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Abstract—Objective: Voice disorders significantly com-
promise individuals’ ability to speak in their daily lives.
Without early diagnosis and treatment, these disorders
may deteriorate drastically. Thus, automatic classification
systems at home are desirable for people who are inac-
cessible to clinical disease assessments. However, the per-
formance of such systems may be weakened owing to the
constrained resources, and domain mismatch between the
clinical data and noisy real-world data. Methods: This study
develops a compact and domain-robust voice disorder
classification system to identify the utterances of health,
neoplasm, and benign structural diseases. Our proposed
system utilizes a feature extractor model composed of
factorized convolutional neural networks and subsequently
deploys domain adversarial training to reconcile the do-
main mismatch by extracting domain-invariant features.
Results: The results show that the unweighted average
recall in the noisy real-world domain improved by 13% and
remained at 80% in the clinic domain with only slight degra-
dation. The domain mismatch was effectively eliminated.
Moreover, the proposed system reduced the usage of both
memory and computation by over 73.9%. Conclusion: By
deploying factorized convolutional neural networks and
domain adversarial training, domain-invariant features can
be derived for voice disorder classification with limited
resources. The promising results confirm that the proposed
system can significantly reduce resource consumption and
improve classification accuracy by considering the domain
mismatch. Significance: To the best of our knowledge, this
is the first study that jointly considers real-world model
compression and noise-robustness issues in voice disor-
der classification. The proposed system is intended for
application to embedded systems with limited resources.

Index Terms— Voice disorder classification, model com-
pression, domain adaptation, real-world application
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I. INTRODUCTION

Early epidemiological studies had reported varying esti-

mates of the prevalence of voice disorders, ranging from

0.65% to 15% [1], [2]. A later report had estimated the

prevalence among the US to be approximately 3% to 9% [3].

Recently, a regional telephone survey of 1326 random subjects

revealed a current voice disorders prevalence of 6.6% and a

lifetime prevalence of 29.9% in adults aged less or equal to

65 years [4]. Another study based on primary care physicians

had demonstrated similar results on the lifetime prevalence

of voice disorders (4.3% to 29.1%) and 7.5% of current voice

disorders [5]. More recently, two large-scale claims data-based

epidemiological studies had revealed that the prevalence rate

of voice disorders ranges from 0.26% to 0.98% [6], [7]. All

studies have indicated that the overall prevalence of voice

disorders is quite alarming. For such diseases, accurate diagno-

sis requires experienced specialists and expensive equipment.

Without health insurance or other medical resources, patients

who make specialist appointments would face a few months

of waiting. Appropriate and instant disease assessment may be

inaccessible to people in need. Therefore, this study proposes

a non-invasive self-screening classification system that allows

individuals to diagnose pathological voices (health, neoplasm,

and benign structural diseases) at home to help schedule the

priority of medical resource allocation. For example, if a

patient has been diagnosed with neoplasm using the proposed

classification system, his/her appointment can be brought

forward to reduce the waiting time. However, if the self-

screening result shows health, the user can avoid the risk

of infection while traveling to the hospital and the waste of

medical resources, especially during epidemics.

In recent decades, several non-invasive screening methods

have been proposed, and the potential to identify samples of

pathological voices has also been demonstrated in [8]–[10].

Furthermore, pathological voices always accompany changes

in the voice quality [11]–[13]. Thus, in previous research,

acoustic features, for example, Mel frequency cepstral coef-

ficients (MFCCs) [14]–[16], glottal features [17], [18], and

gammatone spectral latitude (GTSL) [19], were used as inputs

of classic machine learning (ML) classifiers, for example,

Gaussian mixture models (GMM) [20], support vector ma-

chine (SVM) [21]–[27], and k-nearest neighbors (KNN) [28],

[29]. On the other hand, various neural network (NN)-based

models also verified the reliability of deep learning (DL) [30]–

[36]. An automatic speech recognition system was used to

assess voice disorders as well [37], [38]. Besides, some studies

have added auxiliary inputs, such as medical records [39] and

http://arxiv.org/abs/2112.02538v2
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the GRBAS scale [40], to help classify the pathological voices.

Based on the promising performance under ideal conditions,

Hsu et al. [41] further addressed the channel effect due to

hardware variation; Fan et al. [42] and Jinyang et al. [43]

investigated the sample imbalance between voice disorders.

With the development of the Internet of Things (IoT), IoT

and cloud technology has also been applied to voice pathology

monitoring [44]–[46]. In addition to the above research, the

FEMH Challenge was held internationally by the IEEE Big

Data conference in Seattle 2018, in which numerous groups

built voice disorder classification systems [47]–[52] based on

the same evaluation metrics and dataset published by the Far

Eastern Memorial Hospital (FEMH), Taiwan [53].

