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ABSTRACT

Numerous studies have investigated the effectiveness of
neural network quantization on pattern classification tasks.
The present study, for the first time, investigated the perfor-
mance of speech enhancement (a regression task in speech
processing) using a novel exponent-only floating-point quan-
tized neural network (EOFP-QNN). The proposed EOFP-
QNN consists of two stages: mantissa-quantization and
exponent-quantization. In the mantissa-quantization stage,
EOFP-QNN learns how to quantize the mantissa bits of the
model parameters while preserving the regression accuracy
in the least mantissa precision. In the exponent-quantization
stage, the exponent part of the parameters is further quantized
without any additional performance degradation. We evalu-
ated the proposed EOFP quantization technique on two types
of neural networks, namely, bidirectional long short-term
memory (BLSTM) and fully convolutional neural network
(FCN), on a speech enhancement task. Experimental results
showed that the model sizes can be significantly reduced
(the model sizes of the quantized BLSTM and FCN models
were only 18.75% and 21.89%, respectively, compared to
those of the original models) while maintaining a satisfactory
speech-enhancement performance.

Index Terms— Speech Enhancement, Quantized Neural
Networks, Floating Point, Embedded Devices

1. INTRODUCTION

In the past few years, deep learning (DL)-based models have
been widely used in many different applications. Because of
their deep structures, DL-based models can effectively ex-
tract representative features when performing classification
and regression tasks. It has been confirmed that DL-based
approaches outperform traditional methods in image recog-
nition [1, 2], speech recognition [3–5], object detection [6–
8], and natural language processing [9–11]. On the other
hand, also because of their deep structures, DL-based ap-
proaches generally require larger storage and higher computa-
tional costs than traditional methods. To meet these demands,
many physical hardware devices, such as graphics processing

units and tensor processing units [12], have been developed.
Furthermore, to facilitate real-time predictions in an Internet-
of-Things (IoT) [13] system, researchers also seek solutions
to install DL-based models in embedded systems. One poten-
tial solution to this goal is to compress DL-based models by
using some quantization technique.

Numerous model quantization techniques have been pro-
posed. Courbariaux et al. [14] proposed the BinaryConnect
algorithm, which uses only 1 bit for all the weights in the
model. Experimental results showed that the quantized model
still yielded state-of-the-art classification results. Gong et al.
[15] used a clustering technique to find the respective floating-
point centroid values to replace the original weights. Experi-
mental results showed that the compressed model can still ob-
tain 1% loss in the top-5 recognition rate. Zhou et al. [16] pro-
posed an incremental network quantization (INQ) technique
to convert a pre-trained full-precision convolutional neural
network (CNN) model into a low-precision one. Based on
this technique, all the weights are constrained to be powers
of 2 and 0. In the end, INQ uses 5 bit-width to reach slightly
better results in terms of top-1 and top-5 errors. Based on our
literature survey, most compression techniques are proposed
to be applied to DL-based models for classification tasks, such
as image and speech recognition [15–23]. Unlike the output
of a classification task, which classifies the data into a set of
categories, the output of a regression task will be continuous
variables. Owing to the different output formats, the effect
of model compression on regression tasks should be very dif-
ferent from that on classification tasks [24]. In this study, we
focus our attention on deriving a new model quantization al-
gorithm for the speech enhancement (SE) task, which is an
important regression task in speech signal processing.

The goal of DL-based SE is to map a noisy speech sig-
nal into an enhanced one with improved intelligibility and
quality [25]. One class of DL-based SE methods performs
spectral mapping that aims to transform noisy spectral fea-
tures to clean ones. Effective models used to characterize
the mapping function include deep denoising autoencoder
(DDAE) [26, 27], deep neural network (DNN) [28, 29],
CNN [30, 31], and bidirectional long short-term memory



