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Abstract
Previous studies have shown that a specialized speech enhance-
ment model can outperform a general model when the test con-
dition is matched to the training condition. Therefore, choos-
ing the correct (matched) candidate model from a set of ensem-
ble models is critical to achieve generalizability. Although the
best decision criterion should be based directly on the evalua-
tion metric, the need for a clean reference makes it impracti-
cal for employment. In this paper, we propose a novel special-
ized speech enhancement model selection (SSEMS) approach
that applies a non-intrusive quality estimation model, termed
Quality-Net, to solve this problem. Experimental results first
confirm the effectiveness of the proposed SSEMS approach.
Moreover, we observe that the correctness of Quality-Net in
choosing the most suitable model increases as input noisy SNR
increases, and thus the results of the proposed systems outper-
form another auto-encoder-based model selection and a general
model, particularly under high SNR conditions.
Index Terms:speech enhancement, ensemble model, long-
short-term memory model, non-intrusive quality assessment,
PESQ

1. Introduction
Speech enhancement aims to generate cleaner speech from
noisy speech. It has generally applied as a front-end noise
removal module in many speech related applications, for in-
stance noise-robust automatic speech recognition (ASR) [1–3],
assistive listening technologies [4–6], speech coding [7, 8], and
speaker verification [9, 10] systems. With the emergence of
deep learning, many researchers have adopted this technique
and had notable performances [11–21]. Recently, bidirectional
long short term memory (BLSTM) [17–19] which allows cap-
turing of long-term contextual information, has shown state of-
the-art enhancement performance. However, generalizability in
mismatched test and training data conditions remains a chal-
lenge.

The ensemble model is a feasible solution to increase the
generalizability of the learned model [22–26]. In the field of
speech processing, the integrated deep and ensemble-learning
algorithm (IDEA), which incorporates multiple information
from expert models into a unified fusion model, has shown no-
table dereverberation performances [22]. Similar to [22], sev-
eral studies have improved the effect of ensemble learning on
speech enhancement [23–26]. For instance, Kim [24] employed
an auto-encoder to choose the most suitable candidates (from

several expert models) using the reconstruction error. In addi-
tion, a phonetic-based mixture of experts (MoE) model con-
sisting of phoneme-specific DNNs and a phoneme classifier
also provided notable improvements [25]. Recently, Karjol et
al. [26] estimated a clean speech spectrum by calculating the
linear combination of the outputs of multiple DNNs, in a sim-
ilar manner to [25]. Although most of current ensemble mod-
els have shown promising enhancement results, there remains
room for further improvement by applying a novel-candidates
decision criterion. We assume that the mismatch between the
model selection criterion and the evaluation metrics may affect
the performance of speech enhancement.

To reduce the mismatch between the model selection cri-
terion and the final evaluation metrics, these two parameters
should be associated with each other. However, most evalua-
tion metrics [27–35] (e.g. perceptual evaluation of speech qual-
ity (PESQ) [36] and short-time objective intelligibility (STOI)
[37]) need a clean reference so that they cannot be applied di-
rectly as the selection criterion. To solve this limitation, our
previous paper [38] indicated that the learned model, termed
Quality-Net, did not require clean references when computing
the estimated scores (thus regarded as a nonintrusive quality es-
timation model) and could yield a high correlation to the PESQ
scores. In this study, we employ Quality-Net to choose the
proper candidates according to the estimated quality score.

Specialized speech enhancement model selection (SSEMS)
is a novel approach in which Quality-Net is used to choose the
best speech enhancement results from several ensemble mod-
els. Since collecting numerous possible noises types may not
be a practical solution, in this study, rather than training several
ensemble models based on the noise types, we intend to ap-
ply knowledge-based clustering to specifically capture acoustic
information. In addition, Kolbk et al. [39] found that a spe-
cialized speech enhancement model can outperform a general
model when the test condition is matched to the training con-
dition. The training data is first clustered to male and female
by gender information. Then, the gender-specific data are split
based on the value of the signal-to-noise-ratio (SNR) into a
male, high SNR (MHSNR); male, low SNR (MLSNR); female,
high SNR (FHSNR); and female, low SNR (FLSNR). Each of
these is then used to train a gender-SNR specific BLSTM en-
hancement model. Quality-Net is trained to non-intrusively pre-
dict the PESQ score by minimizing the MSE between the true
PESQ score and the estimated one in a combined training set
which includes enhanced, noisy, and clean speech. In the online
stage, noisy speech is enhanced by the four ensemble models,



and Quality-Net is then employed to choose the best candidates
according to the estimated PESQ score.

