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This paper presents a novel locally linear embedding (LLE)-based framework for 

exemplar-based spectral conversion (SC). The key feature of the proposed SC framework 
is that it integrates the LLE algorithm, a manifold learning method, with the conventional 
exemplar-based SC method. One important advantage of the LLE-based SC framework 
is that it can be applied to either one-to-one SC or many-to-one SC. For one-to-one SC, a 
parallel speech corpus consisting of the pre-specified source and target speakers’ 
speeches is used to construct the paired source and target dictionaries in advance. During 
online conversion, the LLE-based SC method converts the source spectral features to the 
target like spectral features based on the paired dictionaries. On the other hand, when ap-
plied to many-to-one SC, our system is capable of converting the voice of any unseen 
source speaker to that of a desired target speaker, without the requirement of collecting 
parallel training speech utterances from them beforehand. To further improve the quality 
of the converted speech, the maximum likelihood parameter generation (MLPG) and 
global variance (GV) methods are adopted in the proposed SC systems. Experimental 
results demonstrate that the proposed one-to-one SC system is comparable with the 
state-of-the-art Gaussian mixture model (GMM)-based one-to-one SC system in terms of 
speech quality and speaker similarity, and the many-to-one SC system can approximate 
the performance of the one-to-one SC system.     

 
Keywords: voice conversion, locally linear embedding, exemplar-based, many-to-one, 
manifold learning. 
 
 

1. INTRODUCTION 
 

Voice conversion (VC) is a technique that converts one type of speech to another, 
without changing the linguistic content. Many applications based on this technique have 
been proposed, such as impaired speech to normal speech conversion [1], narrowband 
speech to wideband speech conversion [2], singing VC [3], and body-transmitted speech 
enhancement [4]. A typical one is speaker VC [5], which converts a source speaker’s 
speech to a target speaker’s speech. Generally speaking, speaker VC involves spectral, 
prosodic, and excitation conversions. In this study, we focus on spectral conversion (SC), 
whereas a simple linear transformation of F0 is applied for prosodic conversion. 

Numerous SC methods have been proposed during the last two decades. In general, 
most methods assume that both source and target speech utterances are available in the 
offline stage. We refer to the SC methods following this assumption as one-to-one SC. In 
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order to make VC more practically applicable, a more flexible VC framework without 
such assumption or limitation in one-to-one SC is desirable. To tackle this issue, several 
flexible frameworks have been proposed, such as many-to-one SC [6-8], one-to-many SC 
[6, 9], and many-to-many SC [10-12]. Unlike the assumption in one-to-one SC, 
many-to-one, one-to-many, and many-to-many SCs respectively assume that no training 
data from source, target, and both are available in the offline stage. In this study, we fo-
cus on one-to-one and many-to-one SCs. 

Among the one-to-one SC methods, statistical methods have become the main-
stream method due to their abilities to effectively model the relationship between the 
source and target speakers’ spectral features [5, 13-25]. Generally speaking, they can be 
categorized into linear and nonlinear methods. Many linear methods have been proposed, 
such as the Gaussian mixture model (GMM)-based methods [5, 13-15], partial least 
squares (PLS) regression [16], and local linear transformation [17]. Although these linear 
methods are reasonably effective, using linear conversion functions for SC is insufficient 
to model the complex relationship between the source and target speakers' spectral fea-
tures. To overcome this limitation, several nonlinear methods have been proposed, such 
as dynamic kernel PLS [18] and the neural network-based methods [19-25]. Because of 
the statistical average nature inherent in the statistical methods, the converted spectra 
may be overly smoothed, thereby causing the converted speech to sound “muffled”, 
which is known as the over-smoothing problem. To overcome this problem, the global 
variance (GV) [14] and modulation spectrum (MS) [15] methods have been proposed. 
Although notable improvements have been achieved, the loss of spectral details in the 
converted spectra may be observed due to the fact that the statistical methods usually 
conduct SC on the low-dimensional spectral features, such as mel-ceptral coefficients 
(MCCs) [26] and line spectral pair [27], due to the advantages of high computational 
efficiency and no curse of dimensionality [5, 13-22]. 

Some SC methods have been proposed to tackle the speech quality deterioration 
problem by directly operating on the high-dimensional spectral features, e.g., the spectral 
envelopes (SEs). For instance, the frequency warping (FW) methods were proposed to 
shift the source SEs to match the target SEs using a warping function [28-30]. The deep 
neural network-based methods were proposed to learn the mapping between the source 
and target SEs [23-25]. The exemplar-based methods were proposed to generate the 
converted SEs using the weighted linear combination of the target SE exemplars, where 
the weights were estimated by nonnegative matrix factorization (NMF) [31-33] or a lo-
cally linear embedding (LLE) method [34]. In contrast, in [35], the authors combined 
GMM-based and exemplar-based methods by selecting the target exemplar closest to the 
converted features as the SC output. 

On the other hand, for many-to-one SC, the aim is to convert the voices of any arbi-
trary source speakers to that of a desired target speaker. In [6], the authors proposed an 
eigenvoice GMM (EV-GMM) approach, which realized many-to-one and one-to-many 
VCs by estimating the eigen-vector of an arbitrary speaker from the pre-stored multiple 
speakers’ speech corpora. In [7], the authors used NMF to realize many-to-one VC.  
Their approach attempted to decompose the source and target speakers’ spectra into two 
categories of information, namely speaker individuality and speaker independent infor-
mation (e.g., phoneme information), within an NMF-based SC framework. In [8], the 
authors adopted a deep bidirectional long short term memory (DBLSTM) based recurrent 
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neural network (RNN) to model the relationship between Phonetic PosteriorGrams 
(PPGs) and target speaker’s spectral features, where PPGs were obtained by applying a 
speaker-independent automatic speech recognition (SI-ASR) system to target speaker’s 
spectral features. Once built, the DBLSTM was applied to predict the target speaker’s 
spectral features from PPGs obtained by applying the same SI-ASR system to source 
speaker’s spectral features at run-time conversion. The key idea is to bridge speakers by 
means of PPGs obtained from the SI-ASR system.   

