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Abstract—Previous studies have proven that integrating video
signals, as a complementary modality, can facilitate improved
performance for speech enhancement (SE). However, video clips
usually contain large amounts of data and pose a high cost in
terms of computational resources and thus may complicate the SE
system. As an alternative source, a bone-conducted speech signal
has a moderate data size while manifesting speech-phoneme
structures, and thus complements its air-conducted counterpart.
In this study, we propose a novel multi-modal SE structure
in the time domain that leverages bone- and air-conducted
signals. In addition, we examine two ensemble-learning-based
strategies, early fusion (EF) and late fusion (LF), to integrate
the two types of speech signals, and adopt a deep learning-
based fully convolutional network to conduct the enhancement.
The experiment results on the Mandarin corpus indicate that
this newly presented multi-modal (integrating bone- and air-
conducted signals) SE structure significantly outperforms the
single-source SE counterparts (with a bone- or air-conducted
signal only) in various speech evaluation metrics. In addition,
the adoption of an LF strategy other than an EF in this novel
SE multi-modal structure achieves better results.

Index Terms—multi-modal, bone/air-conducted signals, speech
enhancement, fully convolutional network, fusion strategy

I. INTRODUCTION

Speech enhancement (SE) aims to improve the speech

quality and the intelligibility in noisy environments and has

been widely applied in numerous speech-related applications,

such as automatic speech recognition [1], [2], [3], speaker

recognition [4], [5], [6], emotion recognition [6], and assistive

hearing devices [7], [8], to improve the system robustness

against environmental noises. Recently, deep learning-based

models have been popularly used as a fundamental tool in

SE systems [9], [10], [11], [12], [13], [14], [15]. For most

of these systems, the noise-corrupted speech is enhanced

in the frequency domain using a deep-learning-based model

with supervised learning. More specifically, the SE systems

estimate the clean magnitude spectra or the corresponding

ratio mask from the input noisy speech [16], [17], [18], [19],

[20]. In addition to applying SE in the frequency domain,

an fully-convolutional-network (FCN) SE approach [21], [22],

[23] has been proposed to directly estimate a time-domain

waveform-mapping function to restore clean speech. A major

advantage of this approach is the potential to circumvent the

imperfect phase estimation issue. Additionally, the FCN-based

SE system employs a smaller number of parameters than fully-

connected-neural-network models, making it a suitable model

to operate in mobile devices.

Recent studies have shown that SE systems can leverage

complementary information, such as visual cues, as an aux-

iliary input to achieve better enhancement performance [24],

[25], [26], [27]. As an alternative complementary informa-

tion to visual cues, signal captured from a bone-conducted

microphone (BCM) has the inherent capability to suppress

air background noise to reduce the noise commonly recorded

by an air-conducted microphone (ACM) [28], [29], [30],

[31]. However, unlike an ACM-recorded speech signal, a

BCM-captured waveform, in which the pronounced utterance

is recorded through the vibrations from the speakers skull,

may lose some high frequency components from the original

spoken speech [28]. Several filtering-based and probabilistic

solutions have been proposed to convert the BCM-recorded

sound to its ACM version [32], [33], [34]. The authors in

[35] proposed a reconstruction filter, which uses the long-term

spectra of the speech, to perform the conversion. Meanwhile,

some approaches have been proposed to combine ACM- and

BCM-recorded sounds in the frequency domain with a linear

transformation for SE tasks [36], [37].

In this study, we propose a novel FCN-based SE method that

leverages the acoustic characteristics of the signals recorded

by a BCM in terms of the ensemble learning approach. In

the proposed algorithm, the BCM-recorded waveform is used

as an auxiliary input (with noise robustness property while

low precision in the high frequency region), and combined

with ACM to carry out SE in the time domain. Experiments

were conducted on a personalized SE scenario and results

show that the newly presented method yields significant im-

provements in terms of standardized objective metrics over the

noisy baseline. These results clearly indicate that adequately

integrating BCM- and ACM-recorded signals can help FCN

models learn detailed harmonic speech structures, resulting in

enhanced signals of high quality and intelligibility.

II. RELATED WORKS

We briefly review some novel studies that benefit a

waveform-based SE task and/or exploit various signal sources.

