantor basis is denoted as

X
C =

(
XC

0 (x), XC
1 (x), . . . , XC

2m−1(x)
)

,

where

XC
i (x) =

m−1∏

j=0

(
sC

j (x)

sC
j (c j )

)i j

=
m−1∏

j=0

(
sC

j (x)
)i j

. (77)

Given D(x) = ∑n−1
i=0 ai x i , the objective of the basis conver-

sion is to determine {āi} such that D(x) =∑n−1
i=0 āi XC

i (x).
Let � = 2
lg lg(n)�−1, and L = 2�. Given D(x)

in the monomial basis, we compute {Di (x)}k−1
i=0 such

that

D(x) =
k−1∑

i=0

Di (x)(sC
� (x))i , (78)

where k = n/L, and each

Di (x) =
L−1∑

j=0

ai, j x j i = 0, 1, . . . , k − 1. (79)

From (76), sC
� (x) = x L + x , and hence (78) can be

written as

D(x) =
k−1∑

i=0

Di (x)(x L + x)i , (80)

that can be computed with the Taylor expansion
in Appendix B.

Assume Di (x) in the basis X
C is denoted as

Di (x) =
L−1∑

j=0

āi, j XC
j (x) i = 0, 1, . . . , k − 1. (81)

Algorithm 6 Second Approach of Basis Conversion Algorithm

Input: B3(D, n), where D(x) =∑n−1
i=0 di x i , and n is a power

of two
Output: (d̄0, d̄1, . . . , d̄n−1) such that D(x) =∑n−1

j=0 d̄ j X j (x)
1: if n = 1 then return d0
2: end if
3: Let � = 2
lg lg(n)�−1, and L = 2�

4: Call Taylor expansion (Appendix B) to find {Di (x)}k−1
i=0

such that (80) holds
5: for i = 0, . . . , k − 1 do
6: Call D̄i ← B3(Di , L)
7: end for
8: Obtain E j (x), j = 0, 1, . . . , L − 1, as in (82)
9: for j = 0, . . . , L − 1 do

10: Call Ē j ← B3(E j , k)

11: end forreturn {Ē j }L−1
j=0 , where the order of elements is as

in (85)

Then (78) can be written as

D(x) =
k−1∑

i=0

L−1∑

j=0

āi, j XC
j (x)(sC

� (x))i

=
L−1∑

j=0

XC
j (x)

k−1∑

i=0

āi, j (s
C
� (x))i

=
L−1∑

j=0

XC
j (x)E j (s

C
� (x)), (82)

where each

E j (x) =
k−1∑

i=0

āi, j x i j = 0, 1, . . . , L − 1. (83)

Assume E j (x) in the basis X
C is denoted as

E j (x) =
k−1∑

i=0

ēi, j XC
i (x) j = 0, 1, . . . , L − 1. (84)

Then (82) can be written as

D(x) =
L−1∑

j=0

XC
j (x)

k−1∑

i=0

ēi, j XC
i (sC

� (x))

=
L−1∑

j=0

XC
j (x)

k−1∑

i=0

ēi, j XC
i·L (x)

=
L−1∑

j=0

k−1∑

i=0

ēi, j XC
i·L+ j (x), (85)

that is the desired result.
In this approach, we have to convert the basis of Di (x)

(see (79) and (81)) and E j (x) (see (83) and (84)). Both con-
versions can be finished by applying the approach recursively.
The detailed steps are summarized in Algorithm 6
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1) Complexity: Since the approach only takes additions, the
number of multiplications is zero (M(n) = 0). The recurrence
relation is formulated as

A(n) = n

L
· A(L)+ L · A(

n

L
)+O(n lg(

n

L
)). (86)

Since it is not straightforward to see the close form of A(n),
the details are addressed in Appendix C, thereby the result
A(n) = O(n lg(n) lg lg(n)).

C. Inverse Algorithm

The inverse algorithm is the approach converting the basis of
the given polynomial D(x) from X to the monomial basis. It is
straightforward to devise the inverse algorithm by backtracking
the steps of the proposed basis conversion approaches. In the
following, the inverse algorithms for the two approaches are
described. In general, the inverse algorithm has the same
complexity with the corresponding conversion approach, and
thus we do not take much space to describe those inverse
algorithms.

