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Abstract
We present the first edition of the VoiceMOS Challenge, a sci-
entific event that aims to promote the study of automatic pre-
diction of the mean opinion score (MOS) of synthetic speech.
This challenge drew 22 participating teams from academia and
industry who tried a variety of approaches to tackle the prob-
lem of predicting human ratings of synthesized speech. The
listening test data for the main track of the challenge consisted
of samples from 187 different text-to-speech and voice conver-
sion systems spanning over a decade of research, and the out-of-
domain track consisted of data from more recent systems rated
in a separate listening test. Results of the challenge show the
effectiveness of fine-tuning self-supervised speech models for
the MOS prediction task, as well as the difficulty of predicting
MOS ratings for unseen speakers and listeners, and for unseen
systems in the out-of-domain setting.
Index Terms: VoiceMOS Challenge, synthetic speech evalua-
tion, mean opinion score, automatic speech quality prediction

1. Introduction
Speech synthesis technologies such as text-to-speech synthesis
(TTS) and voice conversion (VC) are a very active area of re-
search, and this field relies on judgments of quality of the syn-
thesized speech. The gold standard for evaluation is listening
tests, where human raters listen to samples generated by differ-
ent synthesis methods and give their opinions. One popular type
of listening test is Mean Opinion Score (MOS) [1], in which lis-
teners are presented with synthesized samples one by one, and
asked to rate some aspect of the speech, such as how natural it
sounds, on a Likert scale, typically from 1-5.

With the popularity of crowdsourcing platforms, conduct-
ing listening tests has become easier than in the past, when re-
searchers would have to recruit and schedule participants lo-
cally to come into the lab to listen to samples in person. MOS
tests also enable the implicit comparison of many different syn-
thesis systems – tests such as A/B testing, which ask listeners to
directly compare samples from two different systems, quickly
become impractical as the number of systems increases, since
all pairs of systems must be compared. Nevertheless, listening
tests in general and MOS tests in particular are not without their
drawbacks. Listening tests are time-consuming and costly, and
they cannot be used as a loss term in a training objective when
developing synthesis systems. Furthermore, listening tests are
heavily context-dependent. Each listening test gathers opinions
from a different set of listeners, and asks them to consider dif-
ferent sets of systems, whose overall range of quality may be
very different. The lexical content of the synthesized samples
and even the instructions given to participants also differ from

†Equal contribution.

test to test. This means that although MOS testing results in
numerical values representing the quality of each system, these
numbers cannot be meaningfully compared across different lis-
tening tests.

Intrusive speech quality metrics such as PESQ [2] are not
suitable for evaluating synthesized speech because they require
matching ground-truth reference audio. Synthesized speech
may have different prosody from a ground-truth reference, un-
like natural speech processed by a codec or in noisy conditions,
for which these metrics were designed. Given that MOS tests
result in a set of audio samples paired with their ratings from hu-
man listeners, there is no surprise that researchers have begun
to apply data-driven, machine-learning-based approaches to de-
velop automatic non-intrusive MOS prediction models [3–13].
However, given the context-dependency of MOS ratings, data
from different listening tests cannot be combined, and so these
models are typically trained on data from one listening test that
contains samples from a limited range of types of synthesis
models. While these MOS prediction models can perform well
for samples from the same listening test, they typically fail to
generalize well to other listening test contexts or even to unseen
synthesis methods from the same listening test [14].

In order for MOS prediction models to be a useful tool
for speech synthesis researchers, these issues need to be ad-
dressed and more improvement is needed in the state of the art
in the MOS prediction task. With these aims, we developed the
VoiceMOS Challenge, a shared task using common datasets
for MOS prediction. We conducted a large-scale MOS listen-
ing test to cover many different types of TTS and VC systems
spanning many years [14,15], and this dataset forms the basis of
the challenge. We also introduced an “out-of-domain” track to
focus research efforts on how to adapt MOS prediction models
to new listening test contexts. In the following, we describe the
organization of the challenge and present some analysis of the
predictions made by participants’ MOS prediction systems.