Nevertheless, current NN-based solutions are not optimal

in practical applications due to two main challenges. First,

to achieve state-of-the-art performance, large and deep model

structures of neural networks are typically designed. However,

the limited memory and computational resources of embedded

systems allow little room for models to increase the number

of parameters. Second, the domain mismatch between the

standardized training data and testing data acquired from real-

world scenarios substantially degrades the accuracy.

Because a large model requires a huge memory capacity and

computational resources, there are typically three common so-

lutions to achieve real-time processing on embedded systems:

quantization techniques, knowledge distillation, and factorized

convolutional neural networks (CNN). Quantization is a tech-

nique that replaces the arithmetic of 32-bit floating points

with that of integers [54] or powers of two [55], implemented

with a much lower latency on commonly available hardware.

Moreover, owing to the limited number of quantized values,

representations of even lower bits can be applied to further re-

duce the usage of memory. An alternative solution, knowledge

distillation, is the process of transferring the knowledge from

a large network, particularly for an ensemble of models, to a

small one [56]. The outputs generated by the cumbersome but

well-trained network act as additional labels for the distilled

network. Thus, by imitating the behavior of a large network,

a distilled network can achieve better performance than using

only true labels. Finally, the standard CNN can be regarded

as a combination of spatial convolution in each channel (also

called intra-channel convolution) and linear projection across

channels simultaneously [57]. Therefore, the factorized CNN

was devised to rearrange the spatial convolution [58] or

address these two parts separately [59] to reduce memory and

computation.

Another issue in the real-world scenarios is the domain

mismatch. Although joining abundant labeled data from dif-

ferent environments is likely to improve the generalizability

of models, it is not feasible to prepare rather diverse and

out-of-clinic data in the biomedical area due to extreme time

consumption. Additionally, labeling such data requires a strong

professional background, which further increases the difficulty.

Therefore, data collected in the laboratory or clinics are the

few (and sometimes the only) labeled data available. Our

intention is to focus on unsupervised domain adaptation, which

requires no labeled data from the real-world domain but la-

beled data from the clinic domain during the training process.

In general, the labeled data defined as the source domain

have one probability distribution, while the unlabeled data,

which we intend to adapt to, called the target domain, have

another. There are a few methods for generalizing a model to

an unseen target domain, including the Generative Adversarial

Network (GAN)-based and discrepancy-based methods. In the

GAN-based method, a generator generates plausible target

domain data with labels from given source data [60], where

the plausibility is governed by a discriminator. Subsequently,

the labeled data from the source domain together with the

generated target data are utilized for the main task training.

Thus, information from both the source and the target domains

is revealed to the main task model. Another discrepancy-based

method intends to learn extracted features by minimizing the

gap between the probability distributions of the source and the

target domains, so that a well-trained model can be directly

applied to the target domain to fit our purpose. To derive

such domain-invariant features, predefined statistics [61]–[63]

or domain classifier [64], [65] are introduced to assess the

discrepancy of probability distributions between the domains.

In this study, we propose a new voice disorder classification

system customized for embedded devices, which adapts to

daily noisy environments simultaneously. The proposed model

consists of factorized CNNs to obtain compact architecture

and is augmented with a domain adversarial training (DAT)

module during training to equip it with the ability to be

operated in noisy environments. The results showed that the

unweighted average recall (UAR) in the noisy real-world

domain improved by 13%, and that in the clinic domain

remained at 80% with only slight degradation. In addition, the

numbers of parameters and Multiply–Accumulate Operations

(MACs) were significantly reduced by 73.9% and 77.0%,

respectively.

The remainder of this paper is organized as follows: In

Section II, the related works, including MobileNet and DAT,

are reviewed. Section III introduces the proposed robust voice

disorder classification system. The experimental results and an

ablation study are presented in Section IV. Section V claims

our plans for the future work. Finally, the conclusions are

presented in Section VI.

II. RELATED WORKS

A. Model compression

To achieve a high penetration rate of self-diagnosis at home,

classification systems will confront the limits of memory and

computational resources on embedded devices, so that, in

addition to accuracy, the model size and computational cost

are also prior considerations.

Typically, in speech signal processing, filter-based conver-

sions, such as Mel-spectrograms and MFCCs, are applied to

temporal signals so that the CNN-based model can effec-

tively extract the local pathological characteristics from the

(2D image-like) converted inputs. From this perspective, the

factorized CNN is suitable for reducing the difficulties.

An Efficient Residual Factorized Network (ERFNet) [58]

rearranges the spatial convolution to achieve less usage of

resources. It factorizes a 3 × 3 convolution into the union
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of perpendicular 3 × 1 and 1 × 3 convolutions, and residual

connections are used to improve the training efficiency while

retaining remarkable accuracy under the constrained scenario.