Experimental results in unseen noise environments show
that the proposed SSEMS can achieve consistent improvement
in terms of PESQ and STOI. Thus, it confirms the effective-
ness of the SSEMS approach in increasing the generalizability
and improving the robustness of the speech-enhancement per-
formance.

The remainder of this paper is organized as follows. We
introduce the proposed SSEMS in Section II. In Section III, we
describe the experimental setup and report the experimental re-
sults. Finally, we conclude our findings in Section IV.

2. Systems Description
The SSEMS follows a divide-and-conquer strategy to solve
complicated regression tasks. Specifically, each model is
trained with particular data, which allows it to be an expert
at solving certain problems. Unlike previous ensemble models
(e.g., collaborative deep learning [24] and mixture of experts
(MoE) [24, 25]), ]), our candidate-selection criterion is based
on the learned Quality-Net [38]. This method aims to reduce
the mismatch between the model selection criterion and the fi-
nal evaluation metrics by performing a learned, non-intrusive
quality assessment to estimate the PESQ score.

2.1. Ensemble model training stage

In this study, the tree structure of knowledge-based clustering
is applied to partition the training data. Gender information is
considered first to generate clustered training data, resulting in
male (M) and female (F) data. Next, because the mismatched
SNR condition between the training and test data may reduce
the speech-enhancement performance, the SNR information is
used to further split the training data, In our setting, the data are
categorized as high SNR (HSNR) and low SNR (LSNR) with
a threshold of 10 dB. This results in four classes of clustered
training data, namely MHSNR, MLSNR, FHSNR, and FLSNR.

As shown in Fig. 1, the proposed SSEMS consists of
four ensemble models, and Quality-Net is applied to choose
the best speech enhancement results. In the training stage,
each of the clustered training data is enhanced through dif-
ferent BLSTMs, resulting in K classes of ensemble mod-
els {EM1, EM2, ..., EMK−1, EMK}. The ensemble model
equation can be derived as follows:

x̂kn = EMk(yn) (1)

where k ,n, x̂kn and yn indicate k-th index of ensemble models,
n-th utterance, enhanced speech, and noisy speech respectively.
The training process of Quality-Net is then performed by first
concatenating enhanced {x̂11...x̂1N , x̂21...x̂2N , x̂K−1

1 ...x̂K−1
N ,

x̂K1 ...x̂
K
N } , noisy { y1...yN} and clean { x1...xN} into com-

bination dataset C.

2.2. Quality-Net

In this study, Quality-Net is also based on BLSTM for modeling
the context acoustic information. However, unlike the speech
enhancement model, the true PESQ (Qn) of C is set as a tar-
get to train the model. Furthermore, the conditional frame-wise
constraint is introduced to obtain more accurate prediction re-
sults as in [38]. Accordingly, the objective function of Quality-
Net is derived as follows:

O =
1

n

N∑
n=1

[(Qn − Q̂n)
2 +

α(Qn)

L(Un)

L(Un)∑
l=1

(Qn − qnl)2] (2)
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Figure 1: Architecture of proposed SSEMS approach.

α(Qn) = 10(Qn−QMAX ) (3)

where N indicates the total number of training utterances;
L(Un) number of frames m of the n-th utterance; Qn and Q̂n

the true and predicted PESQ score, respectively; and qn,l and
QMAX the estimated frame level quality of l-th frame of utter-
ance and the maximum score of PESQ, respectively. Finally,
the Quality-Net equation can be derived as follows:

Q̂n = QualityNet(yn) (4)

2.3. Testing stage

In the testing stage, noisy speech is extracted to generate the
speech features ym wherem correspondsm-th utterance. Later
on, the magnitude spectrum of ym is processed based on eq. (1)
to generate several enhanced spectral. Quality-Net is employed
to select the best enhanced spectral based on the following equa-
tion:

x̃m = argmax
k

QualityNet(x̂km) (5)

Finally, an inverse FFT (IFFT) is applied to reconstruct the se-
lected enhanced spectral and phase features of ym to obtain the
enhanced speech.