2. Challenge Description

The challenge was hosted on CodaLab1, an open-source web-
based platform for reproducible machine learning research. Be-
low we introduce the dataset used in each track. A summary is
in Table 1. We also describe the challenge phases, evaluation
metrics, and baseline prediction systems. The challenge rules
can be found in Appendix A.

1https://codalab.lisn.upsaclay.fr/
competitions/695
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Table 1: Summary of the main track and out-of-domain (OOD)
track datasets.

Track Lang
# Samples # ratings

per sampleTrain Dev Test

Main Eng 4,974 1,066 1,066 8

OOD Chi Label: 136
Unlabel: 540 136 540 10-17

2.1. Tracks and Datasets

2.1.1. Main track

The data for the main track of the challenge comes from a large-
scale listening test covering many types of TTS and VC sys-
tems that we conducted in our prior work [15]. The listening
test consists of 38 samples from each of 187 different syn-
thesis systems including natural speech, and each sample was
rated by 8 different listeners. The samples come from many
past years of Blizzard Challenges (BC) [16–21] and Voice Con-
version Challenges (VCC) [22–24], as well as published sam-
ples from ESPnet-TTS [25]. These samples cover a wide range
of different types of synthesis systems and methods spanning
many years. Listeners rated each sample for naturalness on
a discrete, 1-incremented scale from 1 (very bad) to 5 (very
good). We also collected demographics about listeners such as
gender, age range, and whether or not they have any hearing
impairment. We used the training, development, and test splits
from our prior work [14] which followed a 70%/15%/15% parti-
tion, and which were chosen to hold out some unseen synthesis
systems, speakers, texts, and listeners in the development and
test sets while matching the overall distributions of ratings as
closely as possible between the sets.

2.1.2. Out-of-domain track

We define “out-of-domain” (OOD) as data that is from a dif-
ferent listening test. For our OOD track, we chose the Bliz-
zard Challenge 2019 listening test data [26], which was not
included in the main track data. In addition to this data orig-
inating from a different listening test with different synthesis
systems and listeners from the main track, this dataset con-
sists of Chinese TTS samples whereas all of the samples in
the main track dataset are in English, which presents a chal-
lenging language mismatch in the domain as well. The OOD
data was split into training/unlabeled/development/test sets of
10%/40%/10%/40%. The unlabeled dataset was audio samples
only without MOS ratings, provided to participants during the
training phase in order to encourage experimentation with ap-
proaches such as semi-supervised learning. The small training
set size was chosen to reflect a scenario where a small amount
of labeled target-domain data is available, e.g., from a small pi-
lot listening test. The main track data was allowed to be used in
the OOD track in addition to the OOD data. We have made the
scripts for obtaining the challenge data publicly available.2

2.2. Phases

The challenge was divided into four phases: the training phase,
evaluation phase, break phase, and post-challenge.

2https://doi.org/10.5281/zenodo.6572573

2.2.1. Training phase

The training phase started on December 5, 2021, and ended on
February 21, 2022. During these 11 weeks, participants had ac-
cess to audio samples and their MOS labels and listener info
for the training and development data (as well as the unlabeled
audio set for the OOD track), and the purpose of this phase was
for participants to develop their prediction systems. Participants
could submit their MOS predictions for the development set to
the CodaLab leaderboard, where teams’ scores were publicly
displayed. Participants were permitted to make up to 30 sub-
missions to the leaderboard per day.

2.2.2. Evaluation phase

The evaluation phase was one week long, starting on February
21, 2022 and ending on February 28. Test set audio samples
were released at the start of this phase. Participants did not
have access to any MOS labels or listener info for the test set.
Teams were permitted to make up to three submissions during
this phase with their MOS predictions for the test set audio.

2.2.3. Break phase and post-challenge phase

We defined a 1-week break phase after the end of the evalua-
tion phase, during which we froze new submissions so that we
could conduct post-challenge analysis. After that was the post-
challenge phase, during which we re-opened the leaderboard so
that participants could continue making submissions.