Another factorized method, separable convolution, proposed

in MobileNet [59], is aimed at mobile and embedded vi-

sion. A separable convolutional layer factorizes a standard

convolutional layer into a depth-wise convolutional layer and

a point-wise convolutional layer. As is known, a standard

convolution deals with spatial convolution in each channel and

linear transformation across channels simultaneously, whereas

a separable convolution splits this operation into two stages.

Specifically, in the first stage, the depth-wise convolution

applies a single filter to per each input channel, and in the

second stage, the point-wise convolution (simply a 1 × 1
convolution) then performs a linear projection on the previous

depth-wise convolution outputs. Attributed to the separate

consideration of the relationship in each channel and the

relationship between channels, the computation and model

size are drastically reduced. Two variants, MobileNetV2 [66]

and MobileNetV3 [67], were proposed to further improve the

accuracy and reduce the latency on the successful base of

MobileNet.

B. Unsupervised domain adaptations

Compared to undisturbed clinics or studios where pathologi-

cal voices are recorded, background noise is inevitable in daily

life where our system is aimed for application. Moreover, there

are very few annotated data in out-of-clinic scenarios available,

since it is hard to perform standard and unified experiments

for the general public without the assistance of experienced

specialists. Thus, dealing with domain mismatches between

the labeled source data and unlabeled target data poses a

challenge. In general, the distributions of these two domains

are expected to be similar but not exactly coincident. In

fact, they are required to be ”similar” by nature due to the

same learning task. However, slight differences are inevitable

between the ages or genders of the subjects, the environments

where the data are generated, etc. The existence of these

differences causes degradation in performance, especially in

data-driven neural networks; therefore, our purpose is to rectify

the data deviation. Because the GAN-based method [60],

which aims to generate target domain data with labels, requires

a large amount of training data, it is not favorable for each

situation. Therefore, the discrepancy-based method is more

feasible.

A classification model consists of two parts: a feature ex-

tractor and a label predictor. The feature extractor is designed

to extract useful information from the input; subsequently, the

label predictor utilizes the extracted features for classification.

Several domain adaptation techniques typically rely on a

feature extractor deriving features invariant across domains,

e.g., ignoring the background noise or the difference between

recording devices [41], so that a model can generalize on

the target domain while preserving a low risk of misclassi-

fication on the source domain [68]. If the extracted features

are perplexing across domains at all times, those features

are considered domain-invariant in this study. Based on this

idea, statistical techniques or an NN-based domain classifier

are introduced to assess the domain invariability of the ex-

tracted features. In the former, Maximum Mean Discrepancy

(MMD) [61], [69] and Optimal Transport (OT) [62] serve as

loss functions to calculate the distance between the probability

distributions of the extracted features across domains to be

minimized together with classification losses. In the latter,

the extracted features are adversarially trained to perplex the

domain classifier and remain high prediction accuracy, where

DAT is one of the most popular algorithms augmented with

an NN-based domain classifier.

To fool the domain classifier, DAT instructs the feature

extractor to update in the opposite direction of minimizing

the domain classification loss. For this purpose, the study of

DAT introduced a novel gradient reversal layer (GRL) glued

by two functions R and R̃ at different stages, requiring no

parameters such that:

R(z) = z (forward propagation)

R̃(z) = −z ⇔ ∇zR̃ = −I (backward propagation)
(1)

where z and I denote the input and identity matrix respectively.

It should be noted that in a general layer with forward

function z 7→ f(z), the backward propagation naturally has the

derivative z 7→ ∇zf from the same f . The GRL deliberately

splits the forward and backward function into two to achieve

the designated purpose. As such, the GRL acts as an identity

function during the forward propagation, but multiplies the

gradient by −1 during back propagation. Owing to the GRL,

the DAT algorithm can be implemented on any existing ML

package with little effort.

III. METHODOLOGY

A. Proposed method

We proposed a system for voice disorder classification

consisting of separable convolutional layers equipped with

DAT architecture. Our backbone model replaced the standard

deep CNN-based convolutional layers with the separable con-

volutional layers. The standard CNN-based model referenced

ensures the performance and the efficiency with reduced

computation. The experiments in Section IV verified that the

performance of the proposed method was comparable to that

of the reference standard CNN-based method. We note that the

associated training process of DAT is given by the min-max

algorithm:

argmax
θd

min
θf ,θy

Ex∼Ds
[Ly] + Ex∼Ds×Dt

[−λLd] (2)

Ly = −logP(y|x, θf , θy) (3)

Ld = −logP(d|x, θf , θd) (4)

where a data point {input, label, domain} is denoted by

{x,y,d}, and θf , θy, θd denote the parameters of the feature

extractor, label predictor and domain classifier respectively. Ds

and Dt denote the source domain and the target domain data

distribution; Ly denotes the cross-entropy loss of the labels,

and Ld is that of the domains with λ ≥ 0 as the coefficient

regularizing the loss in Eq. (2). To improve the performance of
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the main task, the classification of pathological voices in this

work, the feature extractor and the label predictor shall jointly

minimize Ly. Due to the unsupervised domain adaptation

scheme, Ly could only be computed on the source domain

data. On the other hand, the domain classifier minimized Ld to

enhance the ability to discriminate domains, whereas the fea-

ture extractor maximized Ld to obtain the opposite gradients.

