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Abstract— Generally, those patients with dysarthria utter a
distorted sound and the restrained intelligibility of a speech
for both human and machine. To enhance the intelligibility
of dysarthric speech, we applied a deep learning-based speech
enhancement (SE) system in this task. Conventional SE ap-
proaches are used for shrinking noise components from the
noise-corrupted input, and thus improve the sound quality and
intelligibility simultaneously. In this study, we are focusing on
reconstructing the severely distorted signal from the dysarthric
speech for improving intelligibility. The proposed SE system
prepares a convolutional neural network (CNN) model in the
training phase, which is then used to process the dysarthric
speech in the testing phase. During training, paired dysarthric-
normal speech utterances are required. We adopt a dynamic
time warping technique to align the dysarthric–normal utter-
ances. The gained training data are used to train a CNN-based
SE model. The proposed SE system is evaluated on the Google
automatic speech recognition (ASR) system and a subjective
listening test. The results showed that the proposed method
could notably enhance the recognition performance for more
than 10% in each of ASR and human recognitions from the
unprocessed dysarthric speech.

Clinical relevance— This study enhances the intelligibility
and ASR accuracy from a dysarthria speech to more than 10%.

I. INTRODUCTION

Due to the damaged neuro-muscular apparatus, dysarthria
patients often utter distorted sound and exert more effort on
improving the sound intelligibility in communicating with
both human or machine. To regain communication efficiency,
speech enhancement (SE) is one of the techniques that can
be applied to this issue. One primary goal of SE is to
improve sound intelligibility from noise-corrupted speech.
It has been used as a preprocessor in various speech-related
applications including hearing aids [1], [2] and automatic
speech recognition (ASR) [3], [4]. Generally, conventional
SE techniques used for minimizing the noise interference
from the noisy input can be broadly classified into filtering-
, spectral restoration-, and speech model-based approaches
[5]. The underlying idea of these unsupervised approaches
involves performing regression in terms of the statistical
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properties of speech and distortion sources to obtain en-
hanced speech. Some famous methods include the Wiener
filter [6], minimum mean-square-error spectral estimator [7],
generalized maximum a posteriori spectral amplitude [8],
harmonic model [5], and the hidden Markov model [9].

Owing to the rapid development of supervised deep-
learning (DL) techniques in recent years, various studies have
focused on applying DL to speech-related signal processes,
including the SE task [10], [11], [12], [13], [14], [15],
[16], [17]. Among these approaches, convolutional neural
networks (CNNs) have been popularly used and demonstrate
successful performance [18], [19], [20], [21], [22], [16]. In
these SE systems, the CNN model is used to form a non-
linear transformation to convert the input speech (which is
with lower intelligibility) to obtain enhanced speech at the
output. Due to its network architecture, the CNN model can
more accurately characterize the local information than fully-
connected models.

From the viewpoint of intelligibility improvement, in this
study, we are going to investigate the feasibility of the
application of the DL-based SE technique to the dysarthria
task. To improve the speech intelligibility of dysarthric
speech, we proposed to use the CNN model to build a
dysarthric SE system. Instead of the de-noising operation, the
CNN-based SE system is performed in a clean environment
for reconstructing the normal speech from a damaged input
waveform. In addition, the paired dysarthric-normal utter-
ances are normally unavailable in the testing condition. We
evaluated the intelligibility of CNN-SE in terms of subjective
tests and the on-line Google ASR system. Notably, the CNN-
SE processed dysarthria speech can provide more than 10%
intelligibility score improvements from the system input for
each of the subjective listening tests and the recognized
accuracy of ASR.

The remainder of this paper is organized as follows: Sec-
tion II describes the overall dysarthric SE systems. Section
III introduces the design of the experiment of this study
and describes the comparative systems. Section IV presents
the experimental results and discussion. Finally, Section V
summarizes the findings.

II. METHODOLOGY

The block diagram of the proposed SE system is presented
in Fig. 1. In the figure, a short-time Fourier transform
(STFT) was performed on the dysarthric speech in the feature
extraction function to obtain a series of complex-valued
frames in the frequency domain. In addition, the 16 ms
Hamming window and 1 ms hop time were used in STFT to
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Fig. 1. Block diagram of the overall SE system.
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Fig. 2. Block diagram of the training procedure for the CNN-based SE
approach.

provide a sequence of time frames. In the frequency domain,
the logarithmic operation was then carried out to obtain
the logarithmic power spectra (LPS), Dj , after powering
the magnitude components in the jth frame of the feature
extraction block (Du and Huo, 2008). The SE system was
applied to the input Dj to generate the enhanced LPS, Tj ,
while keeping the phase component of the frame unaltered in
the system output. In the waveform reconstruction function,
this enhanced LPS was used in tandem with the preserved
phase to finally reconstruct the enhanced utterances. Please
note that the proposed dysarthric SE approach is prepared in
a supervised training fashion.