A. Deep learning-based model

Employing a deep learning-based model structure is usually

a main procedure of a state-of-the-art SE technique. In [22],

an FCN model was used to directly process the input time-

domain waveform. By contrast, in the studies presented in

[38], [39], waveform-wise enhancement was conducted using a

convolutional neural network (CNN) structure [40]. In compar-

ison with a CNN, FCN only consists of convolutional layers,

which can efficiently store information from the receptive
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fields of filters in each layer while possessing much fewer

parameters. In addition, an FCN has been shown to outperform

the conventional deep neural network (DNN), which consists

of densely connected layers, for the application of SE.

B. BCM/ACM conversion

A straightforward method that can collect less distorted

speech signals is to apply noise-resistant recording devices.

As mentioned before, a BCM records signals through bone

vibrations and is thus less sensitive to air background noise

in comparison with an ACM. However, the BCM-recorded

speech signals often suffer from a loss of high acoustic-

frequency components, and this issue was addressed and

partially alleviated through the BCM-to-ACM conversion tech-

nique applied in SE tasks [35], [41], [42].

C. Multi-modalality

Another promising direction for waveform-based SE is

to adopt a multi-modal system that extracts clean-speech

information from various signal sources. In [43], the authors

proposed the use of audio-visual multi-modality in various

speech-processing fields, and showed that integrating video

modality with speech benefits various speech processing be-

haviors. The audio-visual system presented in [44] combines

audio with lip-motion clips to access more bio-information

and thereby promotes the SE performance. Despite the success

of using audio-visual multi-modality for SE tasks, the corre-

sponding high computational cost incurred and large amount

of data storage required are obstacles for devices with limited

computational resources.

III. PROPOSED METHOD

In this section, we present a novel time-domain SE scenario

that adopts multiple FCN models to fulfill the SE task. In

particular, this novel scenario possesses multi-modal char-

acteristics because it uses both BCM- and ACM-recorded

signals. As is well known, the ACM-recorded signals contain

complete (full acoustic-band) clean-speech information but are

vulnerable to background noise, whereas the BCM-recorded

signals possess a higher SNR but lack high acoustic-frequency

components. Please note in this study, the ACM-recorded

signal is the major source for the SE task while the BCM-

recorded signal serves as the auxiliary source. Hence, we

believe that, if arranged appropriately, the two types of signals

can complement each other when applied to SE.

A. The overall SE structure

A flowchart of the newly presented SE scenario is depicted

in Fig. 1, which indicates two different arrangements for the

input BCM- and ACM-recorded signals. These two arrange-

ments are created by either an early-fusion (EF) strategy or a

late-fusion (LF) strategy. The difference between the EF and

LF is in the stage during which the BCM- and ACM-wise

representations are merged. In other words, the EF strategy

suggests integrating BCM- and ACM-recorded raw waveforms

at the very beginning of the SE framework to serve as the

initial input, whereas in the LF strategy, the two signal sources

BCM Noisy

Clean

FCNEF

BCM Noisy

Clean

FCNAFCNB

1-D Conv.

(a) (b)

FCNLF

Fig. 1. Detailed structures of (a) EF strategy, FCNEF , and (b) LF strategy,
FCNLF .

are first individually processed, and the respective outputs are

then brought together for a subsequent enhancement. To the

best of our knowledge, determining which strategy is better

for a multi-modal analysis mostly depends on the data types

and tasks associated with the given multimedia dataset. In the

following sections, we provide descriptions regarding the EF

and LF arrangements shown in Fig. 1 in more detail.

B. Early-fusion-strategy structure

Following the EF strategy, the waveform-level BCM- and

ACM-recorded noisy signals for each utterance in the training

set are directly concatenated to form an input vector, which

is used to train an FCN to approximate its noise-free ACM-

recorded counterpart. The corresponding input-output relation-

ship is therefore described as follows:

sEF [n] = FCNEF {x
(A)[n], x(B)[n]}, (1)

where x
(A)[n] and x

(B)[n] with respect to the time index, n,

represent the ACM- and BCM-recorded signals corresponding

to an arbitrary noisy utterance; FCNEF {.} denotes the FCN

model operation used, and sEF [n] is the enhanced signal

expected to approximate the noise-free version of x(A)[n].
In this study, FCNEF is composed of seven hidden convo-

lutional layers, each layer contains 30 kernels of size 55. In

addition, to examine the impact of BCM, we construct another

FCN model that is close to the FCNEF while it only adopts the

ACM channel. Evaluations for these models will be described

in Sec. IV.