For simplicity, we substitute −Ld for Ld in Eq. (2) and invert

minimization and maximization operations correspondingly.

To realize the adversarial min-max Eq. (2), we first formu-

late the updates of parameters θf , θy and θd via the gradient

descent [70] as follows:

θf ←− θf − α

(
∂E[Ly]

∂θf
− λ

∂E[Ld]

∂θf

)
(5)

θy ←− θy − α
∂E[Ly]

∂θy
(6)

θd ←− θd − αλ
∂E[Ld]

∂θd
(7)

where α is the learning rate. The flowchart of the training and

testing phases is shown in Fig. 1. Thus, the training phase in

Fig. 1(a) illustrates the gradient descent process. The updated

formula in Eq. (5) and (7) are observed to have opposite

signs with respect to the differential of Ld to conform to the

GRL [64].

Fig. 1. The feature extractor consists of 5 separable convolutional
blocks; The disease predictor and domain classifier are simply combi-
nations of a fully connected layer and a softmax layer.

Subsequently, we elaborate on the flowchart shown in

Fig. 1. In this study, the source domain is defined as the

clean recording environment like a clinic, whereas the target

domain is the environments with noises at home. During the

training phase, the source domain utterances recorded in the

clinic will add noises of air conditions (A/Cs) and streets

to synthesize the target domain data and then transformed

both into LPSs. The details of the data preprocessing are

clarified in the next section. Next, the lightweight backbone

model learns the discriminative ability to identify utterances of

health, neoplasm, and benign structural diseases from clean or

noisy environments through the DAT technique. However, real-

world utterances with or without noises can be directly used to

diagnose diseases through the trained model during the testing

phase. Compared to the high UAR in the source domain, our

system only suffers slight degradation of the UAR.

B. Model Architecture

The proposed voice disorder classification system is shown

in Fig. 1. The feature extractor consists of separable convo-

lutional layers receiving inputs of size (127, 251) with the

first and second dimensions denoting the frame length and

the frequency basis respectively of Log Power Spectrums

(LPSs). First, the 1D average-pooling layer (with kernel size

2 and stride 2) reduces the input size along the dimension

of frequency to be (127, 126), leaving the frame length un-

changed. Subsequently, the downsampled inputs are extended

with a dimension of channels to be (127, 126, 1). After

the first 1D average-pooling layer, five identically separable

convolutional blocks follow, each of which comprises a depth-

wise convolutional layer (kernel size (3, 3, Ci) and stride

1), a point-wise convolutional layer (kernel size (1, 1, Ci,

16) and stride 1), and a 2D average-pooling layer (kernel

size 2, stride 2). Here, Ci is set to 1 in the first block and

16 in the rest. Batch normalizations [71] are placed after

all convolutional layers (depth-wise and point-wise), while

LeakyReLUs [72] (negative slope = 0.2) are inserted after the

depth-wise convolutional layers only. The final output of the

feature extractor, viewed as a 1D vector of dimension 256,

is regarded as the extracted feature carrying domain-invariant

information to pass on to the next disease predictor and the

domain classifier. The disease predictor is a fully connected

layer of matrix size (256, k) with a softmax layer concatenated

right after to predict the probability between the k distinct

diseases, in our case, k = 3 (health, neoplasm, and benign

structural diseases). The domain classifier is similar to the

disease predictor, as a three-class classification task, only with

augmentation of a GRL ahead. It classifies the domains into

clean, A/C, and street. Specifically, the two types of noises, A/C

and street, are annotated separately for the domain classifier.

The ADAM [73] optimizer at a learning rate of 0.001 and

the regularization coefficient λ = 0.5 are used throughout the

experiments unless otherwise specified.

C. Memory Usage and Computational Cost

First, we derive the capability of the separable convolutional

layer. Consider a general 3D input I ∈ R
Wi×Hi×Ci , an
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Fig. 2. (a) Standard convolutional filters are factorized into (b) the
depth-wise convolutional filters for intra-channel convolution and (c) the
point-wise convolutional filters for cross-channel projection.

output O ∈ R
Wo×Ho×Co and a corresponding convolution

kernel K ∈ R
Wk×Hk×Ci×Co in a standard convolutional layer,

where Wi, Hi and Ci denote the width, height and number

of channels of an input feature respectively; similarly Wo,

Ho, Co, Wk , Hk denote those of an output feature and a

convolution kernel. In the following, a filter is defined by a

group of kernel parameters decomposed along the dimension

of output channels. Therefore, K is regarded as Co filters of

size Wk ×Hk × Ci.