For the inversion of the second approach, we want to
solve (61) in each iteration, where the set of coefficients
{(di,0, di,1)}n/2−1

i=0 is known, and the objective is to calculate

D(x) =∑n−1
i=0 di x i . (61) can be converted to a form of Taylor

expansion with O(n) multiplications. Then the inverse Taylor
expansion, that is presented in Appendix B, is employed.

For the inversion of the third approach, we want to
solve (78) in each iteration, where {Di (x)}k−1

i=0 is known,
and the objective is to compute D(x). With the inverse
algorithm of Taylor expansion, (78) can be solved with
O(n lg(n/L)) operations. The complexity of this approach
takes O(n lg(n) lg lg(n)), the same as the conversion
algorithm.

IX. CONCLUSIONS

In this paper, we proposed an additive FFT over extension
binary fields (as well as fields of constant characteristic p),
where the input polynomial is represented in a new basis.
Based on the proposed FFTs, the encoding/erasure decoding
algorithms for Reed-Solomon codes are proposed. The encod-
ing is in O(n lg(k)) field operations, and the erasure decod-
ing is in O(n lg(n)) field operations. The basis conversion
approaches are also proposed. In particular, for arbitrary m,
the conversion algorithms require O(n lg2(n)) field operations.
For m a power of two, the complexity is O(n lg(n) lg lg(n)).

APPENDIX A
EVALUATING ERROR-LOCATOR POLYNOMIALS WITH

FAST WALSH-HADAMARD TRANSFORMS

In [12], Didier presented an efficient algorithm to compute
(54) and (55). The method is presented here for the purpose
of completeness. The formal derivative of �(x) is given by

�′(x) =
∑

j∈R

∏

y∈R,y 	= j

(x + y).

By substituting x = j ∈ R into �′(x), we have

�′( j) =
∏

y∈R,y 	= j

( j + y) =
∏

y∈F2m ,y 	= j

( j + y)Ry , (87)

where {Ry|y ∈ F2m } is defined as

Ry =
{

1 if y ∈ R;
0 otherwise.

(88)

Let Log(x) denote the discrete logarithm function of F
∗
2m ,

where F
∗
2m contains all nonzero elements in F2m . Precisely,

for each i ∈ F
∗
2m , we have Log(i) = j iff i = α j , where α is

a primitive element of F
∗
2m . Then (87) can be reformulated as

Log(�′( j)) =
⊎

y∈F2m ,y 	= j

RyLog( j + y), ∀ j ∈ R.

Note that the symbol
⊎

means the summation with normal
additions, rather than the additions in extension binary fields.
By letting Log(0) = 0, the above equation can be rewritten as

Log(�′( j)) =
⊎

y∈F2m

RyLog( j + y), ∀ j ∈ R. (89)

Then we consider the construction of �. In the same way,
the elements of � can be formulated as

Log(�( j)) =
⊎

y∈F2m

RyLog( j + y), ∀ j ∈ F2m \ R. (90)

From (89) and (90), we have
⊎

y∈F2m

RyLog( j + y) =
{

Log(�′( j)) if j ∈ R;
Log(�( j)) otherwise.

(91)

In (91), + is the addition in F2m and it can be treated as
exclusive-or operation. Hence, (91) is namely the logical con-
volution [26], [27] that can be efficiently computed with fast
Walsh-Hadamard transforms [28]. The steps of the algorithm
are elaborated as follows.

Let FWT(•) denote the h-point fast Walsh-Hadamard trans-
form (FWHT). An h-point FWHT requires h lg(h) additions.
Define

R̃ = (R0, R1, . . . , R2m−1),

L̃ = (0, Log(ω1), Log(ω2), . . . , Log(ω2m−1)).