In this paper, we present a novel LLE-based framework for exemplar-based SC 
(called the LLE-exemplar-based SC framework hereafter). One important advantage of 
the proposed framework is that it can be applied to either one-to-one SC or many-to-one 
SC. The key idea of the proposed SC systems is to adopt LLE, a classical manifold 
learning method, to characterize the local geometry of the source spectral features (pre-
cisely speaking, the local geometry of the locally linear patches in the source spectral 
feature space) by using either source speaker’s spectral feature vectors/exemplars (for 
one-to-one SC) or multiple speakers’ exemplars (for many-to-one SC). Then, the recon-
struction weights of the source speech are determined (with the aim of minimizing the 
local reconstruction error) and used to generate the converted spectral features. By doing 
so, we assume that some characteristics of an input (source) natural speech utterance 
(characterized by LLE) can be preserved in the converted speech during the online con-
version stage. To further improve the quality of the converted speech, the maximum 
likelihood parameter generation (MLPG) [14, 36] and GV [37] methods are adopted in 
the proposed SC systems.  

Note that LLE-based one-to-one SC has been published in a conference paper [34]. 
In this paper, we present more details, discussions, and evaluations of our LLE-based 
one-to-one SC system, e.g., investigating different spectral features. We also extend the 
one-to-one SC system to a many-to-one SC system, which is designed based on the as-
sumption that some of the multiple speakers available in the offline stage share similar 
acoustic characteristics to an unknown source speaker, and thus the local geometry of the 
source spectral features can be characterized by LLE with these speakers’ dictionaries 
(composed by their speech corpora). The underlying idea comes from the intuition that 
there exist some speakers whose voices sound like the voice of the source speaker. After 
charactering the local geometry by using multiple speakers’ dictionaries, conversion is 
conducted in the same way as one-to-one SC. 

The remainder of this paper is organized as follows. Manifold learning, in particular 
the LLE algorithm, is briefly reviewed in Section 2. The proposed LLE-exemplar-based 
SC framework for one-to-one and many-to-one SCs are described in detail in Section 3. 
Experimental setup and results are presented in Section 4. Finally, Section 5 gives the 
conclusions. 

2. MANIFOLD LEARNING 

Manifold learning is a method for nonlinear dimensionality reduction (DR) [38]. It 
plays an essential role in the development of various techniques and applications, such as 
representation learning [39], data visualization [40] and super-resolution [41]. Numerous 
manifold learning methods have been proposed, such as isometric feature mapping (Iso-
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map) [42], Laplacian eigenmap (LE) [43], and LLE [44]. These manifold learning meth-
ods compute low-dimensional embeddings of high-dimensional input data by discovering 
an underlying low-dimensional manifold (the intrinsic geometry of the data distribution) 
in a high-dimensional data space and embedding them onto a low-dimensional embed-
ding space. The proposed SC framework is based on the LLE algorithm. 

The LLE algorithm addresses the problem of nonlinear DR by computing the 
low-dimensional neighborhood preserving embeddings of high-dimensional data. Let 
each high-dimensional input data point be sampled from an underlying low-dimensional 
manifold and a sufficient number of data be provided, LLE assumes that the manifold is 
locally linear, and each data point and its neighbors lie on or close to a locally linear 
patch of the manifold. A manifold can be visualized as a collection of overlapping locally 
linear patches if the neighborhood size is small and the manifold is sufficiently smooth. 
Under this condition, the local geometry of a patch (i.e., the local geometry in the neigh-
borhood of each data point) can be characterized by the reconstruction weights that re-
construct each data point from its neighbors. Then, the same reconstruction weights are 
used for computing the low-dimensional embedding such that the local geometry of the 
patch is preserved in the low-dimensional embedding space. The LLE algorithm for DR 
has three steps: 

(a) Finding K nearest neighbors for each data point. 
(b) Computing the reconstruction weights that best (linearly) reconstruct each data 

point from its K nearest neighbors found in step (a). 
(c) Estimating the low-dimensional embedding for each data point by applying the 

reconstruction weights obtained in step (b). 
The steps (a), (b), and (c) involve identifying each locally linear patch, charactering 

the local geometry of each locally linear patch, and preserving the local geometry in the 
low-dimensional embedding space, respectively. 

3. THE PROPOSED LLE-EXEMPLAR-BASED SPECTRAL CONVER-
SION FRAMEWORK 

The proposed SC framework can operate on either SEs or MCCs. For convenience, 
in this section, we refer to the SEs and MCCs as the “spectral features”. 

3.1 One-To-One Spectral Conversion 

Fig. 1 gives an overview of the proposed one-to-one SC system. There are two 
stages: the offline and online stages. The offline stage mainly involves the construction 
of the paired dictionaries while the online stage performs SC. In the following, we de-
scribe the proposed one-to-one SC system in detail. 

(A) The Offline Stage 
As shown in Fig. 1, the paired source speaker and target speaker dictionaries are 

constructed in the following steps: 
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(a) Preparing a parallel speech corpus consisting of the source and target speakers’ 
voices. 

(b) Extracting the spectral features (composed of static, delta, and delta-delta features) 
from the source and target speakers’ voices. 

(c) Performing dynamic time warping (DTW) to align the spectral feature vector se-
quence of the source speaker and that of the target speaker to obtain the aligned 
source and target spectral features. 

(d) Constructing the paired dictionaries from the aligned source and target spectral 
features. 

Note that after conducting step (b), some target statistics to be used in the MLPG 
and GV methods are estimated from the target spectral features, such as the precision 
matrix and target GV. The MLPG and GV methods will be described later. Besides, after 
conducting step (c), when multiple source frames are aligned with a certain target frame, 
or multiple target frames are aligned with a certain source frame, only one source-target 
frame pair is kept and used to construct the paired dictionaries. This avoids duplicated 
source frames being selected in the K nearest neighbors selection step during run-time 
conversion, which might incorrectly characterize the local geometry of the source spec-
tral features. A similar problem exists when the K target exemplars corresponding to the 
K nearest source neighbors contain duplicated frames. The necessity of this strategy has 
been confirmed in our preliminary results.  