(BLSTM) [32, 33]. Another class of approaches aims to map
a noise speech waveform to a clean one directly to address
possible distortions caused by imperfect phase information
in the spectral mapping-based approaches, and the fully con-
volutional network (FCN) is usually used to characterize the
mapping function [34–37]. Clearly, the storage and com-
putational cost are important factors to be considered when
implementing SE models in practical applications. However,
based on our literature survey, only few studies have investi-
gated potential approaches to reduce the model complexity of
SE models. In [38], a weights sharing and quantization tech-
nique is used to compress a DNN-based SE model. The re-
sults showed that although the model size can be reduced, the
enhanced speech quality was notably reduced as compared to
the one generated by the original model. Meanwhile, Ko et
al. investigates the relation of precision scaling process and
SE performance [24]. The results showed that removing too
many bits can cause notable performance degradation. For
practical applications, the storage requirement and achievable
performance need to be considered simultaneously. To strike
a good balance of storage requirement and performance, this
study proposes a novel exponent-only floating-point (EOFP)
neural network quantization technique for the SE task. We
selected one spectral mapping approach, namely, BLSTM,
and one waveform mapping approach, namely, FCN, to test
the EOFP-QNN on an SE task.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the related works and the motivation for the
study. Section 3 details the proposed EOFP-QNN. Section 4
presents the experimental setup and results. Finally, Section 5
provides the concluding remarks.

2. BACKGROUND AND MOTIVATION

2.1. Speech enhancement

Generally speaking, a DL-based SE includes two phases: of-
fline and online. In the offline phase, the noisy speech is first
fed into the SE system to generate the enhanced speech. A
criterion is used to evaluate the difference of the enhanced
speech and the clean references, such as the mean square er-
ror (MSE) [26,28,30,32], L1 norm [36], or short-time objec-
tive intelligibility measure (STOI) [35]. Then, the difference
is used to update the parameters in the DL-based models. In
the online phase, the noisy signal is fed into the trained SE
system to obtain the enhanced speech.

Conventionally, SE is applied on noisy speech with time-
frequency representation (e.g., magnitude spectrum). Thus,
an additional signal analysis process is needed to convert
speech waveforms to spectral features before denoising. To
reconstruct the waveform domain, most of spectral mapping-
based methods simply borrow the phase from the noisy
speech. Recently, waveform mapping-based methods [35]
are also proposed, which directly enhance the noisy wave-

form. In this study, we selected BLSTM and FCN for the
spectral mapping and waveform mapping, respectively, as
two representatives to the regression tasks. The parameters
in the BLSTM and FCN models before compression were
32-bit floating-point values, and their performances were
investigated after quantizing to the proposed EOFP-QNNs.

2.2. Floating-Point Representation in a DL-based Model

A DL-based model generally has a large number of param-
eters, and most of these parameters are stored in a floating-
point data format. The single-precision floating-point format
of IEEE 754 [39] is the most common format to represent the
parameters, and its binary format is shown in Fig. 1. In the
figure, a single-precision floating-point value, bits consists of
three parts: bits[0] indicates the sign, bits[1 : 8] represent the
exponent (an unsigned integer), and bits[9 : 31] stand for the
mantissa (or significand or fraction). Except for the sign, the
exponent, and the mantissa are not represented directly. Be-
cause the exponent is an unsigned integer, the smallest repre-
sentable exponent must be shifted to 1 by an additional bias.
Thus, the decimal value of single-precision data can be calcu-
lated by the following equation:

(value)10 = (−1)sign ∗ (mantissa)10 ∗ 2(exponent)10−bias

(1)
where the bias is 127 (27 − 1); the decimal mantissa value is

(mantissa)10 = 1 +

23∑
i=1

b8+i ∗ 2−i (2)

Taking Fig. 1 for example, we obtain the decimal value of the
single-precision data as 0.012339999. . . .

Fig. 1: Single precision floating point format.

Now we can see that sign and exponent determine the
range, whereas mantissa determines the precision. Some ap-
plications may need high-precision floating points, while such
floating points are not always necessary. Table 1 shows a pre-
liminary experiment based on a BLSTM SE model. For all
the parameters in a neural network model, we masked a se-
quence of bits to zero from the end. As a result, the decimal
values of parameters were changed, yet the enhanced speech
presented similar qualities. The preliminary experiment re-
sult in Table 1 inspired us to quantize the floating-point data
parameters and thus compress the SE models.

Nevertheless, two setups need to be determined in the pro-
posed algorithm. The first one is to decide when the quantiza-
tion should be executed. The second one is to determine the



Fig. 2: The training procedure of the mantissa-quantization.

Table 1: A preliminary experiments on speech quality and
intelligibility under different precisions.