2.3. Evaluation Metrics

Following [8], the evaluation criteria are system-level and
utterance-level mean squared error (MSE), Linear Correla-
tion Coefficient (LCC), Spearman Rank Correlation Coefficient
(SRCC), and Kendall Tau Rank Correlation (KTAU). The rea-
son to use multiple metrics is to assess the model performance
via various aspects. Depending on the application, different
metrics have their own respective roles. In scientific challenges
like BC or VCC, we are more interested in the ranking of syn-
thesis systems, so metrics like SRCC or KTAU are preferable.
On the other hand, when it comes to assessing TTS/VC models
under development, MSE is a more straightforward metric.

We distributed an evaluation script to avoid confusion and
inconsistency. Due to the space limit, we only displayed
utterance-/system-level MSE/SRCC on the leaderboard. Fol-
lowing [13], we used system-level SRCC as the primary metric
for determining the ranking on the leaderboard.

2.4. Baseline Prediction Systems

We provided three open-source baseline MOS prediction sys-
tems to participants: SSL-MOS3 [14], MOSA-Net4 [27], and
LDNet5 [28], which correspond to team IDs B01, B02 and
B03, respectively. SSL-MOS adds a simple linear fine-tuning
layer for the MOS prediction task onto Fairseq6 self super-
vised learning (SSL)-based models for speech, and in partic-
ular, the baseline is fine-tuned from Wav2vec 2.0 Base [29],
which was trained on the LibriSpeech [30] corpus. MOSA-Net

3https://github.com/nii-yamagishilab/
mos-finetune-ssl

4https://github.com/dhimasryan/
MOSA-Net-Cross-Domain

5https://github.com/unilight/LDNet
6https://github.com/pytorch/fairseq

https://doi.org/10.5281/zenodo.6572573
https://github.com/nii-yamagishilab/mos-finetune-ssl
https://github.com/nii-yamagishilab/mos-finetune-ssl
https://github.com/dhimasryan/MOSA-Net-Cross-Domain
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uses cross-domain features such as spectral information, com-
plex features, raw waveform data, and features extracted from
SSL models to estimate multiple speech assessment metrics si-
multaneously. Originally developed for noisy speech quality as-
sessment, MOSA-Net serves as a good example to demonstrate
how adapting such a prediction system to this task is possible.
LDNet does not rely on any external data, but its specialized
model structure and inference method allow for utilizing indi-
vidual ratings to facilitate listener-dependent modeling.

3. Participants and Submitted Systems
In total, 22 teams made an evaluation phase submission, where
14 are from academia, five are from industry, two are joint
academia-industry teams, and one is personal. Participants span
from countries in Asia such as Japan, Taiwan, and China, to
those in Europe, including the UK, Ireland, the Netherlands,
Hungary, Romania, and Czechia. Among them, 21 and 15
teams participated in the main and OOD tracks, respectively.
A full list of participants and their affiliations can be found in
Appendix B. During the training phase, a total of 223 submis-
sions were made, as some teams frequently uploaded results to
compete with each other. One of the teams, T17, made 33 sub-
missions and turned out to be one of the top teams.

4. Results, Discussion and Analysis
The evaluation results of the main and OOD tracks are shown
in Figures 1 and 2. Full numerical results and rankings for all
metrics can be found in Appendix C.

4.1. Comparison of Baseline Systems

Among the three baselines, B01 was the strongest in terms of
system-level MSE and SRCC for the main track and system-
level SRCC for the OOD track. B02 topped the system level
MSE for the OOD track, and placed second among the other
metrics. B03 was consistently the worst among the three base-
lines. As both B01 and B02 used SSL, it is shown that using
extra data is helpful even if MOS ratings are absent.

For the main track, B01 had a system-level MSE and SRCC
of 0.148 and 0.921, ranking 18th and 12th in the two metrics, re-
spectively. The top prediction systems in system-level MSE and
SRCC scored 0.090 and 0.939, respectively. As for the OOD
track, B02 had a system-level MSE of 0.071, and B01 had a
system-level SRCC of 0.975. The top prediction systems had
an MSE of 0.030 and a SRCC of 0.979, respectively. This sug-
gests that the gap between the baseline and the top prediction
systems was not large. As one of the points of feedback from
the participants suggests, the baseline was already strong and it
was hard to obtain substantial improvements over it.