Let 3D N×∈A   and 3D N×∈B   (as shown in Fig. 1) be the source speaker and tar-
get speaker dictionaries, and be composed of the source and target spectral feature vec-

 
Fig. 1. Overview of the offline and online stages of the proposed one-to-one SC system. 
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tors (or called exemplars) as 1, , , ,n N =  A A A A   and 1, , , ,n N =  B B B B  , respec-

tively, where the numbers of exemplars in both dictionaries are N; 3 1D
n

×∈A   is the n-th 
source exemplar in the source speaker dictionary A , and is composed of the 
D-dimensional static 1D

n
×∈a  , delta (1) 1D

n
×∆ ∈a  , and delta-delta (2) 1D

n
×∆ ∈a   fea-

tures as (1) (2), ,n n n n

ΤΤ Τ Τ = ∆ ∆ A a a a  (for n=1~N), where the superscript Τ  denotes trans-

position of the vector. Likewise, 3 1D
n

×∈B   is the n-th target exemplar in the target 
speaker dictionary B , and is composed of the D-dimensional static 1D

n
×∈b  , delta 

(1) 1D
n

×∆ ∈b  , and delta-delta (2) 1D
n

×∆ ∈b   features as (1) (2), ,n n n n

ΤΤ Τ Τ = ∆ ∆ B b b b  (for 
n=1~N). 

(B) The Online Stage 
From Fig. 1, given a source speech for conversion, spectral feature extraction is 

performed to extract a sequence of the source spectral feature vectors { }3 1

1

TD
t t

×

=
∈X  , 

where T is the number of speech frames of the source speech; tX  is the source spectral 
feature vector at frame t, and is composed of the D-dimensional static 1D

t
×∈x  , delta 

(1) 1D
t

×∆ ∈x  , and delta-delta (2) 1D
t

×∆ ∈x  features as (1) (2), ,T T T
t t t t

Τ
 = ∆ ∆ X x x x  (for 

t=1~T). Then, the LLE-based SC method is applied to convert the source spectral feature 
vectors { } 1

T
t t=

X  (independently in a frame-by-frame manner) to obtain a sequence of the 

converted spectral feature vectors { }3 1

1
ˆ TD

t t

×

=
∈Y  , where ˆ

tY  is the converted spectral 

feature vector at frame t. In order to further improve the quality of the converted speech, 
the MLPG and GV methods (denoted as “MLPG+GV” in Fig. 1) are applied to the con-

verted spectral feature vectors { }
1

ˆ T

t t=
Y  to generate a final sequence of converted static 

spectral feature vectors { }1
1

ˆ
TD

t t

×

=
′ ∈y  , where ˆ t′y  is the final converted static spectral 

feature vector at frame t. Next, we describe the LLE-based SC, MLPG, and GV methods 
in detail. 

(C) The LLE-Based SC Method 
The LLE-based SC method for an arbitrary input source spectral feature vector (say 

tX for example) has three steps: 
(a) Finding K nearest neighbors (measured by the Euclidean distance) of tX  from 

the source speaker dictionary. 
(b) Computing the reconstruction weight vector that best (linearly) reconstructs tX  

from its K nearest neighbors found in step (a). 
(c) Estimating the target spectral feature vector (at frame t) by linearly combining K 

target exemplars (paired/aligned with the K nearest neighbors of tX ) in the tar-
get speaker dictionary with the reconstruction weight vector obtained in step (b). 

The steps (a) and (b) involve identifying the locally linear patch and charactering 
the local geometry of the locally linear patch, respectively, as described in steps (a) and 
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(b) of the LLE algorithm for DR. On the other hand, the step (c) involves estimating the 
target spectral feature vector by preserving the local geometry of the source spectral fea-
tures, as opposed to estimating the low-dimensional embedding in step (c) of the LLE 
algorithm for DR.  

Specifically, we implement steps (b) and (c) as follows. In step (b), the reconstruc-
tion weight vector is computed by minimizing the reconstruction error tε  subject to the 
constraint 1t

Τ =1 w  (for the purpose of translational invariance) at frame t: 

2 ,  s.t. 1t t t t tε Τ= − =X A w 1 w ,                  (1) 

where 3D K
t

×∈A   is a matrix (a subset of the source speaker dictionary) composed of K 

nearest neighbors of tX , i.e., ,1 , ,, , , ,t t t k t K =  A a a a  , where 3 1
,

D
t k

×∈a   is the k-th 
nearest neighbor of tX ; 1K

t
×∈w   is the reconstruction weight vector at frame t; and 

1K×∈1  is a vector whose elements are all ones. Note that tA  can be obtained in step 
(a). Solving tw by minimizing tε  subject to the constraint is a constrained least square 
problem, and the closed-form solution can be found in [34, 45]. A more efficient way to 
obtain tw  is to solve the linear system of equations in advance:  

t t =G w 1 ,                                   (2) 

where K K
t

×∈G   is the local Gram matrix for tX : 

( ) ( )t t t t t

ΤΤ Τ= − −G A X 1 A X 1 .                   (3) 

Then, the reconstruction weight vector is rescaled to satisfy the constraint 1t
Τ =1 w . The 

detailed derivations of the solution can be found in [45]. 
In step (c), with the assumption that the source and target spectral feature vectors 

share a similar local geometry in their respective spectral feature spaces (manifolds), the 
converted spectral feature vector ˆ

tY  at frame t can be obtained by 

ˆ
t t t=Y B w ,                                  (4) 

where the reconstruction weight vector tw  is obtained in step (b); 3D K
t

×∈B  is a ma-
trix (a subset of the target speaker dictionary) corresponding to tA , and is composed of 
K target exemplars, i.e., ,1 , ,, , , ,t t t k t K =  B b b b 

, where 3 1
,

D
t k

×∈b   is the k-th target 
exemplar in tB  corresponding to (paired/aligned with) ,t ka .  

Once the frame-by-frame conversion process is finished, a sequence of converted 
spectral feature vectors { }

1
ˆ T

t t=
Y  can be obtained. 

(D) The MLPG and GV Methods 
Since the LLE-based SC method is performed in a frame-by-frame manner, the dis-
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continuity problem, which is often encountered in frame-based SC systems, exists. Be-
sides, it also has the over-smoothing effect, which is often observed in the statistical SC 
methods. In this study, we adopt the MLPG and GV methods in the LLE-based SC 
framework to handle the discontinuity and over-smoothing problems, respectively. 