Mask Binary Decimal PESQBits
0 0. . . 110110110110 0.012339999. . . 2.144
6 0. . . 110110000000 0.012339949. . . 2.135
12 0. . . 000000000000 0.012336730. . . 2.141

appropriate number of bits to quantize, to ensure that the en-
hanced speech have similar qualities to that with the original
single-precision value.

3. EOFP-QNN

This section presents the proposed EOFP quantization tech-
nique for SE models. First, we introduce the overall proce-
dure of the EOFP-QNN. Then, we detail the philosophies of
the mantissa-quantization and exponent-quantization.

3.1. Overall Procedure of the Model Quantization

An intuitive quantization method is to load out the model (the
parameters are saved in a single-precision format) after train-
ing and directly quantize the parameters in the model for test-
ing. Because the parameters are trained based on the origi-
nal single-precision format, this direct quantization approach
may cause performance degradations. To overcome this is-
sue, we intend to make the model learn how to quantize the
parameters during the training phase. Fig. 2 shows the pro-
cedure of the SE neural network model with our quantization
and parameter update, in two gray boxes.

As shown in Fig. 2, we execute the quantization at the
end of each epoch. More specifically, we allow the model
to train, to learn the precise weights in single-precision pa-
rameters within one epoch. After one epoch is completed,
we quantize all the parameters and force them to be less bit-
width parameters. Note that the bit-width denotes the number

of remaining bits after quantization. Then, the model must
use the quantized parameters in the feed-forward part in the
following epoch. At the end of training, we get the quantized
SE model. In short, we adopt a straightforward solution that
directly quantizes the parameters P in each epoch. The quan-
tized parameters P’ will be fed in the next training epoch.

3.2. Mantissa-quantization

The percentage of the mantissa part is 23
32 , which approaches

72% in the single-precision floating point. Therefore, we
choose to quantize the parameters with less-precision man-
tissa as our first step. Before quantization, we first define the
target number n of bits to quantize because different appli-
cations may be tolerant to different precision. The natural
limitation of n is in the range [0:23] since only 23 bits are
used in the mantissa part. It is noted that n = 0 means that no
quantization process is applied.

Algorithm 1 Mantissa-quantization

Input: The target number of bits n to quantize, for a model
with l layers, {Li|i = 1, 2, . . . , l}

1: mask ← [1011 . . . 131−n031−n+1031−n+2 . . . 031]
2: for each layer Li do
3: for each floating point parameter p in Li do
4: Convert p to 32-bit binary bits[0 : 31]
5: if 23 > n > 0 then
6: bits[31−n] = bits[31−n] || bits[31−n+1]
7: else if n = 23 then
8: bits[1 : 8] = bits[1 : 8] +© bits[9] , where +©

is the binary addition operator
9: bits[0 : 31] = bits[0 : 31] & mask[0 : 31]

10: Convert bits back to p

Algorithm 1 presents the mantissa-quantization, which is
executed after the backward-propagation. More specifically,
after the backward propagation, Algorithm 1 first defines a
32-bit-length binary mask, where the head 32 − n bits are
1s and the latter n bits are 0s. For each parameter p in the



layer of the model, a conditional rounding arithmetic is used
to quantize the value of the mantissa part. We first convert
the data type of p from floating point to binary format bits.
If the target number n is greater than 0 and less than 23 (i.e.,
23−n bits are remaining in the mantissa part), then the value
of bits[31−n] is obtained by performing the OR operation on
original bits[31−n] and bits[32−n]. If n is 23, meaning there
is no bit left in the mantissa part, then the whole exponent par-
tition, bits[1 : 8], is added to the value of bits[9], the first bit
of the mantissa. The main reason that we divided our algo-
rithm into two cases, 23 > n > 0 and n = 23, was to avoid
an overflow problem in the mantissa part. As mentioned in
Section 2.2, the exponent represents an unsigned integer, and
thus it is not possible that bits[1 : 8] are all 1s. Thus, we can
directly use the rounding arithmetic to quantize. However, it
is possible that bits[9 : 31− n] are all 1s in the mantissa part
of all parameters that may cause an overflow problem. Ac-
cordingly, we propose our conditional rounding arithmetic to
calculate the value of the last bit only. The last n bits are re-
moved by taking the intersection with the binary mask, and
the binary bits is converted back to the floating point p. After
all the parameters are updated (quantized), the feed-forward
process is then performed using the quantized model.