Because a standard convolutional layer is parameterized by

its convolution kernel K (Fig. 2(a)), we can directly derive

the number of parameters in a single layer:

Wk ·Hk · Ci · Co (8)

However, due to only intra-channel convolutions, a convolu-

tion kernel K̂ (Fig. 2(b)) of the depth-wise convolutional layer

comprised of Ci filters with a size of Wk × Hk. Moreover,

the number of channels for the output features remains Ci.

Therefore, a point-wise convolutional layer combining the

information between channels and mapping to the desired

shape is essential. Since we focus on the convolutions across

channels, the width and height of a point-wise convolution

kernel K̇ (Fig. 2(c)) are set to 1, forming a 1×1 convolutional

layer. In total, the number of parameters of a separable

convolutional layer is:

Wk ·Hk · Ci + 1 · 1 · Ci · Co (9)

By Eq. (8) and (9), the reduction ratio of the model size is:

Wk ·Hk · Ci + 1 · 1 · Ci · Co

Wk ·Hk · Ci · Co

=
1

Co

+
1

Wk ·Hk

(10)

Next, we discuss the reduction in computation. The compu-

tational cost is dominated by multiplications of floating points,

so we analyze the number of multiplications in convolutional

layers. Because each element in the output feature is the dot

product of the specific filter and part of the input feature,

the number of multiplications is the filter size multiplied by

the output size. The point-wise convolutions merely affect

the dimension of channels, and hence the output feature of

a depth-wise convolutional layer sizes Wo × Ho × Ci after

intra-channel convolutions. The following are computational

costs for each type of convolution layer:

Standard: (Wk ·Hk · Ci) · (Wo ·Ho · Co)

Depth-wise: (Wk ·Hk) · (Wo ·Ho · Ci)

Point-wise: (1 · 1 · Ci) · (Wo ·Ho · Co)

(11)

The computational reduction ratio is then:

(Wk ·Hk) · (Wo ·Ho · Ci) + (1 · 1 · Ci) · (Wo ·Ho · Co)

(Wk ·Hk · Ci) · (Wo ·Ho · Co)

=
1

Co

+
1

Wk ·Hk

(12)

On the other hand, one important reason to use DAT as

the domain adaptation method in our system is that it does

not increase any memory load or computational cost in the

testing phase. As shown in the comparison of Fig. 1(a) and

Fig. 1(b). During the training phase, the feature extractor

collaborates with the domain classifier to jointly learn the

domain-invariant features. However, in the testing phase, the

disease predictor utilizes the well-trained features from both

domains to diagnose diseases without the interference of the

domain classifier. Thus, the number of parameters remains

unchanged regardless of whether the DAT technique is used.

Therefore, Eq. (10) and Eq. (12) reveal that the entire mem-

ory usage and the computational cost can both be significantly

reduced by over 73.9% in our design. Additional experimental

details are provided in Section IV-B.

IV. EXPERIMENTS

A. Dataset and Preprocessing

The voice samples were collected from the Far Eastern

Memorial Hospital (FEMH) using a unidirectional microphone

and a digital amplifier (CSL model 4150B, Kay Pentax). All

patients uttered a sustained vowel /:a/ for at least 2 seconds

in the samples. The sampling rate was 44.1 kHz with a 16-bit

resolution and the data were saved in an uncompressed wave

format.

A total of 523 voice samples were recorded in a voice

clinic as the source domain containing 108 healthy voices,

112 glottic neoplasms and 303 benign structural diseases (i.e.,

vocal nodules, polyps and cysts). Another 30 voice samples, 10

of each category, were synthesized with various noises of A/Cs

and streets as the target domain data, where the labels were not

provided during the training phase, for unsupervised domain

adaptation. In this study, a 10-times 5-fold cross-validation

approach was applied to validate the proposed system [74].