1) The MLPG Method: The MLPG method [14, 36] applied to the proposed method 
is given as 

1 ˆˆ ( )Τ − Τ=y M ΛM M ΛY ,                         (5) 

where 1
1ˆ ˆ ˆ ˆ, , , , DT

t T

ΤΤ Τ Τ × = ∈ y y y y    is the sequence of the converted static spectral fea-

ture vectors; 1ˆ D
t

×∈y  is the converted static feature vector at frame t; 3DT DT×∈M   is a 
weighting matrix (given by [14, 36]) used for appending the dynamic features to the stat-
ic ones; 3 1

1
ˆ ˆ ˆ ˆ[ , , , , ] DT

t T
Τ Τ Τ Τ ×= ∈Y Y Y Y    is the converted spectral feature vector sequence 

obtained by Eq. (4); 3 3
1diag[ , , , , ] DT DT

t T
×= ∈(Y) (Y) (Y)Λ Λ Λ Λ    is the global precision ma-

trix, where 3 3D D
t

×∈(Y)Λ   is the precision matrix (at frame t) estimated from the target 
speaker’s training data (target spectral feature vectors), which is assumed to be diagonal. 
Note that 1 t T= = = =(Y) (Y) (Y)Λ Λ Λ 

. 

2) The GV Method: The converted static spectral feature vector sequence ŷ  ob-
tained by Eq. (5) is further processed by the postfiltering-based GV compensation meth-
od [37] as 

( )( )ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
var( )

v
t t

d
y d y d y d y d

d
µ′ = − + ,             (6) 

where the index d=1~D; ˆ ( )ty d′  is the d-th element of the final converted feature vector 
ˆ t′y ; ˆ ( )ty d  is the d-th element of ˆ ty  obtained by Eq. (5); ( )v dµ  is the d-th element of 

the mean vector of the target GV, which is obtained using the GVs of the target feature 
vector sequences calculated from individual utterances in the training data as described in 
[14]; ˆ( )y d  and var( )d  are the mean and variance of the d-th component of the con-
verted static spectral feature vector, and can be calculated as  

1

1ˆ ˆ( ) ( )
T

t
t

y d y d
T =

= ∑ ,                           (7) 

( )2

1

1 ˆ ˆvar( ) ( ) ( )
T

t
t

d y d y d
T =

= −∑ .                 (8) 

3.2 Many-To-One Spectral Conversion 

One important advantage of the proposed LLE-exemplar-based SC framework is 
that it can be readily extended from one-to-one SC to many-to-one SC simply by replac-
ing the paired source speaker and target speaker dictionaries in the one-to-one SC system 
to the paired global source speaker and target speaker dictionaries without modifying the 
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kernel methods in the online stage of the one-to-one SC system. Specifically, the global 
source speaker dictionary is constructed by using multiple speakers’ speech corpora. As 
shown in Fig. 2, like its one-to-one counterpart, the many-to-one SC system also contains 
two stages: the offline and online stages. 

(A) The Offline Stage 
As shown in Fig. 2, the offline stage mainly involves the construction of the paired 

global source speaker (SPKGS Dictionary) and target speaker dictionaries (SPKTgt Dic-
tionary) in the following steps: 

(a) Preparing a parallel speech corpus consisting of multiple speakers’ voices and the 
desired target speaker’s voices in advance. Then, each of the multiple speakers 
and the target speaker are formed a pair in turn (called a “known source”-target 
pair). 

(b) Constructing the paired dictionaries ( sU  and sV ) for each “known 
source”-target pair in the same way as constructing the paired source speaker and 
target speaker dictionaries (i.e., A  and B ) in the one-to-one SC system. 

(c) Constructing the paired SPKGS and SPKTgt dictionaries by combining all the 
paired dictionaries obtained in step (b). 

Like the one-to-one SC system, the target statistics to be used in the MLPG and GV 
methods are estimated, and the duplicated frames are not included in the paired diction-
aries. 

Let the SPKGS and SPKTgt dictionaries be denoted as { }
1

S

s s=
U  and { }

1

S

s s=
V  (as shown 

in Fig. 2), respectively, where both SPKGS and SPKTgt dictionaries contain S component 
dictionaries; 3 sD N

s
×∈U   is the s-th known source speaker’s dictionary in the SPKGS 

 

Fig. 2. Overview of the offline and online stages of the proposed many-to-one SC system. 
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dictionary, and is composed by the s-th known source speaker’s spectral feature vectors 
(exemplars), i.e., ,1 , ,, , , ,

ss s s n s N =  U U U U  ; 3 1
,

D
s n

×∈U   is the n-th exemplar in sU , 

and is composed by the D-dimensional static 1
,

D
s n

×∈u  , delta (1) 1
,

D
s n

×∆ ∈u  , and del-

ta-delta  (2) 1
,

D
s n

×∆ ∈u  features as (1) (2)
, , , ,, ,s n s n s n s n

ΤΤ Τ Τ = ∆ ∆ U u u u , for s=1~S and n=1~Ns. 

Likewise, 3 sD N
s

×∈V  is the target speaker dictionary corresponding to sU , and is com-

posed by the target exemplars ,1 , ,, , , ,
ss s s n s N =  V V V V  that are aligned with 

,1 , ,, , , ,
ss s s n s N =  U U U U  . 3 1

,
D

s n
×∈V  is the n-th target exemplar in sV  corresponding 

to ,s nU , and is composed by the D-dimensional static 1
,

D
s n

×∈v  , delta (1) 1
,

D
s n

×∆ ∈v  , 

and delta-delta (2) 1
,

D
s n

×∆ ∈v  features as (1) (2)
, , , ,, ,s n s n s n s n

ΤΤ Τ Τ = ∆ ∆ V v v v , for s=1~S and 

n=1~Ns. The number of exemplars in sU  and sV , 1 ~s S= , is sN . 

(B) The Online Stage 
The many-to-one SC system performs SC in the same way as the one-to-one SC 

system. Given a source speech for conversion, spectral feature extraction is performed to 
extract a sequence of the source spectral feature vectors { } 1

T
t t=

X . Then, the LLE-based SC 

method followed by the MLPG and GV methods is applied to convert { } 1

T
t t=

X  to obtain 

the final sequence of the converted static spectral feature vectors { } 1
ˆ T

t t=
′y . Note that the 

input source speech can be from any arbitrary unseen speaker, and the paired SPKGS and 
SPKTgt dictionaries are used in the LLE-based SC method. 