3.3. Exponent-quantization

According to the format of the single-precision floating point,
it is obvious that there are at most 23 bits that we can quan-
tize in the mantissa-quantization, where there are 9 bits re-
maining. As mentioned in Section 2.2, the single-precision
floating-point format provides a bias by helping the exponent
part represent the range from 2−127 to 2128, where 2−127 and
2128 are defined as 0 and∞, respectively. Taking the sign bit
into consideration, we have the exact range of the remaining 9
bits as±0,±2−126 to±2127, and±∞, which is a great range
to represent values in general.

However, the normalization process, which is often exe-
cuted during the DL-based model training, restricts the value
of the parameter in a certain range, and, thus, there are only
marginal differences among the values of the parameters in
each layer. In other words, after the normalization, it is not
necessary to represent the parameters using a wide range
of floating point format. Therefore, we propose the statisti-
cal exponent-quantization to further compress the DL-based
model by analyzing the distribution of the parameter values.

Algorithm 2 presents the exponent-quantization for each
parameter. The output of the quantized parameter includes
three attributes. Before quantizing, we need to calculate the
least number of bits len that can represent the range of all
parameters. We first determine the maximum and minimum
log2 values, except for the zero value, among all parameters
in the model Λ. Then, we calculate the least length len by
applying the ceiling function to log2[(max−min + 1) + 1].
The last 1 in the equation is to represent one more value, zero,

Algorithm 2 Exponent-quantization

Input: The neural network model Λ
Output: the length len, minimum exponent log2 value min,

a quantized model Λ′

1: Find the maximum and minimum exponent log2 value,
max and min of all parameters, except for zero value

2: len = Ceil{log2[(max−min + 1) + 1]}
3: for each parameter p in Λ do
4: Fetch the exponent (e)10 of p
5: if p = 0 then
6: (e′)10 = 0
7: else
8: (e′)10 = (e)10 −min + 1

9: p′ with (e′)10 as exponent is replaced in Λ′

10: return len,min,Λ′

which cannot be written in the power of 2. In the exponent-
quantization, we first fetch the exponent part (e)10 of p for
every parameter in Λ. If the value of p equals 0, (e′)10 is still
assigned with 0. Otherwise, the value of the new exponent
(e′)10 is the difference between (e)10 and min, representing
the offset by the min. Because 0 already indicates a 0 value,
(e′)10 must add 1 to shift the offset by 1 and is then stored
in p′. The quantized p′ with (e′)10 as the new exponent is fi-
nally stored in the quantized model Λ′. Taking the range [±0,
±2−29, . . . ,±20] for example, we have max of 0 and min of
−29. Thus, we only need 6 ( = 1+d log2[0−(−29)+2]e) bits,
whose 1 is the sign bit, to represent all of the possible values.
The quantized exponents (e′)10 of ±0, ±2−29 and ±20 are
0, 1 and 30 respectively. It is clear that there is no perfor-
mance degradation when applying the exponent-quantization
since we only reduce the number of bits to represent a param-
eter value instead of changing the value.

4. EXPERIMENTS

This section presents the experimental results of the EOFP-
QNN on the SE task. We used two standardized evaluation
metrics: perceptual evaluation of speech quality (PESQ) [40],
and short-time objective intelligibility measure (STOI) [41],
to test the performance. PESQ was designed to evaluate the
quality of processed speech, and the score ranges from -0.5 to
4.5. A higher PESQ score denotes that the enhanced speech
has better speech quality. STOI was designed to compute the
speech intelligibility, and the score ranges from 0 to 1. A
higher STOI value indicates better speech intelligibility.

4.1. Experimental Setup

The TIMIT corpus [42] was used to prepare the training and
test sets. For the training set, all of the 4620 training utter-
ances from the TIMIT corpus were used and further corrupted



with 100 different noise types at eight signal-to-noise (SNR)
levels (from -10 dB to 25 dB with a step of 5 dB) in a random
manner. For the test set, we selected another 100 utterances
(different from those used in the training set) from TIMIT
and corrupted these utterances using another three noise sig-
nals (engine, street, and two talkers) at four SNR levels (-6,
0, 6, and 12 dB). Note that we intentionally designed both
noise types and SNR levels of the training and test sets to be
different to make the experimental conditions more realistic.