(91) is computed by

Rw = FWT(FWT(R̃)× FWT(L̃)), (92)

where × denotes pairwise integer multiplication. Notably,
FWT(L̃) can be precomputed and stored, and thus (92) can
be computed with performing two fast Walsh transforms of
length 2r . We remark that all the above computation can be
performed over modulo 2m − 1. Also note that Rw is the
logarithm of the desired values, and thus the exponent for
each element is computed. In summary, the algorithm requires
O(n lg(n)) modulus additions, O(n) modulus multiplications,
and O(n) exponentiations for n = 2m .

APPENDIX B
TAYLOR EXPANSION

Given D(x) = ∑n−1
i=0 ai x i ∈ F2m [x] and an integer t > 1,

[7] introduced an algorithm to find {ā0,i , ā1,i }m−1
i=0 such that

D(x) =
m−1∑

i=0

(ā0,i + ā1,i x)(x + xt )i ,
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where m = 
n/t�. Firstly, D(x) is divided with (x + xt )k to
obtain

D(x) = D0(x)+ (x + xt )k D1(x), (93)

with k = 2
lg(n/t)�−1. Then the polynomial division is recur-
sively applied to D0(x) and D1(x), until k = 0. Clearly, the
result is the desired output.

To perform the division, the following identity over F2m is
utilized:

(x + xt )k = xk + xtk .

Thus, the division in (93) requires only O(n) additions.
Hence, the Taylor expansion takes a total of O(n lg(n/t)) field
additions.

The inverse approach is straightforward by backtracking
the original algorithm. In (93), we have D0(x) and D1(x),
and the objective is to calculate D(x), that requires O(n)
additions. Thus the inverse of Taylor expansion also requires
O(n lg(n/t)) field additions.

APPENDIX C
COMPLEXITY OF THE SECOND APPROACH

OF THE BASIS CONVERSION

In this appendix, the close form of A(n) in (86) is derived,
for n = 2N . The complexity analysis consists of two parts.
The first part discusses the case for N a power of two. In the
second part, the case for arbitrary N is considered. recall that
L = 2�, where � = 2
lg lg(n)�−1. Hence, for N a power of two,
we have L = n/L = √n. (86) can then be formulated as

A(n) = 2
√

n · A(
√

n)+O(n lg(n)).

By induction, it can be seen that A(n) = O(n lg(n) lg lg(n)).
The case for arbitrary N is considered below. Since L = 2�,

where � = 2
lg lg(n)�−1 is a power of two, we know A(L) =
O(L lg(L) lg lg(L)), and L ≥ n/L. That can be substituted
into (86) to obtain

A(n) = O(n lg(L) lg lg(L))+ L · A(
n

L
)+O(n lg(

n

L
))

⇒ A(n) = L · A(
n

L
)+O(n lg(L) lg lg(L)). (94)

To prove the complexity, assume the big-O term in (94) is
smaller than

O(n lg(L) lg lg(L)) ≤ c0n lg(L) lg lg(L),

with a constant c0. Further, assume A(n) ≤ c1 ·n lg(n) lg lg(n),
for c1 a constant and c1 ≥ c0. Then (94) gives

L · A(
n

L
)+O(n lg(L) lg lg(L))

≤ c1 · n lg(
n

L
) lg lg(

n

L
)+ c0 · n lg(L) lg lg(L)

≤ c1 · n lg(
n

L
) lg lg(L)+ c0 · n lg(L) lg lg(L)

= c1 · n lg(n) lg lg(L)− c1 · n lg(L) lg lg(L)

+ c0 · n lg(L) lg lg(L)

≤ c1 · n lg(n) lg lg(L) (As c1 ≥ c0)

≤ A(n), (95)

and this proofs the assumption.

APPENDIX D
POLYNOMIAL BASIS OVER A FINITE

FIELD OF CHARACTERISTIC p

In this appendix, we extend the basis to finite fields of char-
acteristic p. The algorithm is similar to the approach shown
in Section III. The polynomial basis is for Fpr [x]/(x pr − x),
such that additive FFT in this basis leads to O(n · p logp(n))
field operations. By fixing p a constant, the complexity can
be written as O(n log(n)). The basis is based on the subspace
polynomial over a finite field of characteristic p.