3. Experiments
3.1. Experimental setup

We evaluated the proposed SSEMS algorithm on the Wall Street
Journal (WSJ) [40] dataset, which consists of 37416 training
and 330 test utterances recorded at a 16-Khz sampling rate. For
the noisy training utterances, clean utterances were corrupted
by 90 types of noises consisting of stationary and non-stationary
noise at several SNR levels from 20 to -10 dB. In the test data,
four types of noises, including car, pink, street and babble, are
injected to generate noisy test data at seven SNR levels (-10, -5,
0, 5, 10, and 15 dB). Please note, the noise types used in the test
data are not selected during the training stage, considering that



the main purpose of this study is to improve the performances
in unseen noise environments. Both the training and test utter-
ances are extracted using a 512-point Short-time Fourier trans-
form (STFT) with a Hamming window size of 32 ms and a hop
size of 16 ms, resulting in 257-point STFT log-power-spectra
(LPS) features.

In the baseline system, the BLSTM model, which consists
of two bidirectional hidden layers with 300 nodes, is trained
with all the training data. For the proposed SSEMS, knowledge-
based clustering is first applied to create the MHSNR, MLSNR,
FHSNR, and FLSNR training sets. These clustered training sets
are then used to train ensemble models EM I, EM II, EM III,
and EM IV, respectively. Each ensemble model has the same
model architecture as the baseline. Next, Quality-Net which
consists of one bidirectional hidden layer with 100 nodes, fol-
lowed by two fully connected layers with 50 exponential lin-
ear units and one linear node is applied to estimate the PESQ
score [38]. PESQ and STOI are employed to evaluate the per-
formances of different speech-enhancement models.

3.2. Performance comparison between specialized and gen-
eral enhancement model

We first conduct experiments to verify that a specialized speech-
enhancement model can outperform a general model when the
test condition (gender and SNR) is matched to the training con-
dition. As shown in table 1, the best PESQ score is achieved
when the training condition is matched to the test condition. In
addition, although the specialized models (EM I, EM II, EM III,
and EM IV) are trained by a relatively smaller dataset compared
to the baseline, they can obtain better scores under the matched
condition. Therefore, this experiment implies that choosing the
correct specialized enhancement model is critical to further im-
prove the results.

Table 1: MATCHED AND MISMATCHED EVALUATIONS.

EM I EM II EM III EM IV Baseline

MHSNR 3.26 3.05 2.93 2.35 3.05
MLSNR 2.20 2.28 2.02 1.89 2.24
FHSNR 2.35 1.94 3.15 2.84 2.86
FLSNR 1.57 1.50 2.00 2.02 1.97

3.3. Objective evaluation results

We evaluate the proposed approach in several unseen noise en-
vironments including two stationary noises (e.g., car, pink) and
two non-stationary noises (e.g., street, babble). Tables 2 and
3 show the PESQ and STOI scores of noisy, baseline (general
model), and the proposed SSEMS under stationary and non-
stationary noise conditions, respectively. These tables show that
the PESQ scores of SSEMS can outperform the baseline by a
large margin, especially under high SNR conditions. The im-
provement in the STOI score is less obvious because Quality-
Net is trained to estimate PESQ score only. Therefore, these ex-
periments imply that Quality-Net can select the correct special-
ized model with high accuracy. In the next section, we compare
its performance with those of other model-selection methods.

3.4. Correctness comparison

In the previous section, we showed the effectiveness of SSEMS
and the importance of selecting the correct model. Considering
that the final enhancement model is selected based on the esti-

Table 2: EVALUATION METRICS COMPARISON OF NOISY
(STATIONARY NOISE), BASELINE, AND SSEMS

Noisy Baseline SSEMS
PESQ STOI PESQ STOI PESQ STOI

15dB 3.13 0.98 3.04 0.91 3.29 0.93
10dB 2.68 0.94 2.93 0.90 3.10 0.91
5dB 2.26 0.88 2.74 0.87 2.84 0.88
0dB 1.90 0.80 2.47 0.83 2.50 0.84
-5dB 1.63 0.70 2.10 0.75 2.10 0.76
-10dB 1.45 0.61 1.72 0.65 1.74 0.65

ave 2.17 0.82 2.50 0.82 2.60 0.83

Table 3: EVALUATION METRICS COMPARISON OF NOISY
(NON-STATIONARY NOISE), BASELINE, AND SSEMS

Noisy Baseline SSEMS
PESQ STOI PESQ STOI PESQ STOI

15dB 2.93 0.97 3.04 0.91 3.27 0.93
10dB 2.49 0.93 2.87 0.90 3.02 0.91
5dB 2.10 0.86 2.60 0.87 2.65 0.88
0dB 1.79 0.76 2.21 0.80 2.22 0.81
-5dB 1.57 0.64 1.74 0.68 1.76 0.68
-10dB 1.51 0.54 1.43 0.53 1.46 0.52

ave 2.07 0.78 2.32 0.78 2.40 0.79

mation of Quality-Net, we further analyze the performance of
Quality-Net and compare its results with those of other model
selection methods.