4.2. Analysis of Top Prediction Systems

The top-ranking teams in the main track all use methods that in-
volve fine-tuning SSL models (either using our SSL-MOS base-
line code or not). In fact, for the main track we can see from
Figure 1 that teams are clearly arranged with SSL-finetuning-
based approaches scoring the highest, models that use features
extracted from SSL models without finetuning in the middle,
and methods that do not use SSL ranking last. However, for
the OOD track this arrangement does not hold true, with some
teams that did not finetune SSL models outranking ones that
did. Some popular modeling approaches that we observed in
both the top prediction systems and the teams overall are en-
sembling, multi-task learning, and use of speech recognizers.

Seven teams (and 3 of the top 5 teams) made use of per-
listener ratings, either by using the LDNet baseline or by imple-
menting a similar method. No teams made use of the listener
demographics that were provided, but one team made use of
“listener group,” since the structure of the main-track listening
test had listeners grouped by the set of utterances that they rated.

For the OOD track, only three teams tried making use of the
unlabeled data. T17 conducted their own listening test to get la-
bels for the unlabeled data, and this strategy was very success-
ful as they ranked first for system-level SRCC in the OOD track.
Other strategies were to use the unlabeled data for task-adaptive
pretraining [31], and to use trained models to “self-label” the
unlabeled data. System-level SRCCs were overall higher in the
OOD phase than in the main phase, but the MSEs also spanned
a wider range; this indicates that although relative rankings of
synthesis systems can be well-learned by pretraining on a larger
dataset, predicting the precise scores for a different listening test
with very little data from that test remains a challenge.

4.3. Sources of Difficulty for MOS Prediction

4.3.1. Seen vs. unseen categories

Similar to our prior work [14], we analyzed the difficulty of
seen vs. unseen categories such as synthesis systems, speakers,
and listeners. For each team, we gathered the squared errors
for all utterances from e.g. seen speakers, and then for unseen
speakers, and then conducted a two-sided t-test between these
lists of squared errors to determine whether the unseen-category
errors were significantly different (either more difficult or less
difficult) from the seen ones at a level of p≤0.05.

Surprisingly, for the main track, we found that no teams
found unseen synthesis systems to be significantly more diffi-
cult by this measure, except for B01 (as reported in [14]). Un-
seen listeners were significantly more difficult for 16 teams and
1 baseline (and significantly easier for 1 team). There was only
one unseen speaker in the test set, but unseen speaker data was
significantly more difficult for 6 teams and 1 baseline.

For the OOD track, unlike the main track, unseen synthe-
sis systems were more difficult than seen ones in the OOD test
set for 4 teams and 2 baselines. Unseen listeners were not sig-
nificantly harder to predict for any teams. There are no unseen
speakers in the OOD track test set.

4.3.2. Synthesis systems that are difficult to predict

Since unseen synthesis systems were not especially difficult to
predict in the main track, we next tried to identify whether there
were any particular synthesis systems that are consistently dif-
ficult for all teams, and to identify what makes them difficult.
For all teams including baselines, we ranked synthesis systems
based on system-level MSE, and found each team’s “worst-10”
synthesis systems. Then, for each synthesis system that appears
in any “worst-10” list, we count how many teams have that sys-
tem in their worst-10 list. The top 5 most difficult synthesis sys-
tems, judged as those that appeared in the most teams’ worst-10
lists, are in Table 2.

We did not find that factors such as type of synthesis or stan-
dard deviations of synthesis systems’ ratings could explain their
difficulty. We also considered that differences in the distribu-
tions of scores for each synthesis system’s training and testing
splits may affect difficulty. Although our training, development,
and testing splits were carefully chosen to have well-matched
distributions of MOS ratings, this was done for the overall data
and not on a finer-grained system-by-system level. We mea-
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Figure 1: Main track results
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Figure 2: OOD track results

Table 2: Top 5 most difficult synthesis systems to predict in the
main track, and information about them: System name, how
many teams had it in their worst-10 list, ground-truth MOS, and
standard deviation of MOS.