Let v = (v0, v1, . . . , vm−1) denote a basis of Fpm . The
proposed basis X = (

X0(x), X1(x), . . . , X pm−1(x)
)

is respec-
tively defined as

Xi (x) =
k−1∏

j=0

(s j (x))i j , (96)

where i is a base-p integer expressed as

i = i0 + i1 · p + · · · + im−1 · pm−1, 0 ≤ i j ≤ p − 1. (97)

Notice that (s(x))0 = 1, and deg(Xi (x)) = i .
For any D(x) ∈ Fpm [x]/(x pm − x), it can be represented in

the basis X given by

D(x) =
pm−1∑

i=0

ai Xi (x).

In the following, we propose an O(h · p logp(h)) algorithm
to compute {D(a + β)|a ∈ Vk}, where deg(D(x)) < h = pk ,
and β ∈ Fpm .

Given a polynomial D(x) = ∑2k−1
i=0 di Xi (x) of degree

deg(D(x)) < 2k = h in the basis X and β ∈ F2m , this section
presents a algorithm to compute {D(ω)|ω ∈ Vk + β}.

A. Recursive Structure in Polynomial Basis

The polynomial D(x) can be formulated as a recursive
function. Let

D(x) = �0
0(x).

The recursive function is defined as

�r
i (x) =

p−1∑

j=0

(si (x)) j�
r+pi j

i+1 (x), for 0 ≤ i ≤ k − 1; (98)

�r
k(x) = dr , for 0 ≤ r ≤ 2k − 1. (99)

By induction, the coefficients of �r
i (x) are denoted as

�r
i = {d j ·pi+r | j = 0, . . . , pk−i − 1)}. (100)

�m
i (x) possesses the following equality that will be utilized

in the algorithm:
Lemma 8: ∀a ∈ Vm = Fpm and ∀b ∈ Vi , 0 ≤ i ≤ k − 1,

�r
i (a + b) = �r

i (a). (101)
Proof: By definition, s̄i (b) = 0, ∀b ∈ Vi . From Lemma 2,

we have

si (a + b) = si (a)+ si (b) = si (a), ∀b ∈ Vi . (102)
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The proof is based on the mathematical induction on i . In the
base case i = k − 1, (98) can be written as

�r
k−1(x) =

p−1∑

j=0

(sk−1(x)) j�
r+p(k−1) j

k (x)

=
p−1∑

j=0

(sk−1(x)) j dr+p(k−1) j . (103)

From (102), we have

�r
k−1(a + b) =

p−1∑

j=0

(sk−1(a + b)) j dr+p(k−1) j

=
p−1∑

j=0

(sk−1(a)) j dr+p(k−1) j

= �r
k−1(a), ∀b ∈ Vk−1. (104)

Thus (101) holds for i = k − 1. Assume (101) holds for i =
�+ 1. When i = �, we have

�r
�(a + b) =

p−1∑

j=0

(s�(a + b)) j�
r+p�j

�+1 (a + b)

=
p−1∑

j=0

(s�(a)) j�
r+p�j

�+1 (a)

= �r
�(a), ∀b ∈ V�. (105)

This completes the proof. �

B. Proposed Algorithm

Let

V k
j = Span(v j , v j+1, . . . , vk−1), 0 ≤ j ≤ k ≤ m − 1,

(106)

denote an (k − j)-dimensional subspace in Fpm . Let

�β(i, r) = {�r
i (ω)|ω ∈ V k

i + β}, i = 0, . . . , k − 1; (107)

�β(k, r) = {dr }. (108)

The objective of algorithm is to find out �β(0, 0). In the
following, we rearrange �β(i, r) into p parts �β(i+1, r+pi j ),
for j = 0, 1, . . . , p − 1.