In each 5-fold cross-validation, 523 speech samples were

randomly selected and divided into five equal partitions and

each partition served as the testing fold used for evaluation

in turns. This approach can reduce the bias (resulting from

the environment) in evaluating the system. In Section IV-B,

all scores reported were the averages of the 10×5 testing

folds. The significance of the performance between different

approaches was statistically measured on the 50 testing folds

using independent t-test at 95% (p < 0.05). The voice samples

in the testing fold were inferred under both the source domain

in the clinic and the target domain corrupted by noises of A/Cs

and streets to assess the effect of our system. That is, the target

domain data are a corrupted versions of the source domain data

during the testing phase. The approving institution of this study

is Far Eastern Memorial Hospital, under the IRB/ethics board

protocol number: 109063-E, and the date of approval was May

10, 2020.
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Fig. 3. Waveform and spectrogram plots of health, neoplasm, and benign structural diseases speech samples (the vowel /:a/ sound); the first and
third rows list the plots of clean utterances, and the second and fourth rows list the plots of noisy utterances corrupted by noises of A/Cs and streets,
respectively.

In the target domain, we considered the two types of noises

(A/C and street) at the same time. For the 30 voice samples

used for unsupervised domain adaptation during training, half

of the samples were corrupted with noises of A/Cs; the

remaining 15 samples were corrupted with noises of streets.

During the testing phase, each testing fold (including 104-105

voice samples) was corrupted using the same rule. Half of

the samples (about 50) were corrupted with noises of A/Cs;

another half (about 50) were corrupted with noises of streets.

The magnitudes of noises were totally distinct between the

training and testing phases, with signal-to-noise ratios (SNRs)

of 0, 5 and 10 dB for training and 3, 6 and 9 dB for testing.

Here, it should be emphasized that we computed the UAR in

the target domain over all 104-105 voice samples. In other

words, the target data UAR is the average score of the two

types of noises.

Prior to training, the raw waves were first down-sampled

from 44.1 kHz to 16 kHz and subsequently converted into log-

power-spectral (LPS) features using a Hamming filter, 31.25

ms window size, and half of the window size as the frame

shift. The LPS features were normalized by the standard score

before fed to the models. During training, random segments

of 127 frames (2 seconds) from the normalized LPS features

were chosen as inputs for every epoch to increase the training

variety of the models. During testing, the first 2 seconds of

the normalized LPS features were fixed as the inputs.

Fig 3 visualizes speech the utterances (the vowel /:a/ sound)

involved in the experiments. In the first and third rows of

Fig. 3, the left, center, and right columns show the paired

waveform and spectrogram plots of health, neoplasm, and

benign structural diseases voice signals recorded under a clean

condition, respectively. In the second and fourth rows of

Fig. 3, the left, center, and right columns, demonstrate the

paired waveform and spectrogram plots of health, neoplasm,

and benign structural diseases voice signals under two noisy

conditions (A/Cs and streets), respectively.

First, by comparing the plots of clean utterances, we can

observe that health, neoplasm, and benign structural diseases

sounds exhibit very different waveform-domain and time-

frequency properties. Accordingly, we believe that a deep

learning model can effectively classify these three types of

sounds. Next, by comparing the plots of clean utterances

and noisy utterances, we can clearly note that the noises of

A/Cs corrupted the detailed structures of the voice signals,

especially in regions below 400 Hz. In addition to the low

frequencies, the noises of streets also influenced the details of

high frequencies. From the noisy waveform and spectrogram

plots in Fig. 3, we can infer that voice disorder classification
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TABLE I

COMPARISON OF SEPCONV-DAT WITH ITS VARIANTS FOR DOMAIN ADAPTATION. * INDICATES A SIGNIFICANT DIFFERENCE (P-VALUE < 0.05)

BETWEEN SEPCONV-DAT AND OTHER VARIANTS.

Model
Source Domain Target Domain

Health Neoplasm Structural UAR Health Neoplasm Structural UAR

StdConv 0.92 0.85 0.82 0.87* 0.48 0.79 0.61 0.63*
SepConv 0.88 0.85 0.80 0.85* 0.39 0.78 0.60 0.59*

SepConv-tgt 0.46 0.38 0.71 0.52* 0.64 0.69 0.56 0.63*
SepConv-ft 0.78 0.70 0.67 0.72* 0.74 0.84 0.60 0.72
SepConv-jnt 0.85 0.79 0.74 0.79 0.69 0.74 0.65 0.69*

SepConv-mmd 0.87 0.76 0.73 0.79 0.66 0.84 0.61 0.70*

SepConv-dat 0.88 0.79 0.72 0.80 0.70 0.81 0.64 0.72

TABLE II

USAGE OF RESOURCES FOR REPLACING STANDARD CONVOLUTIONS

WITH SEPARABLE CONVOLUTIONS.

Model # Parameters (×10
3) # MACs (×10

6)

StdConv 10.29 15.82
SepConv 2.69 3.64

is more challenging since the key structural details of voice

signals have been considerably covered by the noise signals.

Moreover, the obvious differences occurred not only between

the clean and noisy plots, but also between the plots of

the distinct noise types. This is the reason why the domain

classifier was designed to identify the A/C and street domains

separately in the proposed system.