4. EXPERIMENTS 

We conducted two sets of experiments to evaluate the effectiveness of the proposed 
LLE-exemplar-based SC framework on one-to-one and many-to-one SCs, respectively. 
We first describe the experimental setup in Section 4.1, and then present the evaluations 
of one-to-one and many-to-one SCs in Sections 4.2 and 4.3, respectively. 

4.1 Experimental Setup 

(A) Speech Corpus:  
Two speech corpora were used in the experiments: the Sinica COSPRO corpus [46] 

and the Voice Conversion Challenge 2016 (VCC2016) corpus [47].  
In the experiments of the one-to-one SC task (Section 4.2), the Sinica COSPRO 

corpus was adopted. The corpus contained 9 datasets. The intonation-balanced dataset 
(i.e., COSPRO 03), consisting of Mandarin parallel speech utterances of 3 females and 2 
males, was used in the experiments. There were 20 pairs of conversions: 8 intra-gender 
and 12 inter-gender. For each conversion pair, 10 utterance pairs were randomly selected 
as the training set, 40 utterance pairs as the development set, and 43 utterance pairs as the 
test set. Speech signals were recorded in a 16 kHz/16 bit format. Silence segments at the 
start and end of each utterance in the training set were discarded based on the segmenta-
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tion information in the corpus. 
In the experiments of the many-to-one SC task (Section 4.3), the VCC2016 corpus 

was adopted. The corpus consisted of English parallel speech utterances of 5 females and 
5 males. Officially, the dataset was divided into training and test sets. The training set 
comprised 5 source speakers (SF1, SF2, SF3, SM1, and SM2) and 5 target speakers (TF1, 
TF2, TM1, TM2, and TM3), and each speaker had 162 utterances. The test set comprised 
the same 5 source and 5 target speakers, and each speaker had 54 utterances. Among 
these ten speakers, {SF1, SF2, SF3, TF1, TF2} are female, and {SM1, SM2, TM1, TM2, 
TM3} are male. Speech signals were recorded in a 16 kHz/16 bit format. We conducted 
objective and subjective evaluations on four pairs of inter-gender conversions, including 
SF1→TM1, SF2→TM1, SM1→TF1, and SM2→TF1. For each conversion pair, 54 ut-
terance pairs in the official test set were evaluated. 

(B) Analysis/Conversion/Synthesis: 
We used the STRAIGHT vocoder [48] for feature extraction and waveform genera-

tion. During feature extraction, the speech signals were parametrized into the smoothed 
spectral envelopes (SEs), aperiodicity components (APs), and F0 contours, where the SE, 
AP, and F0 described the spectral, excitation, and prosodic features, respectively. The 
FFT length was set to 1024; thus, the AP and SE for each frame consisted of 513 com-
ponents. The frame shift was 5 milliseconds. The SC systems operated on either MCCs 
(extracted from SEs) or SEs to obtain the converted SEs (which will be described later in 
detail). 

For all of the compared systems described in the following experiments, we only 
performed F0 conversion while remaining the other prosodic features (i.e., the source 
speech’s energy and duration) and the excitation features (i.e., APs) unmodified. Specif-
ically, the F0 was converted by the linear mean-variance transformation method as fol-
lows: 

( )
( )

( ) ( ) ( ) ( )
( )

ˆ
y

y x x y
t txf fσ µ µ

σ
= − + ,                 (9) 

where ( )x
tf  and ( )ˆ y

tf  are a one dimensional log-scaled F0 of the source speech and the 
converted speech at frame t; ( )xµ  and ( )xσ  are the mean and standard deviation of 
log-scaled F0 calculated from the training data of the source speaker; and ( )yµ  and 

( )yσ  are those of log-scaled F0 of the target speaker calculated from the training data of 
the target speaker. 

Finally, the converted SEs, converted F0, and source speech’s APs were passed to 
the STRAIGHT vocoder for waveform reconstruction. 

4.2 Evaluation of One-To-One Spectral Conversion 

(A) Reference Systems 
First, we intended to determine suitable spectral features for the proposed 

LLE-based SC system, and thus tested the performance of the system (in terms of speech 
quality and speaker similarity) using two types of features, namely MCCs and SEs. Next, 
we intended to investigate whether the GV method can be compatible with the proposed 
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SC system, and thus tested the performance of two LLE-based SC systems, one with GV 
and one without GV. Note that the effectiveness of combining the MLPG method with 
the LLE-based SC system has been confirmed in our previous work [34]. Thus, the 
MLPG method was used as the default process in all of the LLE-exemplar-based SC 
systems in the following experiments. Four SC systems were built for comparison: 

• GMM: The state-of-the-art GMM-based SC system integrated with both MLPG 
and GV methods [14], where MCCs were used as the spectral features. 

• LLEMCC: The LLE-based one-to-one SC system (with MLPG and without GV) 
as described in Section 3.1, where MCCs were used as the spectral features.  

• LLEMCC-GV: The LLE-based one-to-one SC system (with both MLPG and GV) 
as described in Section 3.1, where MCCs were used as the spectral features. 

• LLESE-GV: The LLE-based one-to-one SC system (with both MLPG and GV) 
as described in Section 3.1, where SEs were used as the spectral features. 

For the baseline GMM system, the number of mixture components was 64, accord-
ing to the objective scores and informal listening tests conducted on the development set. 
A cross-diagonal covariance matrix was used in the joint density GMM (JDGMM). The 
spectral features were the first through 24-th MCCs extracted from the STAIGHT SEs. 
The static, delta, and delta-delta features were used. Accordingly, the dimensionality of a 
final MCC vector was 72. Note that in the waveform reconstruction step, the converted 
MCCs obtained by the GMM system were reverted back to obtain the converted SEs in 
advance. Then, the waveform can be generated as described in Section 4.1 (B).  

Both LLEMCC and LLEMCC-GV adopted the same spectral features as the GMM 
system. The number of nearest neighbors (i.e., K in Eqs. (1)-(4)) was determined accord-
ing to the objective scores, computational complexity, and informal listening tests con-
ducted on the development set (which will be described later). The same as the GMM 
system, after SC, the converted MCCs obtained by the LLE system were first reverted 
back to obtain the converted SEs. Then, the waveform was reconstructed from the SEs.  