As

V k
i = V k

i+1 ∪ (V k
i+1 + vi ),

(107) can be divided into p individual subsets

�
( j )
β (i, r) = {�r

i (ω + j · vi )|ω ∈ V k
i+1 + β}

j = 0, 1, . . . , p − 1. (109)

To evaluate each element of �
( j )
β (i, r), from (98), we have

�r
i (ω + j · vi )

=
p−1∑

j=0

(si (ω + j · vi ))
j�

r+pi j

i+1 (ω + j · vi )

=
p−1∑

j=0

(si (ω + j · vi ))
j�

r+pi j

i+1 (ω) ∀ω ∈ V k
i+1 + β. (110)

It can be seen that �
r+pi j

i+1 (ω) ∈ �β(i + 1, r + pi j ), for

j = 0, 1, . . . , p−1. Hence, for each element of �
(0)
β (i, r), the

calculation requires p−1 multiplications and p−1 additions.
Let A(h) and M(h) respectively denote the number of addi-

tions and multiplications used in the algorithm. The recurrence
relation is formulated as

A(h) = p × A(h/p)+O(hp);
M(h) = p × M(h/p) +O(hp). (111)

The solution is given by

A(h) = M(h) = O(hp logp(h)).

REFERENCES

[1] J. M. Pollard, “The fast Fourier transform in a finite field,” Math.
Comput., vol. 25, no. 114, pp. 365–374, 1971.

[2] L. Bluestein, “A linear filtering approach to the computation of discrete
Fourier transform,” IEEE Trans. Audio Electroacoust., vol. 18, no. 4,
pp. 451–455, Dec. 1970.

[3] A. Schönhage, “Schnelle multiplikation von polynomenüber körpern der
charakteristik 2,” Acta Inf., vol. 7, no. 4, pp. 395–398, 1977. [Online].
Available: http://dx.doi.org/10.1007/BF00289470

[4] Y. Wang and X. Zhu, “A fast algorithm for the Fourier transform over
finite fields and its VLSI implementation,” IEEE J. Sel. Areas Commun.,
vol. 6, no. 3, pp. 572–577, Apr. 1988.

[5] D. G. Cantor, “On arithmetical algorithms over finite fields,”
J. Combinat. Theory A, vol. 50, no. 2, pp. 285–300, Mar. 1989.

[6] J. von zur Gathen and J. Gerhard, “Arithmetic and factorization of
polynomial over F2,” in Proc. Int. Symp. Symbolic Algebraic Comput.,
Zurich, Switzerland, 1996, pp. 1–9.

[7] S. Gao and T. Mateer, “Additive fast Fourier transforms over finite
fields,” IEEE Trans. Inf. Theory, vol. 56, no. 12, pp. 6265–6272,
Dec. 2010.

[8] S.-J. Lin, T. Y. Al-Naffouri, and Y. S. Han, “FFT algorithm for binary
extension finite fields and its application to Reed–Solomon codes,” IEEE
Trans. Inf. Theory, vol. 62, no. 10, pp. 5343–5358, Oct. 2016.

[9] O. Ore, “On a special class of polynomials,” Trans. Amer. Math. Soc.,
vol. 35, no. 3, pp. 559–584, Jul. 1933.

[10] O. Ore, “Contributions to the theory of finite fields,” Trans. Amer. Math.
Soc., vol. 36, no. 2, pp. 243–274, Apr. 1934.

[11] S. J. Lin and W. H. Chung, “An efficient (n, k) information disper-
sal algorithm based on fermat number transforms,” IEEE Trans. Inf.
Forensics Security, vol. 8, no. 8, pp. 1371–1383, Aug. 2013.

[12] F. Didier, “Efficient erasure decoding of Reed–Solomon codes,” CoRR,
vol. abs/0901.1886, 2009.

[13] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 300–304, Jun. 1960.

[14] J. Justesen, “On the complexity of decoding Reed–Solomon codes
(Corresp.),” IEEE Trans. Inf. Theory, vol. 22, no. 2, pp. 237–238,
Mar. 1976.

[15] R. Blahut, “A recursive berlekamp-massey algorithm,” in Theory and
Practice of Error Control Codes. Boston, MA, USA: Addison-Wesley,
1983, ch. 11.7, pp. 336–340.

[16] F. MacWilliams and N. Sloane, “Generalized BCH codes,” in Theory
of Error-Correcting Codes. Oxford, U.K.: North-Holland, 1977, ch. 12,
pp. 332–369.