C. Late-fusion-strategy structure

In contrast to EF, the LF strategy first processes ACM- and

BCM-recorded signals to obtain enhanced speech signals sep-

arately and then fuses the outputs from both sides. According

to Fig. 1(b), in the presented LF structure, we first create

two FCN models to conduct a BCM-to-ACM conversion and

an ACM-to-ACM enhancement, respectively, for noisy BCM-

and ACM-recorded signals. The resulting output feature maps

from both FCNs are then concatenated to serve as the input

of another FCN model with simple 1-D convolutional layers,

which are expected to produce nearly clean ACM-wise signals.

The input-output relationship regarding the three FCNs in this

LF multi-modal process can be expressed as follows:

sA[n] = FCNA{x
(A)[n]}, (2)

sB[n] = FCNB{x
(B)[n]}, (3)
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and

sLF [n] = FCNLF {s
(A)[n], s(B)[n]}, (4)

where FCNA{.}, FCNB{.} and FCNLF {.} denote the FCN

operations for the ACM-to-ACM, BCM-to-ACM, and LF,

respectively. In addition, sA[n], sB[n] and sLF [n] represent the

output signals of the above three FCNs that share a common

desired target, namely, a clean version of the ACM-recorded

signal x(A)[n]. The characteristics of each FCN model used

here are further described as follows:

• The ACM-to-ACM enhancement FCN model, FCNA,

which aims to reduce noise distortions in the original

ACM-recorded signals, is created following our recent

study [22]. That is, the FCNA model has seven hidden

layers, 33 filters for each layer and length 55 for each

filter. According to [22], this model can enhance ACM-

recorded signals significantly.

• Unlike FCNA, the FCNB model conducting BCM-to-

ACM conversion is designed in a compact manner, con-

sisting of four convolutional layers in the order of (1,

257), (3, 1), (5, 15) and (1, 513), which follow the setting

representation “(number of kernels, kernel size)”.

• The fusion function enhancing both sA[n] and sB[n] is

constructed by two hidden convolutional layers with layer

settings, (15, 55) and (1, 55), in the model.

IV. EXPERIMENTS

A. Experimental setup

We conducted the experiments on the Taiwan Mandarin

hearing in noise test script (TMHINT) dataset [45]. TMHINT

is a balanced corpus consisting of 320 sentences and 10 Chi-

nese characters in each sentence. The utterances in TMHINT

were pronounced by a native Mandarin male speaker and

recorded simultaneously with an ACM and a BCM in a silent

meeting room at a sampling rate of 16 kHz.

During the experiments, we split 320 utterances into three

parts: 243 utterances for training, 27 utterances for validation,

and 50 utterances for testing. In this study, we considered a

personalized SE scenario, where only a small number of ut-

terances pronounced by a single speaker was used for training

and testing. For the training set, we added noise to the ACM-

recorded utterances with several noise types (two talkers, piano

music, a siren, and speech-spectrum-shaped (SSN) noise) at

four SNR levels, -4, -1, 2 and 5 dB. For the test set, three

noise types (car, baby-cry and helicopter), which were unseen

noise types during the training, were added to ACM-recorded

utterances at four SNR levels, -5, 0, 5 and 10 dB, to simulate

mismatched conditions relative to the training set. Meanwhile,

noise-free BCM signals were used as an assistant channel in

both training and testing stages.

To evaluate the SE performance of the presented scenario,

several objective metrics were used, including a perceptual

evaluation of speech quality (PESQ) [46] with the wide-band

configuration, short-time objective intelligibility (STOI) [47]

and extended STOI (ESTOI) [48]. PESQ indicates the speech

quality with a score ranging from -0.5 to 4.5, whereas the

STOI and ESTOI metrics typically having score range from 0
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(3) FCNEF

(4) FCNLF

Fig. 2. Scores of different enhancement methods: FCNB , FCNA, FCNEF ,
and FCNLF evaluated with (a) PESQ, (b) STOI, and (c) ESTOI.

to 1 reflect the speech intelligibility (even though they might

be also negative).