First, we evaluate the correctness score of model selection
by Quality-Net at several SNR values. Correctness scores in-
dicate the capability of an approach to select the most suitable
candidate model, compared to the selected model generated by
the true PESQ score. As shown in table 4, the correctness scores
roughly increase as SNR increases. This explains why SSEMS
can significantly outperform the baseline under high SNR con-
ditions as shown in Tables 2 and 3. When dealing with low-SNR
noisy speech, speech enhancement models may produce new ar-
tificial noises or distort speech components that may affect the
judgment of Quality-Net in choosing the best model.

Table 4: CORRECTNESS SCORES OF QUALITY-NET AT SEV-
ERAL SNR CONDITIONS

dB 15 10 5 0 -5 -10

% 94.67 85.74 66.74 67.27 61.19 51.35

Second, to determine how the noise types affect the cor-
rectness of Quality-Net, we calculate the correctness scores for
several unseen test noises types including car, pink, street, and
babble. As shown in table 5, Quality-Net obtains similar per-
formances in the first three noise environments, regardless of if
it is stationary or non-stationary noise. However, in the case of
babble noise, the correctness drops by approximately 10% com-
pared to others. We argue that this is mainly because Quality-
Net cannot accurately distinguish between speech components
and babble noise.

An auto-encoder based approach [24], termed DAE, is also
employed to compare Quality-Net with other model-selection
methods. DAE selects the candidates based on the reconstruc-
tion error of the auto-encoder, which is only trained on clean
data. In addition, Oracle, which is based on the correct an-



swer of the true PESQ score, is also compared. It indicates
the highest performance that can be achieved if the most suit-
able speech-enhancement model is selected during the testing
stage. In Figures 2 and 3, we compare the PESQ scores of DAE,
Quality-Net, and Oracle under stationary and non-stationary
noise conditions, respectively. From these two figures, it can
be observed that the performance of our proposed Quality-Net
is significantly better than that of the DAE baseline, especially
under high SNR conditions. In addition, under all SNR condi-
tions, Quality-Net is comparable to Oracle.

Table 5: CORRECTNESS SCORES OF QUALITY-NET AT DIF-
FERENT NOISE TYPES

noise types Car Pink Street Babble

% 72.97 72.87 74.22 64.56
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Figure 2: PESQ comparison of DAE [24], Quality-Net and Or-
acle at stationary noise environments
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Figure 3: PESQ comparison of DAE [24], Quality-Net and Or-
acle at non-stationary noise environments

3.5. Spectrogram analysis

In addition to the objective evaluation and correctness compar-
ison, we present the spectrogram to visually analyze the per-
formances. Figure 4 shows the spectrograms of clean utterance
and noisy utterance at 5 dB SNR under car-noise and enhanced-
speech conditions with different models. From the figures, we
can observe that the baseline system can effectively reduce the
noise. However, the SSEMS can further improve the perfor-
mance by effectively removing the noise and restoring more
speech information as shown in the black box.

Baseline SSEMS

Clean Noisy

PESQ: 3.16 STOI: 0.87 PESQ: 3.47 STOI: 0.89

PESQ: 4.5 STOI: 1.0 PESQ: 2.83 STOI: 0.89

Figure 4: Spectrograms of a clean utterance, with its noisy (car
noise at 5dB SNR condition), baseline, and SSEMS.

4. Conclusions
This study proposed a novel, specialized speech-enhancement
model selection method based on a learned, non-intrusive
quality-assessment metric. Because Quality-Net can estimate
the speech quality without a corresponding clean reference,
our proposed SSEMS can achieve notable improvement by
choosing a matched model. Experimental results showed that
Quality-Net can achieve a similar performance to the Oracle
selection method. Our future works include applying SSEMS
in different evaluation metrics and ensemble model strategies.
Through SSEMS, we aim to eliminate the model mismatch and
improve the ability to select the best speech-enhancement mod-
els.
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