[17] I. S. Reed, T. K. Truong, and L. R. Welch, “The fast decoding of
Reed–Solomon codes using number theoretic transforms,” in Deep
Space Network 42-35. Pasadena, CA, USA: Jet Propulsion Laboratory,
Jul. 1976, pp. 64–78.

[18] I. S. Reed, R. Scholtz, T.-K. Truong, and L. Welch, “The fast decoding
of Reed–Solomon codes using fermat theoretic transforms and continued
fractions,” IEEE Trans. Inf. Theory, vol. 24, no. 1, pp. 100–106,
Jan. 1978.

[19] A. Sora and J. Lacan, “FNT-based Reed–Solomon erasure codes,” in
Proc. 7th IEEE Conf. Consum. Commun. Netw. Conf., Las Vegas,
Nevada, USA, Jan. 2010, pp. 466–470.

[20] S. J. Lin and W. H. Chung, “An efficient (n, k) information dispersal
algorithm for high code rate system over fermat fields,” IEEE Commun.
Lett., vol. 16, no. 12, pp. 2036–2039, Dec. 2012.



LIN et al.: NOVEL POLYNOMIAL BASIS WITH FFT AND ITS APPLICATION 6299

[21] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital
fountain approach to reliable distribution of bulk data,” SIGCOMM
Comput. Commun. Rev., vol. 28, no. 4, pp. 56–67, Oct. 1998.

[22] M. Luby, “LT codes,” in Proc. 43rd Annu. IEEE Symp. Found. Comput.
Sci., Nov. 2002, pp. 271–280.

[23] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6,
pp. 2551–2567, Jun. 2006.

[24] X. Wu, Y. Wang, and Z. Yan, “On algorithms and complexities of
cyclotomic fast Fourier transforms over arbitrary finite fields,” IEEE
Trans. Signal Process., vol. 60, no. 3, pp. 1149–1158, Mar. 2012.

[25] D. Sarwate, “Semi-fast Fourier transforms over GF(2m),” IEEE Trans.
Comput., vol. C-27, no. 3, pp. 283–285, Mar. 1978.

[26] J. E. Gibbs and F. Pichler, “Comments on transformation of ‘Fourier’
power spectra into ‘Walsh’ power spectra,” IEEE Trans. Electromagn.
Compat., vol. EMC-13, no. 3, pp. 51–54, Aug. 1971.

[27] G. Robinson, “Logical convolution and discrete Walsh and Fourier
power spectra,” IEEE Trans. Audio Electroacoust., vol. 20, no. 4,
pp. 271–280, Oct. 1972.

[28] B. Fino and V. Algazi, “Unified matrix treatment of the fast Walsh–
Hadamard transform,” IEEE Trans. Comput., vol. C-25, no. 11,
pp. 1142–1146, Nov. 1976.

Sian-Jheng Lin (M’16) received the B.Sc., M.Sc., and Ph.D. degrees in
computer science from National Chiao Tung University, Hsinchu, Taiwan,
in 2004, 2006, and 2010, respectively. From 2010 to 2014, he was a
postdoc with the Research Center for Information Technology Innovation,
Academia Sinica. From 2014 to 2016, He was a postdoc with the Elec-
trial Engineering Department at King Abdullah University of Science and
Technology (KAUST), Thuwal, Saudi Arabia. He was a part-time lecturer
at Yuanpei University from 2007 to 2008, and at Hsuan Chuang University
From 2008 to 2010. He is currently a project researcher with the School of
Information Science and Technology at University of Science and Technology
of China (USTC), Hefei, China. In recent years, his research focus on the
algorithms of MDS codes and its applications to storage systems.

Tareq Y. Al-Naffouri (M’10) received the B.S. degrees in mathematics
and electrical engineering (with first honors) from King Fahd University of
Petroleum and Minerals, Dhahran, Saudi Arabia, the M.S. degree in electrical
engineering from the Georgia Institute of Technology, Atlanta, in 1998, and
the Ph.D. degree in electrical engineering from Stanford University, Stanford,
CA, in 2004.