Name # Teams MOS Sdev. MOS
BC2009-T 22 2.65 0.88
BC2016-F 19 2.52 1.00
BC2008-B 15 3.22 0.98
BC2008-I 13 2.40 1.02
VCC2020-T10 12 3.88 0.83

sured the difference in the distributions of the splits for each
synthesis system in the following manner: For every synthesis
system in our main track data, we computed the earth-mover’s
distance (EMD) between the distribution of the ratings in the
training set compared to the test set. System VCC2020-T10
had no samples in the training set since it was held out as an
unseen system for the development set, so it was excluded from
this analysis. We found that all four of the remaining difficult
systems fall within the 15% of systems with the highest EMDs.
Thus, unsurprisingly, we can conclude that a discrepancy in the
training and test set distributions can adversely affect predic-
tion ability; this is a well-understood phenomenon in machine
learning.

4.4. Analysis of Metrics
We observed that ranking top at one metric does not guaran-
tee superiority at other ones. For example, T11 ranked top
in system-level LCC, SRCC and KTAU in the main track, but
ranked 5th in system-level MSE. To understand the tendencies
of each team at each metric, we calculated the linear correlation
coefficients between all pairs of metrics using the main track
results, as shown in Table 3. A full table of the correlation
coefficients of all metrics in both utterance- and system-levels

Table 3: Linear correlation coefficients between system-level
metrics, using the main track results.

MSE LCC SRCC KTAU
MSE 1.00 -.875 -.862 -.870
LCC - 1.00 .997 .994

SRCC - - 1.00 .994
KTAU - - - 1.00

can be found in Appendix D. First, LCC, SRCC and KTAU
have coefficients close to 1 with each other in both utterance-
and system-levels. However, MSE behaves differently from the
above 3 metrics, as evidenced by the relatively lower correlation
(∼ 0.87). This analysis suggests that future studies may choose
to report, for example, only the SRCC, while still keeping the
MSE. It is also of interest to develop a general metric that takes
both metrics into account.

5. Conclusions
We have presented a description of the first VoiceMOS Chal-
lenge and a summary of the results. We have observed the over-
whelming effectiveness of SSL-based models for this task. We
have also observed the difficulty of unseen synthesis systems
in the OOD setting, and of unseen speakers and listeners in the
main track. Generalizing to a different listening test context and
predicting scores precisely using a small amount of labeled data
remains challenging, as shown by the wide range of MSE val-
ues in the OOD track. We have also observed the importance
of well-matched training and test distributions. Our future chal-
lenge will focus on the high-scoring region of the MOS range.
Given the high quality of present-day speech synthesis systems,
this task is very relevant to speech synthesis researchers, espe-
cially if MOS predictors are to be useful for objectively evalu-
ating experimental synthesis systems.
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A. Challenge Rules
We required all participants to make at least one submission to the CodaLab leaderboard during the training phase. Although participants had access to
the development set labels and could evaluate their models locally, we required submission to the leaderboard in order to ensure that participants were
familiar with the submission format and procedures ahead of the more time-constrained evaluation phase. Teams who did not make one submission to
the leaderboard by the start of the evaluation phase were assumed to no longer be interested in participating and were removed from the challenge.

We also required participants to submit a system description for their team entry. A template with example information filled in was provided.
Participants were allowed to make use of external data for the challenge, and were required to specify information about any external data used in

their system descriptions. The exception is that participants were explicitly not allowed to gather and make use of data from Blizzard Challenges, Voice
Conversion Challenges, or ESPnet-TTS published samples outside of what was provided for the challenge, because in doing so they may inadvertently
use samples that appear in the test set for training. Likewise, participants were not allowed to make use of pretrained models or other resources that used
these datasets.

The development set was only allowed to be used for model selection and parameter tuning, and not as extra training data for the evaluation phase.

B. List of participants

Table 4: List of participant affiliations in random order.