For the BLSTM spectral mapping system, the speech was
parametrized into a sequence of 257-dimensional log-power
spectral (LPS) features, and the mapping was performed in a
frame-by-frame manner. The BLSTM model has two bidirec-
tional LSTM layers, each with 257 nodes; one fully connected
layer, with 300 nodes; and a fully connected output layer. We
used the similar model structure as that used in [32]. For the
FCN waveform mapping system, the mapping was directly
performed in the raw-waveform domain, and, thus, no ad-
ditional analysis and restoration process were required. The
FCM model used here shared the similar structure as that used
in [35], and an end-to-end utterance enhancement was carried
out. The FCN model has ten convolutional layers with zero
padding to preserve the same size as the input. The first ten
layers consist of 30 filters, with a filter size of 55. There is one
filter with a size of 55 in the last layer. In the experiments, we
applied the proposed EOFP-QNN to both the BLSTM and the
FCN models. For a fair comparison, the structure of the mod-
els and the number of the epochs for training were the same
for the original full-precision model and the quantized model.

4.2. Experimental Result

4.2.1. Proposed method versus directly chopping in the
mantissa-quantization

As presented earlier, the EOFP technique applies a condi-
tional rounding process to remove unnecessary bits in the
mantissa-quantization. Another way to remove bits is directly
chopping, namely, keeping the first (32 − n) target bits and
directly chopping the other n bits. Here, we compared the
performance of the conditional rounding and directly chop-
ping processes for mantissa-quantization. We tested the per-
formance using seven different bit-widths (bit-width = 26, 20,
14, 12, 11, 10 and 9) to compare with the non-quantized
model (bit-width = 32) . The results are listed in Table 2.
Each value in Table 2 is an average PESQ score over three
noise types and four SNR levels. From the table, we first
note that, when the proposed method was used, the PESQ
suffered only marginal reductions. For example, when the bit
number was reduced from 32 to 9, the PESQ reductions were
1.49% (2.144 to 2.112) and -0.58% (from 2.064 to 2.076), re-
spectively, for BLSTM and FCN, respectively. Note that the
negative sign means that the performance even becomes bet-
ter than the non-quantized model. The results suggest that we
may quantize all the mantissa bits and keep only 1 sign bit and

8 exponent bits to replace the original 32-bit data while main-
taining similar enhancement performance. However, when
we replaced our method with the directly chopping process,
the PESQ scores were notably decreased. When reducing the
bit number from 32 to 9 bits, we noted clear PESQ reduc-
tions of 2.15% (from 2.144 to 2.098) and 9.88% (from 2.064
to 1.860), respectively, for BLSTM and FCN models.

Table 2: PESQ scores of quantized BLSTM and FCN using
the proposed conditional rounding and directly chopping for
mantissa-quantization with different bit-widths.

Bit- BLSTM FCN
width Proposed Chopping Proposed Chopping

32 2.144 2.144 2.064 2.064
26 2.136 2.135 2.074 2.064
20 2.125 2.141 2.081 2.074
14 2.135 2.136 2.093 2.086
12 2.157 2.147 2.088 2.064
11 2.131 2.144 2.070 2.078
10 2.154 2.146 2.054 2.035
9 2.112 2.098 2.076 1.860

4.2.2. BLSTM and FCN with mantissa-quantization

From Table 2, we can observe that the bit-width can be re-
duced from 32 to 9 with only a marginal PESQ performance
drop for the BLSTM and FCN model. In Table 3, we listed
the detailed PESQ and STOI scores under specific SNR levels
for both the BLSTM and the FCN system. Each value is an
average score of three noise types. The scores of the unpro-
cessed noisy speech are also shown for comparison.

From Table 3, we first note that, when the EOFP quanti-
zation technique was applied, there was only a 1.49% (from
2.144 to 2.112) PESQ score reduction and a 0.13% (from
0.753 to 0.752) STOI score reduction for the BLSTM sys-
tem. Similarly for the FCN system, we note a -0.54% (2.064
to 2.076) PESQ reduction and a 2.91% (from 0.755 to 0.733)
STOI reduction. Note that in this set of experiments, we quan-
tized every parameter in the model from a 32-bit floating point
to a 9-bit exponent. The total compression ratio was 3.56.
The results in Table 3 confirm that, although the model size
had been notably compressed, the objective quality and intel-
ligibility scores were only marginally reduced. We also noted
that FCN suffered more STOI reductions than BLSTM after
quantization. A possible reason is that FCN includes compar-
atively fewer parameters than BLSTM. Therefore, each pa-
rameter in FCN plays a more important role than BLSTM,
and thus model quantization induces a bit stronger influence.