B. Evaluation results and discussions

Several FCN-wise SE scenarios are compared here, includ-

ing FCNB which applies a BCM-to-ACM conversion; FCNA,

which applies an ACM-to-ACM enhancement; and two novel

multi-modal approaches, FCNEF and FCNLF .

Table I listed the metric scores for the original and the

FCNB-processed BCM-recorded utterances. From this table,

we can see that the original BCM-recorded utterances exhibit

a relatively low speech quality and intelligibility even though

they do not encounter a noise distortion, which is primarily

caused by a lack of high-frequency components. Next, the

BCM-to-ACM conversion by the FCNB model moderately

improves the speech quality in terms of PESQ scores, whereas

the speech intelligibility is slightly worse than BCM.

Next, the metric scores for the original noisy ACM-recorded

utterances and their three enhanced versions (updated using

FCNA, FCNEF or FCNLF ) are listed in Tables II and III.

From both tables, we can observe the following:

TABLE I
EVALUATION SCORES OF BCM SIGNALS AND FCNB .

BCM FCNB

PESQ STOI ESTOI PESQ STOI ESTOI

Avg. 1.247 0.619 0.395 1.554 0.608 0.362

TABLE II
EVALUATION ON NOISY ACMS AND FCNA IN DIFFERENT SNR LEVELS.

Noisy ACM FCNA

PESQ STOI ESTOI PESQ STOI ESTOI

10dB 1.722 0.912 0.750 1.965 0.915 0.761

5dB 1.452 0.849 0.624 1.682 0.877 0.673

0dB 1.273 0.766 0.500 1.446 0.809 0.552

-5dB 1.175 0.671 0.386 1.284 0.701 0.410

Avg. 1.405 0.799 0.565 1.594 0.826 0.599

TABLE III
EVALUATION ON FCNEF AND FCNLF IN DIFFERENT SNR LEVELS.

FCNEF FCNLF

PESQ STOI ESTOI PESQ STOI ESTOI

10dB 2.066 0.883 0.722 2.150 0.920 0.757

5dB 1.791 0.853 0.660 1.858 0.889 0.678

0dB 1.594 0.804 0.574 1.577 0.833 0.570

-5dB 1.422 0.744 0.475 1.357 0.740 0.433

Avg. 1.718 0.821 0.608 1.735 0.846 0.610
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(a) (b) (c)

(d) (e) (f)

Fig. 3. The waveform of (a) clean ACM, (b) noisy ACM, (c) BCM, (d) noisy
enhanced by FCNA, and (e) FCNEF enhanced speech and the (f) FCNLF

enhanced version.

BCM Noisy

Clean

FCNEF

BCM Noisy

Clean

FCNFCN

D Conv.

(a) (b)

FCNLF

FCNLF FCNA

0 10065.56

Fig. 4. The results (in percentage, %) for the AB test that compares FCNLF

and FCNA to determine which one brings less signal distortion.

1) Comparing the results for “BCM” in Table I and “Noisy

ACM” in Table II, we see that BCM behaves worse than

the unprocessed ACM noisy case, revealing that BCM

alone fails to enhance speech signals.

2) The FCNA model, which was purely trained with ACM-

recorded signals, behaves satisfactorily in promoting

both quality and intelligibility of noisy ACM-recorded

utterances. For example, improvements in the averaged

PESQ, STOI, and ESTOI scores are 0.189, 0.025 and

0.034, respectively.

3) Both multi-modal FCNEF and FCNLF structures, which

integrate the information from both ACM and BCM,

reveal higher PESQ, STOI, and ESTOI scores than the

noisy baseline in all SNR cases. These results indicate

the success of the presented multi-modal SE scenarios.

4) FCNLF achieves higher evaluation scores at high SNRs

(5 dB and 10 dB), and lower performances at low SNRs

(0 dB and −5 dB) when compared with FCNEF . One

possible explanation is that FCNEF possesses better

noise-robustness capability when it is employed in a

more distorted situation.