Affiliation Main track OOD track

Ajmide Media, China Y Y
Budapest University of Technology and Economics, Hungary Y Y
Bytedance AI-Lab, China Y Y
Charles University, Prague, Czech Republic Y N
Denso IT Laboratory, Japan Y Y
Duke Kunshan University Y N
Google; University College Dublin Y N
Inner Mongolia University, China Y N
Japan Advanced Institute of Science and Technology, Japan Y N
National Taiwan University, Taiwan Y Y
Netease, China Y Y
NICT, Japan; Kyoto Univ., Japan; Kuaishou Inc., China Y Y
Novosibirsk State University N Y
Personal? Y Y
Princeton University Y Y
ReadSpeaker, The Netherlands Y N
Sillwood Technologies, UK Y Y
Technical University of Cluj-Napoca, Romania Y N
The University of Tokyo, Japan Y Y
Tsinghua University? Y Y
University College Dublin, Ireland Y Y
University of West Bohemia, Czech Republic Y Y



C. Detailed results
C.1. Main track

Table 5: Main track evaluation results. For MSE, the smaller the better; for LCC, SRCC and KTAU, the larger the better.

ID Utterance-level System-level
MSE LCC SRCC KTAU MSE LCC SRCC KTAU

B01 0.277 0.869 0.869 0.690 0.148 0.924 0.921 0.769
B02 0.309 0.809 0.811 0.621 0.162 0.899 0.900 0.729
B03 0.334 0.787 0.785 0.599 0.178 0.873 0.873 0.691
T01 0.208 0.875 0.878 0.704 0.122 0.916 0.915 0.767
T02 0.205 0.878 0.877 0.701 0.116 0.927 0.925 0.776
T04 0.351 0.805 0.806 0.619 0.194 0.890 0.890 0.719
T05 0.194 0.884 0.884 0.712 0.107 0.931 0.930 0.781
T06 0.238 0.861 0.860 0.686 0.143 0.923 0.922 0.773
T07 0.242 0.877 0.872 0.698 0.098 0.936 0.933 0.783
T08 0.263 0.838 0.838 0.652 0.142 0.908 0.911 0.747
T09 0.276 0.823 0.822 0.634 0.137 0.904 0.902 0.734
T10 0.197 0.884 0.884 0.712 0.106 0.933 0.931 0.785
T11 0.179 0.895 0.894 0.725 0.101 0.941 0.939 0.797
T12 0.171 0.895 0.893 0.725 0.095 0.936 0.933 0.782
T13 0.299 0.856 0.854 0.674 0.245 0.909 0.910 0.745
T14 0.414 0.748 0.747 0.562 0.249 0.837 0.834 0.649
T15 0.442 0.760 0.758 0.572 0.253 0.833 0.827 0.640
T16 0.313 0.835 0.829 0.647 0.142 0.911 0.906 0.745
T17 0.165 0.900 0.897 0.730 0.090 0.939 0.936 0.794
T18 0.213 0.882 0.884 0.712 0.130 0.925 0.929 0.783
T19 0.187 0.890 0.889 0.719 0.091 0.940 0.938 0.792
T20 0.197 0.889 0.890 0.722 0.108 0.936 0.935 0.790
T21 0.217 0.867 0.866 0.687 0.103 0.920 0.918 0.763
T22 0.220 0.867 0.864 0.687 0.134 0.912 0.911 0.749

Table 6: Main track rankings for each metric.

ID Utterance-level System-level
MSE LCC SRCC KTAU MSE LCC SRCC KTAU

B01 17 12 12 12 18 11 12 12
B02 19 20 20 20 19 20 20 20
B03 21 22 22 22 20 22 22 22
T01 9 11 9 9 11 14 14 13
T02 8 9 10 10 10 9 10 10
T04 22 21 21 21 21 21 21 21
T05 5 6 7 7 8 8 8 9
T06 13 15 15 15 17 12 11 11
T07 14 10 11 11 4 4 5 6
T08 15 17 17 17 15 18 16 16
T09 16 19 19 19 14 19 19 19
T10 7 7 6 8 7 7 7 5
T11 3 2 2 3 5 1 1 1
T12 2 3 3 2 3 6 6 8
T13 18 16 16 16 22 17 17 18
T14 23 24 24 24 23 23 23 23
T15 24 23 23 23 24 24 24 24
T16 20 18 18 18 16 16 18 17
T17 1 1 1 1 1 3 3 2
T18 10 8 8 6 12 10 9 6
T19 4 4 5 5 2 2 2 3
T20 6 5 4 4 9 5 4 4
T21 11 14 13 14 6 13 13 14
T22 12 13 14 13 13 15 15 15



C.2. OOD track

Table 7: OOD track evaluation results. For MSE, the smaller the better; for LCC, SRCC and KTAU, the larger the better.