For LLESE-GV, the spectral features were the 513-dimensional log ener-
gy-normalized SEs. Specifically, each frame of SEs was normalized to unit-sum, and the 
energy normalizing factor was taken out as an independent feature and was not modified. 
Then, a logarithm was applied to each energy-normalized SE value. Moreover, the static, 
delta, and delta-delta features were used. Accordingly, the dimensionality of a final log 
energy-normalized SE vector was 1539. After SC, the converted log energy-normalized 
SEs were reverted back to the (linear) SEs, and the energy was compensated back to the 
SEs according to the energy normalizing factor. Finally, the waveform was generated as 
described in Section 4.1 (B). 

The dictionaries of the LLE systems (i.e., LLEMCC, LLEMCC-GV, and LLESE-GV) 
contained about 12,300 to 13,700 exemplars for different conversion pairs. 

(B) Objective Evaluations 
In the objective tests, we evaluated the SC systems on the test and development sets 

in terms of the spectral distortion and the degree of over-smoothing of the converted 
MCCs. 

1) Spectral Distortion: We measured the spectral distortion in terms of mel-cepstral 
distortion (MCD). The MCD value of a target-converted frame pair at frame t (for all 
t=1~T) was computed as the distortion between a pair of reference target and the con-
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verted mel-cepstra as follows: 

24
( ) ( ) ( ) ( ) 2

1

10ˆ ˆ( , ) [dB] 2 ( ( ) ( ))
ln10

MCC MCC MCC MCC
MCD t t t t

d
D y y y d y d

=

= −∑ ,       (10) 

where ( ) ( )MCC
ty d

 
and ( )ˆ ( )MCC

ty d  are the d-th coefficients of the (reference) target and 
converted MCCs at frame t, respectively. The MCD value of an utterance pair was ob-
tained by averaging over the MCD values of all the frame pairs in the utterance. We re-
ported the average MCD value of all the test and development utterance pairs. A lower 
MCD value indicates less spectral distortion. 

First, we investigated the effect of the number of nearest neighbors (i.e., K in Eqs. 
(1)-(4)) on the proposed LLE-based SC system. We calculated the (average) MCD values 
with different numbers of nearest neighbors on the development set. The results of 
LLEMCC-GV are shown in Fig. 3, where the maximum value of K was set to 4096 be-
cause the computational cost of LLE-based SC with K=4096 was considerably high for 
real-world applications. From Fig. 3, we observe that LLEMCC-GV achieved the lowest 
MCD values when K was around 1024 and 2048. Further analyses demonstrated no sig-
nificant differences when K was larger than 1024 in terms of listening tests. Similar 
trends were also found when analyzing the effect of K on the LLEMCC and LLESE-GV 
systems. Based on the above analysis, the number of nearest neighbors K for the 
LLE-based SC systems was set to 1024 in the following experiments. Next, we compared 
the four SC systems in terms of spectral distortion.  

 
Fig. 3. The average MCD values with different numbers of nearest neighbors on 

the development set obtained by the LLEMCC-GV system.  
 

Table 1. The average MCD values [dB] of four SC systems. The MCD 
value before conversion is 7.19 dB. 

 
GMM LLESE-GV LLEMCC-GV LLEMCC 

5.58 5.31 5.59 5.09 
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Table 1 shows the average MCD values of all the test utterance pairs obtained by 
the four SC systems. First, comparing the proposed SC systems (operating on MCCs) 
with and without the GV method, we observe that LLEMCC gave notably lower MCD 
values than LLEMCC-GV, indicating that GV tends to distort the converted speech. Sec-
ond, comparing LLEMCC-GV with LLESE-GV, we note that LLESE-GV gave lower MCD 
values than LLEMCC-GV, implying that adopting SE tends to be able to yield better VC 
performance. Third, comparing the proposed SC systems with the GMM-based SC sys-
tem, we note that both LLEMCC and LLESE-GV gave lower MCD values than GMM, and 
LLEMCC-GV yielded similar MCD values as GMM. The results indicate that the pro-
posed systems either outperform or perform as well as GMM in terms of MCD values. 
However, previous studies have shown that MCD may not perfectly reflect the real sub-
jective evaluation results, particularly when GV is considered in spectral feature genera-
tion [14, 22]. Similar results were found in our subjective test (which will be shown later). 
Thus, we further conducted another objective test to evaluate the SC systems. 

2) Degree of Over-Smoothing: We adopted the GV measurement to evaluate the 
degree of over-smoothing of the converted MCCs. The GV measurement of an utterance 
was computed by Eqs. (7) and (8). We reported the average GV measurement over all the 
test utterances. Fig. 4 shows the average GV measurements of the converted MCCs given 
by the three LLE-based SC systems and the natural MCCs of the target speech (referred 
to as Target GV hereafter) evaluated on the test set. From Fig. 4, it is clear that the aver-
age GV measurement of LLEMCC-GV is larger than those of LLEMCC and LLESE-GV, in 
particular for the higher order MCCs. Moreover, the average GV measurement of 
LLEMCC-GV is close to Target GV. These results imply that the converted MCCs given 
by LLEMCC and LLESE-GV were overly smoothed, and LLEMCC-GV could effectively 

 
 

Fig. 4. The average GV measurements of the converted MCCs given by the three 
proposed SC systems (i.e., LLEMCC-GV, LLESE-GV, and LLEMCC) and the natu-

ral MCCs of the target speech (i.e., Target GV). 
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overcome the over-smoothing problem. Besides, the comparison results of LLEMCC-GV 
and LLEMCC confirm the effectiveness of employing the GV method in the LLE-based 
SC system operating on MCCs. The comparison results of LLEMCC-GV and LLESE-GV 
suggest that for the LLE-based SC system, the GV method can help overcome the 
over-smoothing issue more effectively when operating on MCCs than SEs. Previous re-
search has shown that the GV measurement of a GMM-based SC system integrated with 
the GV method can be very close to Target GV [14]. This was also observed in our base-
line GMM-based SC system. 

(C) Subjective Evaluations 
For the subjective evaluation, we randomly selected two conversion pairs from each 

category (including f-f, m-m, m-f, and f-m; m: male, f: female), resulting in eight con-
version pairs. For each conversion pair, eight sentences were randomly selected from the 
test set, thereby resulting in 64 (8x8) test sentences. Ten listeners were recruited to con-
duct the speech quality and speaker similarity tests.  