B. Results

Table I lists the overall performances of the various base-

lines and the proposed method. First, we verified the effective-

ness of the separable convolutional layers, SepConv. SepConv

is similar to the architecture mentioned in Section III-B

with the domain classifier removed and only source domain

data were used during training. StdConv, on the other hand,

replaces the separable convolutional layers in SepConv with

standard layers such that the arguments of the input channels,

output channels, kernel size, etc. are identical in these two

baselines. Table I shows that the degradation is insignificant

in SepConv with UARs reduced by only 4% in the source do-

main and 2% in the target domain when compared to StdConv.

With almost no dropping performance in the UARs, SepConv

significantly reduced the model size and computational cost by

73.9% in the number of parameters and 77.0% in the number

of MACs, as presented in Table II. Because a MAC is the basic

arithmetic unit of operation a model performs, counting the

number of MACs in one forward-pass prediction of one input

datum, which is independent of the hardware and platforms

used, is one of the most common and fair approaches for com-

paring the computational cost. Otherwise, The computation

time may vary when different computing hardware is used. In

the following domain adaptation experiments, SepConv was

the basis for comparison. Besides, the two baseline scores also

showed that the noises tend to cause the models to misjudge

the noisy inputs as neoplasms without domain adaptation.

Our proposed system, based on SepConv with 30 tar-

get domain samples provided in the DAT, is denoted by

SepConv-dat. Three other ”supervised” variants (SepConv-

tgt, SepConv-ft and SepConv-jnt) and one ”unsupervised”

variant (SepConv-mmd) were constructed for systematic com-

parison, with the architecture fixed as SepConv yet the training

strategies slightly altered as follows:

• SepConv-tgt: The model was trained only on the 30

target domain samples with labels. In turn, the target

domain was an exposed domain to SepConv-tgt, yet the

source domain became unseen.

• SepConv-ft: This variation used a pretrained SepConv

as an initial state and was then fine-tuned using the 30

target samples with labels.

• SepConv-jnt: SepConv was trained from scratch with

labeled data from both domains jointly.

• SepConv-mmd: MMD served as an unsupervised variant

using statistical-based domain adaptation.

It is observed that SepConv-dat outperforms all baselines in

the target data UAR, particularly the other systems SepConv-

tgt, SepConv-ft, and SepConv-jnt with extra labels of the tar-

get data provided. Compared to SepConv, the UAR increased

by 13% in the target data, with only slight degradation in the

source domain, maintaining 80%.

In SepConv-tgt, there is no doubt that the target data UAR

is better than that of the source data, due to the exposed target

domain. However, the UAR of SepConv-tgt in the exposed

(target) domain was not comparable with that of SepConv in

the exposed (source) domain, with a reduction of up to 22%.

Moreover, the UAR in the exposed (target) domain was even

worse than that of the other compared systems in the unseen

(target) domain. The poor performance reflects the impact of

the small dataset.

The fine-tuning of SepConv-ft successfully improved the

UAR in the target domain by 13%, but the degradation in

the source domain was also obvious. The average UAR of
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SepConv-ft is almost equal to that of SepConv, which means

that we simply obtained a trade-off between the two domains.

The model generalizability was not fully achieved by fine-

tuning the target domain.

Intuitively, SepConv-jnt should achieve the best perfor-

mance with sufficient data in both domains. However, owing to

the extremely small amount of target data under the proposed

scenario, a severe imbalance of the two domains confines the

improvement of generalizability. Even the target data become

distractions that degrade the source domain score. Therefore,

for the scenario with severe data imbalance that we intend

to overcome, unsupervised domain adaptation algorithms are

more suitable than supervised ones.

Compared to SepConv-jnt, SepConv-mmd reduces the

effect of data imbalance by computing the distance between

the means of the extracted features across domains. However,

obtaining statistical values that can reflect the entire target do-

main through only 30 target data points is almost impossible.

Finally, the total scores of SepConv-mmd were still worse

than our proposed SepConv-dat. Consequently, SepConv-

dat is the best method among these variants, which yields

the largest improvement in the target domain by overcoming

data imbalance due to the extremely deficient target data.

Meanwhile, the high performance maintained in the source

domain validates the generalizability.

Furthermore, we can observe that SepConv-dat is signif-

icantly different between the baselines and variants in most

UARs, except for the target data UAR of SepConv-ft; the

source data UAR of SepConv-jnt and SepConv-mmd. From

the results, we first note that SepConv-ft specializes in the

performance of the target domain after fine-tuning, and our

system still achieves a comparable and similar target data

UAR. Second, the labels of the source domains are exposed

to SepConv-dat, SepConv-mmd, and SepConv-jnt, thus, they

achieve a rather stable source data UAR. In conclusion, these

three scores without significant differences happen to be the

strengths of the corresponding variants. This confirms the

power of SepConv-dat.