5) FCNEF performs especially well and outperforms both

FCNA and FCNLF for lower SNR cases (0 dB and −5
dB), but is less effective than FCNA in terms of STOI

and ESTOI at SNRs of 5 dB and 10 dB. In comparison,

FCNLF achieves better PESQ, STOI and ESTOI scores

than FCNA under all SNR conditions.

The evaluation scores from the previous tables averaged

over different SNR cases are summarized in Fig. 2 for compar-

isons. From this figure, we further confirmed that integrating

speech sources from both BCM and ACM as in the FCNEF

and FCNLF models, can achieve better SE performance in

most noisy situations compared with FCNA and FCNB , in

which the models are created with a single speech source.

Moreover, the LF strategy for multi-modal as in FCNLF

appears to be a better choice here because it outperforms the

others in all evaluation indices.

In addition to the objective evaluations, subjective listening

tests were also conducted to compare FCNLF and FCNA. We

selected two utterances from each of the 9 noisy conditions

with 3 noise types (car, baby-cry and helicopter) at 3 SNR

levels (-5, 0 and 5 dB), amounting to 18 (2 × 3 × 3)

utterances. Each utterance was processed by either of FCNLF

and FCNA, thus generating 18 utterance pairs, which were

used to perform single-blind-designed subjective AB tests in

a quiet environment. 20 subjects with normal hearing were

recruited to participate the tests. Each subject was asked to

listen to a pair of processed utterances and select the one

with lower signal distortion. The results are shown in Fig.

4, revealing that 65.56% voted for FCNLF generating low

signal distortions and the remaining 34.44% voted for FCNA

from the 360 tests (18 pairs × 20 subjects). In addition, we

conducted a matched-pair T-test to confirm the improvement

of FCNLF over FCNA as follows: First, we calculated the

votes for FCNLF and FCNA for each of the 18 utterances

from the 20 participants. Next, these 18 paired votes were used

to determine the p-value for the T-test, which equals 0.00088.

Such a small p-value confirms that the improvement of FCNLF

over FCNA is significant in the subjective evaluation tests.

Finally, Figs. 3(a)-(f) illustrate the waveforms of an utter-

ance under six conditions: (a) clean ACM, (b) noisy ACM,

(c) BCM-recorded clean, the noisy ACM enhanced by (d)

FCNA, and the concatenated BCM and noisy ACM signal

enhanced by (e) FCNEF and (f) FCNLF . When comparing the

waveform of (c) with that of (a) in the figure, we can observe

and confirm again that the BCM-captured speech is similar to

the clean ACM counterpart while it has a smoother trajectory.

Meanwhile, comparing Fig. 3(b) with Fig. 3(d), we see that

FCNA can reduce noise distortion significantly. However, both

FCNEF and FCNLF are shown to outperform FCNA by

providing even less distorted signals when comparing Figs.

3(e)(f) and Fig. 3(d). As a result, we show that integrating

BCM and ACM signals appropriately benefits a lot for SE as

in the presented FCNEF and FCNLF .

V. CONCLUSION

In this study, we proposed a novel time-domain multi-

modal bone/air conducted SE system, where BCM-signals

were used as the auxiliary source to promote the conventional

ACM-based SE system. We have derived and investigated

two ensemble-learning-based fusion strategies, namely EF and

LF, to perform multi-modal SE. In particular, for the LF

multi-modal structure, two pre-trained FCN models (for BCM-

and ACM-recorded signals, respectively) are concatenated and

then followed by another compact FCN model with 1-D con-

volutional layers, along with the normalization and non-linear

activation output layers. This structure provides signals with

significantly improved PESQ, STOI, and ESTOI metric scores

and consistently outperforms the FCN model which uses only

ACM-recorded signals for training. Due to its compact model

architecture as well as small input data size, the presented

multi-modal scenario is quite suitable for implementations on

mobile devices, such as cellphones, tablets, and even hearing

aids. This study has revealed the effectiveness of the proposed

multi-modal SE system on a speaker-specific scenario, such

as mobile and personalized device applications. In the future,

we will work to improve this system in its SE performance

and extend its application in more severe environments.
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