He was a visiting scholar at California Institute of Technology, Pasadena,
CA, from January to August 2005 and during summer 2006. He was a
Fulbright scholar at the University of Southern California from February to
September 2008. He has held internship positions at NEC Research Labs,
Tokyo, Japan, in 1998, Adaptive Systems Lab, University of California at
Los Angeles in 1999, National Semiconductor, Santa Clara, CA, in 2001 and
2002, and Beceem Communications Santa Clara, CA, in 2004. He is cur-
rently an Associate at the Electrical Engineering Department, King Abdullah
University of Science and Technology (KAUST). His research interests lie
in the areas of sparse, adaptive, and statistical signal processing and their
applications and in network information theory. He has over 150 publications
in journal and conference proceedings, 9 standard contributions, 10 issued
patents, and 6 pending.

Dr. Al-Naffouri is the recipient of the IEEE Education Society Chapter
Achievement Award in 2008 and Al-Marai Award for innovative research in
communication in 2009. Dr. Al-Naffouri has also been serving as an Associate
Editor of Transactions on Signal Processing since August 2013.

Yunghsiang S. Han (S’90–M’93–SM’08–F’11) was born in Taipei, Taiwan,
1962. He received B.Sc. and M.Sc. degrees in electrical engineering from
the National Tsing Hua University, Hsinchu, Taiwan, in 1984 and 1986,
respectively, and a Ph.D. degree from the School of Computer and Infor-
mation Science, Syracuse University, Syracuse, NY, in 1993. He was from
1986 to 1988 a lecturer at Ming-Hsin Engineering College, Hsinchu, Taiwan.
He was a teaching assistant from 1989 to 1992, and a research associate in
the School of Computer and Information Science, Syracuse University from
1992 to 1993. He was, from 1993 to 1997, an Associate Professor in the
Department of Electronic Engineering at Hua Fan College of Humanities and
Technology, Taipei Hsien, Taiwan. He was with the Department of Computer
Science and Information Engineering at National Chi Nan University, Nantou,
Taiwan from 1997 to 2004. He was promoted to Professor in 1998. He was
a visiting scholar in the Department of Electrical Engineering at University
of Hawaii at Manoa, HI from June to October 2001, the SUPRIA visiting
research scholar in the Department of Electrical Engineering and Computer
Science and CASE center at Syracuse University, NY from September 2002
to January 2004 and July 2012 to June 2013, and the visiting scholar in the
Department of Electrical and Computer Engineering at University of Texas
at Austin, TX from August 2008 to June 2009. He was with the Graduate
Institute of Communication Engineering at National Taipei University, Taipei,
Taiwan from August 2004 to July 2010. From August 2010, he is with
the Department of Electrical Engineering at National Taiwan University of
Science and Technology as Chair Professor. He is also a Chair Professor at
National Taipei University from February 2015. His research interests are in
error-control coding, wireless networks, and security.

Dr. Han was a winner of the 1994 Syracuse University Doctoral Prize and
a Fellow of IEEE. One of his papers won the prestigious 2013 ACM CCS
Test-of-Time Award in cybersecurity.

Wei-Ho Chung (M’10) received the B.Sc. and M.Sc. degrees in Electrical
Engineering from the National Taiwan University, Taipei, Taiwan, in 2000
and 2002, respectively, and the Ph.D. degree in Electrical Engineering from
the University of California, Los Angeles, in 2009. From 2002 to 2005, he
was a system engineer at ChungHwa Telecommunications Company, where
he worked on data networks. In 2008, he worked on CDMA systems at
Qualcomm, Inc., San Diego, CA. His research interests include communica-
tions, signal processing, and networks. Dr. Chung received the Taiwan Merit
Scholarship from 2005 to 2009 and the Best Paper Award in IEEE WCNC
2012, and has published over 40 journal articles and over 50 conference
papers. Since January 2010, Dr. Chung has been an assistant research fellow,
and promoted to the rank of associate research fellow in January 2014 in
Academia Sinica. He leads the Wireless Communications Lab in the Research
Center for Information Technology Innovation, Academia Sinica, Taiwan.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChancery-MediumItalic
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