C. Ablation: the impact of the domain classifier via λ

We conducted an ablation study to learn how the regulariza-

tion coefficient λ in Eq. (5) and (7) affect the domain adapta-

tion performance. Owing to the unstable training procedure of

the adversarial min-max method, the statistics of 200 models

with random initialized weights were considered for each setup

in the ablation experiment. Fig. 4 only shows the results of a

specific fold, but the other folds are similar.

The coefficient λ was tuned from 0.01 to 10 to understand

the effect. The results in Fig. 4 indicate that when λ ≥ 5, the

UAR performances in both domains broke down promptly. It

was due to the gradient of Ld over amplified by the large

λ, such that the overall update was guided away from the

direction of minimizing Ly to affect the diagnosis prediction.

The detailed process of increasing λ from 1 to 5 exhibited in

Fig. 5 corroborates our inference: With the increment of λ,

the classification gradually got worse.

On the other hand, the observed fact that when λ→ 0, the

less domain-invariant the features are meets our intuition. The

coefficient is somewhere between [0, 5) to best construct the

domain-invariant features. In this study, λ ≤ 0.5 was observed

to yield converging UARs in the source data, so that λ = 0.5
was eventually chosen to balance the accuracy and the domain

invariance.
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Ablation: The Effect of λ
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Fig. 4. Box plots of different λ. The source domain is the clean data
collected in the clinics, and the target domain is the data corrupted by
the noises of A/Cs and streets.
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Fig. 5. The detailed process of λ increasing from 1 to 5.

D. Visualization: the domain invariance of extracted
feature

In addition to the significant progress of the UAR in the

target domain shown in Table I, the visualization of the distri-

butions of features extracted from the feature extractor further

proves the effectiveness of the proposed system. Because the

testing samples in the target domain are the same as those

in the source domain except for the corruption of the noises,

each source-target pair of extracted features should be close

if high domain-invariant features are extracted. In Fig. 6, the

t-SNE is used to visualize the distributions of the extracted

features. Fig. 6(a) is the t-SNE of the SepConv for a specified
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fold, but the other folds are similar. When investigating each

category in Fig. 6(a), these two distributions are different and

have no correlation. This explains the low accuracy of the

target domain data for the SepConv. However, in Fig. 6(b),

the t-SNE of SepConv-dat exhibits most samples in the

source domain and the target domain are in pairs. Whether

the samples are corrupted with the A/C noises or the street

noises, the proposed system could map them to corresponding

clean features successfully.
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Fig. 6. The t-SNE plots of the latent features extracted by the feature
extractor in (a) the SepConv and (b) the SepConv-dat. The data in
the source domain are marked in green, whereas the data in the target
domain are marked in red.

V. FUTURE WORKS

We consider our future work from two perspectives. First,

in the aspect of the clinic, we are planning to perform both

internal and external validations. The internal validation will

verify the proposed system on the collected pathological data

in the approval institution of this study, Far Eastern Memorial

Hospital (FEMH). Conversely, the external validation will be

operated in hospitals with partnerships to verify the robust-

ness of our system when recording environments are unseen

scenarios.

Second, we are also devoted to technological improvement.

Although this study investigated a more practical real-world

application and achieved significant progress, the functionality

of adapting to hardware mismatch should be incorporated into

the proposed system, especially if implementing our approach

with IoT technology or evolving it to personalized healthcare.

Therefore, our next step in technological improvement will

introduce two domain classifiers, one for background noises

and another for recording devices. The interaction effects

of the two min-max objective functions make the training

procedure more challenging. However, this integration allows

our system to be more applicable in practice.

VI. CONCLUSIONS

In the past decade, the automatic detection and classification

of pathological voices has achieved outstanding performance

with the advancement of machine learning methods. Never-

theless, two main challenges arise in practical applications:

(1) state-of-the-art models often require increasing memory

load and computational cost, whereas the resources are rather

limited to embedded systems; and (2) the domain mismatch

between the training and real-world data significantly degrades

the classification performance. To overcome these difficulties,

we utilized separable convolutional layers and a DAT mod-

ule to build a compressed and domain-robust system. Seven

experiments were conducted and their results were compared.

The effect of λ was also discussed. Therefore, We proposed an

unsupervised domain adaptation system that is jointly trained

by using sufficient labeled data in the source domain and a

small amount of unlabeled data in the target domain. The

results showed that the UAR in the noisy real-world domain

improved by 13%, and that in the clinic domain remained at

80% with only slight degradation. Moreover, the numbers of

parameters and MACs were significantly reduced by 73.9%

and 77.0%, respectively.

It is concluded that our proposed system efficiently reduces

computational and memory usage, and effectively eliminates

the domain mismatch.
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