ID Utterance-level System-level
MSE LCC SRCC KTAU MSE LCC SRCC KTAU

B01 0.260 0.888 0.849 0.664 0.099 0.971 0.975 0.889
B02 0.284 0.853 0.806 0.616 0.071 0.967 0.954 0.846
B03 0.287 0.844 0.787 0.592 0.091 0.952 0.934 0.791
T02 3.619 0.415 0.460 0.336 3.393 0.469 0.527 0.446
T03 0.216 0.896 0.870 0.683 0.066 0.976 0.929 0.803
T05 0.270 0.881 0.857 0.672 0.104 0.968 0.975 0.877
T06 0.719 0.874 0.848 0.662 0.538 0.957 0.970 0.871
T07 0.285 0.885 0.850 0.667 0.132 0.964 0.956 0.858
T10 0.220 0.884 0.852 0.664 0.085 0.955 0.930 0.778
T11 0.163 0.921 0.895 0.722 0.048 0.982 0.952 0.852
T12 0.254 0.894 0.863 0.674 0.107 0.968 0.936 0.809
T15 0.334 0.849 0.814 0.619 0.163 0.950 0.917 0.778
T17 0.162 0.917 0.893 0.716 0.030 0.988 0.979 0.908
T18 0.189 0.900 0.875 0.692 0.054 0.972 0.973 0.883
T19 0.210 0.888 0.859 0.676 0.070 0.960 0.969 0.871
T20 0.360 0.858 0.837 0.649 0.141 0.964 0.956 0.846
T21 2.516 0.440 0.429 0.305 2.261 0.491 0.516 0.385
T22 0.261 0.885 0.834 0.646 0.107 0.957 0.904 0.785

Table 8: OOD track rankings for each metric.

ID Utterance-level System-level
MSE LCC SRCC KTAU MSE LCC SRCC KTAU

B01 8 6 10 10 9 5 2 2
B02 11 14 15 15 6 8 9 9
B03 13 16 16 16 8 15 12 13
T02 18 18 17 17 18 18 17 17
T03 5 4 4 4 4 3 14 12
T05 10 11 7 7 10 6 2 4
T06 16 12 11 11 16 12 5 5
T07 12 9 9 8 13 9 7 7
T10 6 10 8 9 7 14 13 15
T11 2 1 1 1 2 2 10 8
T12 7 5 5 6 12 7 11 11
T15 14 15 14 14 15 16 15 15
T17 1 2 2 2 1 1 1 1
T18 3 3 3 3 3 4 4 3
T19 4 7 6 5 5 11 6 5
T20 15 13 12 12 14 10 7 9
T21 17 17 18 18 17 17 18 18
T22 9 8 13 13 11 13 16 14



D. Correlation analysis between metrics

Table 9: Linear correlation coefficients between different metrics, using the main track results.

Utterance-level System-level
MSE LCC SRCC KTAU MSE LCC SRCC KTAU

Utterance-
level

MSE 1.00 -.955 -.958 -.955 .906 -.931 -.932 -.942
LCC - 1.00 .999 .997 -.838 .964 .959 .974

SRCC - - 1.00 .997 -.835 .962 .959 .974
KTAU - - - 1.00 -.829 .949 .944 .965

System-
level

MSE - - - - 1.00 -.875 -.862 -.870
LCC - - - - - 1.00 .997 .994

SRCC - - - - - - 1.00 .994
KTAU - - - - - - - 1.00

E. Factors investigated to explain systems that were difficult to predict
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Figure 3: Systems and their standard deviations. The five most difficult systems to predict (red) span the range of standard deviations,
indicating that a high standard deviation in a system’s scores does not explain its difficulty for MOS predictors.
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Figure 4: Difference in distributions between training and test data. The four most difficult systems to predict (red) are in the top EMD
range of this figure (left side), indicating that large differences in the distributions of the training and test data contribute to prediction
difficulty.
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Figure 5: System-level mean squared error vs. ground-truth system-level MOS. All teams had low errors for low-scoring systems.
Higher errors tend to appear for middle- and high-scoring systems.
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