1) Speech Quality: In the speech quality test, we first compared LLEMCC-GV with 
LLESE-GV in order to find out which spectral feature is more suitable for the proposed 
LLE-based SC system. We conducted a preference test to evaluate the quality of the 
converted speeches obtained by LLEMCC-GV and LLESE-GV, respectively. Specifically, 
in the preference test, each pair of converted speeches by systems A and B were present-
ed in a random order to the listeners. The listeners were asked to judge which sample 
sounded more natural.  

Table 2 shows the average results of the preference test. We can see that 
LLEMCC-GV yielded remarkable gains over LLESE-GV. According to the responses of 
the listeners, the converted speech by LLEMCC-GV obviously sounds clearer and brighter 
than the converted speech by LLESE-GV, and the latter still sounds muffled. A possible 
reason is that performing the GV method on MCCs is more effective than performing the 
GV method on SEs, the same as the objective test for comparing LLEMCC-GV with 
LLESE-GV in Fig. 4. A similar result has been reported in [23] that the GMM-based sys-
tem with the GV method worked better on MCCs than SEs. Note that the result is not 
consistent with that of the objective test in Table 1, where LLEMCC-GV achieved a higher 
MCD value than LLESE-GV (5.59dB vs. 5.31dB). This implies that MCD may not per-
fectly reflect human auditory perception. Similar results have been reported in [14, 22].  

Next, we conducted the mean opinion score (MOS) test to evaluate the quality of 
the converted speeches by LLEMCC, LLEMCC-GV, and GMM, along with the target sam-
ple (denoted as Target) for comparison purpose. During the MOS test, the converted 
speech samples (obtained by the three SC systems) for each test sentence were presented 
to a subject in a random order. To evaluate the speech quality, the subjects were request-

Table 2. Preference test results (%) of speech quality. p is the p-value 
given by the t-test for examining the significance of performance differ-

ence between the compared systems.  

 
LLESE-GV LLEMCC-GV p 

18.12 81.88 0.000 
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ed to give a score for each test sentence. The MOS score ranges from 1 (bad) to 5 (excel-
lent), with a higher score denoting better speech quality.  

Fig. 5 shows the overall average MOS results. From the figure, we first observe that 
LLEMCC-GV notably outperforms LLEMCC. The result confirms that introducing the GV 
method to the LLE-based SC system can notably improve the quality of the converted 
speech. In general, the result is consistent with the result of the objective test in Fig. 4, 
where LLEMCC-GV achieved GV measurements close to Target GV. However, the result 
is not consistent with the result of the objective test in Table 1, where LLEMCC-GV 
achieved a higher MCD value than LLEMCC (5.59dB vs. 5.09dB), again showing that 
MCD may not perfectly reflect human auditory perception, particularly when the GV 
method is involved in the spectral feature generation process [14, 22]. Although 
LLEMCC-GV achieved a higher MOS score (3.10) than GMM (2.89), the p-value of the t-test 
was 0.22, which indicated that the performance difference between GMM and LLEMCC-GV 
was not significant. The result is consistent with that of the objective test in Table 1, where 
LLEMCC-GV achieved a slightly higher MCD value than GMM (5.59dB vs. 5.58dB). 

2) Speaker Similarity: In the speaker similarity test, we compared the GMM, 
LLEMCC-GV, and LLESE-GV systems. The ABX test was adopted. The natural source 
and target speeches were presented to the listener in a random order as A and B, and the 
corresponding converted speech was presented as X. To prevent the listener from evalu-
ating only a specific prosodic pattern of each utterance, the same sentence was used for A 
and B, and a different one was used for X [14]. Listeners were asked to judge whether 
the utterance X sounded more like utterance A or B. Note that we only reported the re-
sults of intra-gender conversion since all the inter-gender conversion pairs were identi-
fied correctly in our preliminary result. Similar results have also been reported in [18, 33]. 

 
 

Fig. 5. Subjective test results of the speech converted by GMM, LLEMCC and 
LLEMCC-GV. Error bars indicate 95% confidence intervals. “Target” denotes the 

analysis-synthesized target speech. 
 

Table 3. Comparison of speaker identification rates (%) of different sys-
tems. p is the p-value given by the one-way ANOVA test for examining 
the significance of performance difference between the compared sys-

tems. 

 
GMM LLESE-GV LLEMCC-GV p 

86.88 87.81 86.25 0.969 
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Table 3 shows the overall average results of the ABX test. There are no significant dif-
ferences among three systems according to the one-way ANOVA test (i.e., p-value is 
greater than 0.05). 

From the results of the objective and subjective tests, we can confirm that our best 
LLE-based SC system (i.e., the LLEMCC-GV system) performs as well as the 
state-of-the-art GMM-based SC system (i.e., the GMM system). 

4.3 Evaluation of Many-To-One Spectral Conversion 

(A) Reference Systems 
In order to show the effectiveness of applying the proposed LLE-based framework 

for many-to-one SC, we compared the LLE-based many-to-one SC system (denoted as 
MTO-LLE) with the best LLE-based one-to-one SC system (i.e., LLEMCC-GV) in the 
following experiments. For both LLEMCC-GV and MTO-LLE systems, the number of 
nearest neighbors K was set to 1024. 

For the LLEMCC-GV system, we randomly selected 10 utterance pairs from the 162 
utterance pairs in the official training set to construct the paired dictionaries for each 
conversion pair. Other settings were the same as described in Sections 4.1 and 4.2. The 
dictionaries of the LLEMCC-GV system contained about 4,700 to 6,500 exemplars for 
different conversion pairs. 

For the MTO-LLE system, the SPKGS dictionary was constructed using the voices 
of speakers of the same gender. Thus, the built dictionary SPKGS is a gender dependent 
dictionary. In the online stage, the gender dependent dictionary SPKGS is used to convert 
the voice of an unseen source speaker of the same gender. For example, for the conver-
sion pair SF1→TM1, the source speaker was a female; therefore, the female version of 
SPKGS would be used. To build the gender dependent dictionary SPKGS, voices from 
another four female speakers (i.e., SF2, SF3, TF1, and TF2) in the VCC2016 corpus were 
used. Note that the voices of the source speaker SF1 were not involved in building the 
dictionary SPKGS. Our preliminary results showed that a gender dependent dictionary 
SPKGS achieved better VC performance than a gender independent dictionary SPKGS (i.e., 
constructed without considering the gender information). For each conversion pair, 648 
(162x4) utterance pairs extracted from the official training set were used to build the 
SPKGS dictionary and the corresponding SPKTgt dictionary. The MTO-LLE system oper-
ated on the same spectral features as the LLEMCC-GV system. 