4.2.3. BLSTM and FCN with exponent-quantization

Next, we apply the exponent-quantization to further re-
duce the model size. The overall quantization is termed



Table 3: Detailed PESQ and STOI scores for the original and quantized models under specific SNR conditions. The quantized
models were quantized by the mantissa-quantization (with 9 bit-width).

Noisy BLSTM (LPS) FCN (Raw waveform)
Original Quantized Original Quantized

SNR(dB) PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI
-6dB 1.223 0.509 1.499 0.568 1.488 0.569 1.381 0.548 1.444 0.538
0dB 1.622 0.659 1.983 0.728 1.962 0.725 1.843 0.719 1.877 0.700
6dB 2.016 0.800 2.393 0.832 2.361 0.831 2.304 0.840 2.281 0.814

12dB 2.439 0.901 2.699 0.885 2.638 0.884 2.729 0.911 2.700 0.878
Average 1.825 0.717 2.144 0.753 2.112 0.752 2.064 0.755 2.076 0.733

”mantissa+exponent-quantization” in the following discus-
sion. As mentioned in Section 3.3, we first need to identify
the optimal bit-width before quantization. To this end, we ex-
amined the distribution of the log2 value of all the parameters
in BLSTM and FCN. The results are shown in Fig. 3. From
the figure, most parameters in the two models are distributed
in a narrow region, suggesting that we are allowed to further
reduce the bit-width. Next, we calculated the maximum and
the minimum log2 value of each model and the bit-width
from Algorithm 2. Then, we obtained the {max, min, len}
as {0, -23, 5} and as {10, -26, 6} for the BLSTM and FCN
models, respectively. On the basis of the computed {max,
min, len}, we can further perform exponent-quantization
on the BLSTM and FCN models. The quantization results
of the two models using the mantissa-quantization, and the
mantissa+exponent-quantization are listed in the fourth and
fifth raws, respectively, in Table 4.
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Fig. 3: Distribution of the model log2 parameter values for
BLSTM (top) and FCN (bottom).

From Tables 3 and 4 , we can see that the model sizes
of the ”mantissa-quantization” and ”mantissa+exponent-
quantization” quantized BLSTM models were only 28.13%
(3,162/11,242) and 18.75% (2,108/11,242), respectively,
when compared to the original (non-quantized) BLSTM
model. Please note that the exponent-quantization only
further reduced the model size but did not cause extra

Table 4: Number of parameters and the corresponding bytes
used in the BLSTM and FCN before and after quantization.

BLSTM FCN
Number of parameters 2,877,929 450,301
Single-precision size (KB) 11,242 1,759
Mantissa-quantization (KB) 3,162 495
+ Exponent-quantization (KB) 2,108 385

PESQ and STOI reductions. We observed similar trends
for the FCN models. The model sizes of the ”mantissa-
quantization” and ”mantissa+exponent-quantization” quan-
tized FCN models were only 28.14% (495/1,759) and 21.89%
(385/1,759), respectively, when comparing to the original
(non-quantized) FCN model. On the basis of the above
observations, we can conclude that, by using the proposed
EOFP-QNN (mantissa+exponent-quantization), we can sig-
nificantly reduce the model sizes of BLSTM and FCN while
maintaining satisfactory quality and intelligibility scores as
compared to the original non-quantized models.

5. CONCLUSIONS

In this work, we proposed a novel EOFP-QNN and evalu-
ated its effect on SE performance. To the best of our knowl-
edge, this is the first study that investigates the effect of model
compression based on the floating-point quantization tech-
nique on the SE task. The results showed that, by applying
the EOFP, the model sizes of the quantized models were only
18.75% and 21.89% for BLSTM and FCN, respectively, com-
pared to the original models. With such significant model
size reductions, the quality and intelligibility scores were only
marginally degraded. For example, the PESQ and STOI score
reductions were 1.49% and 0.13% for the BLSTM SE system.
The results suggest that, by using the proposed EOFP quan-
tization technique, we may be able to install an SE system
with a compressed DL-based model in embedded devices to
operate in an IoT environment.
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