(B) Objective Evaluations 
The objective evaluation was conducted on the test set in terms of MCD using Eq. 

(10). We reported the average MCD value of all the test utterance pairs. Fig. 6 shows the 
average MCD values of MTO-LLE with different sizes of dictionaries and LLEMCC-GV. 
First, we analyzed the effect of the size of the dictionary (i.e., the number of speakers 
used for constructing the SPKGS dictionary) on the performance of the proposed 
MTO-LLE system, where D1, D2, D3, and D4 in Fig. 6 denote the gender dependent 
SPKGS dictionaries constructed by using one, two, three, and four speakers’ voices, re-
spectively. Note that D1 was a subset of D2, D2 was a subset of D3, and D3 was a subset 
of D4, and the dictionaries D1, D2, D3, and D4 contained about 87,100 to 113,200, 
186,600 to 223,000, 286,000 to 324,700, and 385,600 to 424,300 exemplars, respectively, 
for different conversion pairs. From Fig. 6, it is observed that the MCD value decreases 
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as the number of speakers used for constructing the SPKGS dictionary increases. The re-
sult implies that the VC performance can be improved by increasing the size of the 
SPKGS dictionary (as well as the corresponding SPKTgt dictionary). The result is expecta-
ble, as when more exemplars are available in the SPKGS dictionary, more exemplars that 
are similar/close to the source spectral features can be found, thereby increasing the ca-
pability of the SPKGS dictionary for characterizing the local geometry of the source spec-
tral features.  

Next, we compared MTO-LLE (using D4 as the SPKGS dictionary) with 
LLEMCC-GV. From Fig. 6, we observe that MTO-LLE and LLEMCC-GV obtained similar 
MCD values. The result indicates that the proposed many-to-one SC system performs as 
well as the proposed one-to-one SC system, when both systems are applied to the same 
source-target pair. In fact, MTO-LLE even gives a slightly lower MCD value than 
LLEMCC-GV (6.65dB vs. 6.68dB). The reason could also be that the dictionary in 
MTO-LLE contained much more exemplars than the dictionary in LLEMCC-GV. 

(C) Subjective Evaluations 
We conducted the MOS test to evaluate the speech quality and speaker similarity of 

the converted speech. Ten listeners participated in the test. For each conversion pair, five 
sentences were randomly selected from the test set, thereby resulting in 20 (4x5) test 
sentences. During the MOS test, the converted speech samples (obtained by the two SC 

 
 

Fig. 6. The average MCD values of MTO-LLE with different sizes of dic-
tionaries (D1~D4) and LLEMCC-GV. The MCD value before conversion is 

9.45dB. 
 

 
 

Fig. 7. Subjective test results of the speech converted by MTO-LLE and 
LLEMCC-GV, where D4 was adopted for MTO-LLE. Error bars indicate 

95% confidence intervals. “Target” denotes the analysis-synthesized target 
speech. 
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systems) for each test sentence were presented to a subject in a random order. To evalu-
ate the speech quality, for each test sentence, the listeners were requested to give a score 
from 1 (bad) to 5 (excellent) for two converted speech samples and an analy-
sis-synthesized target speech sample. On the other hand, to evaluate the speaker similar-
ity, for each test sentence, the listeners were requested to give a score from 1 (very dis-
similar) to 5 (very similar) for each converted speech sample by comparing it with the 
corresponding analysis-synthesized target speech sample. Fig. 7 shows the overall aver-
age results of the MOS test. 

From Fig. 7, we can see that MTO-LLE performs almost as well as LLEMCC-GV in 
the speaker similarity test, but slightly worse in the speech quality test. With a further 
t-test on the scores of the compared systems, the p-values in the speech quality and 
speaker similarity tests were 0.058 and 0.779, respectively. Both p-values are larger than 
0.05, which implies that the differences between MTO-LLE and LLEMCC-GV are not 
significant. In general, the result of the subjective test is consistent with that of the objec-
tive test in Fig. 6. 

From the results of the objective and subjective tests, we can confirm that the 
MTO-LLE many-to-one system can yield comparable performance to the LLEMCC-GV 
one-to-one system. Consider that MTO-LLE does not require the source speaker’s train-
ing speech, which is required in LLEMCC-GV, we believe that MTO-LLE can be suitably 
applied in real-world VC scenarios. In that case, converting speech in real time is a criti-
cal issue at the online conversion stage. We have found that the architecture of the pro-
posed LLE-based SC framework is suitable for implementing a real-time many-to-one 
SC system. We are currently working on the new implementation. 

5. CONCLUSIONS 

In this paper, we have proposed a novel LLE-based SC framework. The proposed 
SC framework can be carried out in either the one-to-one or many-to-one manner. Ex-
perimental results confirm the effectiveness of the proposed SC framework. Our major 
findings include: 

• The GV method can effectively overcome the over-smoothing problems existing 
in the proposed LLE-based SC systems, thereby notably improving the quality 
of the converted speech. 

• Better sound quality can be achieved by using low-dimensional MCCs instead 
of high-dimensional SEs as spectral features in the proposed SC systems, mainly 
due to the fact that the GV method works more effectively with MCCs than SEs. 

• The proposed one-to-one SC system (operating on MCCs) is comparable with 
the state-of-the-art GMM-based one-to-one SC system in terms of speech quali-
ty and speaker similarity. 

• The proposed many-to-one SC system performs as well as the proposed 
one-to-one SC system in terms of speech quality and speaker similarity. How-
ever, the many-to-one SC system is more flexible than the one-to-one SC sys-
tem since the former can convert the voice of any arbitrary unseen source 
speaker to that of a desired target speaker, without the requirement of the source 
speaker’s training data. 
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Another advantage of the LLE-based SC framework is that its architecture is suita-
ble for real-time SC. That is, the online conversion stage can be very efficient. Currently, 
we are working on the implementation of a real-time many-to-one SC system. In the fu-
ture, we plan to investigate other manifold learning methods for SC and extend the pro-
posed SC framework to other flexible SC scenarios, such as one-to-many and 
many-to-many SC tasks.  
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