A. CNN-based SE models

Fig. 2 shows the block diagram of the training stages of
both the CNN-based SE models used in this study. As can
be seen from the figure, we first prepared the dysarthric
and normal speech datasets, wherein the same script was
used for recording. The feature extraction operation was then
performed for all utterances in both datasets to extract the
LPS, D, and T for the training process.

B. Dynamic time warping

To realize the proposed enhancement system, a supervised
CNN model was first applied to the provided parallel data
(described in the section of III-A), which can normally be
easily made available for SE tasks by pairing the target
speech with a noise-contaminated version of the same. How-
ever, there was no aligned target speech for the corresponding
dysarthric speech of the SE task of this study. To address
this issue, we performed dynamic time warping (DTW),
which is a commonly used technique in voice conversion
[23], [24], on the training speech corpus to align the LPS
of normal speakers with those of dysarthria patients. The
DTW algorithm was implemented in a frame-wise manner
to measure the similarity between two temporal sequences
that were varied with respect to time or speaking rates [25].
Using DTW, the parallel corpus was used to perform DL
using the CNN by inputting the dysarthric speech into the
model and locating the normal LPS in the output.

The DTW algorithm is used to determine the optimal
alignment between D and T along the time axis caused

by the explicitly mismatched frame numbers [26], [25].
There are N and M frame vectors contained in D and T,
respectively.

We then define the K-element effort path w1, · · · ,wK ,
where each element is wk ≡ (i, j) with respect to the paired
frame indexes of (D, T).

The warping path satisfies the following conditions:
• w1 ≡ (1, 1) indicates that the warp path starts at the

beginning of each time series.
• wK ≡ (N,M) indicates that the warp path ends at the

end of each time series.
• If wk ≡ (i, j) and wk+1 ≡ (i′, j′), then i′ ⊆ i, i+ 1

and j′ ⊆ j, j + 1. This statement suggests that every
index of both time series from the start to the end is
monotonically increasing and is used in the warp path.

The dynamic programming principle is then employed
on the accumulative Euclidean distance matrix, which is
calculated from the cross-correlation between D and T. The
DTW is achieved by searching the minimizing-distance path
on this matrix to determine the optimal effort path and the
associated time alignment for both D and T.
C. Training stage of the CNN

For the training phase of the CNN model, we placed D and
T at the input and output of the CNN, respectively. The CNN
model consisted of a series of paired convolutional layers
subsequent to the flatten operation and a fully connected
layer. A convolutional layer was composed of a set of filters
followed by an activation function to extract several two-
dimensional feature maps from the input tensor feature.
However, the flatten operation and fully connected layers
were used to enhance the tensor-speech representation to
achieve an enhanced output LPS, T̂. The process of CNN
can be briefly formulated in Eq. (1).

T̂ = FCLs{Flatten{Convs{D}}, (1)

where FCL{·}, Flatten{·} and Convs{·} represent a fully
connected layer, flatten operation and 2D-convolutional op-
erations, respectively. For Convs model, filter numbers of
six hidden layers are 8, 16, 32, 64, 128, and 256 in order.
In this study, for each layer, the kernel size and strides
are 3 × 3 and 2 × 2, respectively. The sigmoid function
is leveraged to normalize the output of each hidden layer.
In addition, we apply global average pooling to perform
the flatten function. The model parameter set θ was then
optimized by minimizing the mean square error (MSE)
between T̂ and T. In contrast with the deep denoising
autoencoder (DDAE) model [20], where every neuron in a
fully connected layer was connected with all outputs of the
previous layer, the applied CNN model not only reduced the
number of parameters but also extracted the localized time-
frequency characteristics by using several small-size filters
in a convolution layer.

III. EXPERIMENTAL SETUP
A. Materials

Three hundred and twenty phrases selected from the
Taiwan mandarin hearing in noise test (TMHINT) script [27]
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were used to prepare the corpus for the proposed CNN-
based SE model. A stroke patient and a normal speaker
were asked to provide the dysarthric and normal datasets;
all utterances were recorded at a 16 kHz sampling rate.
Thus, there were 320 dysarthric–normal paired waveforms
available for evaluation. Among them, 240 paired utterances
were used as the training set, whereas the remaining 80 were
used as the test set, which will henceforth be referred to
as “open test.” As mentioned earlier, the dysarthric–normal
paired utterances in the training set were first aligned via the
DTW approach [23].

In the following evaluations, it is worth noting that the
closing test set (henceforth denoted as “closed test”), which
comprised of 80 re-pronounced dysarthric utterances selected
from the training script, was also included in the evaluation.

B. Procedure

We conducted our experiments using (1) the Google ASR
system and (2) a subjective listening test to directly evalu-
ate the intelligibility performance of the proposed method
with regard to human-machine and human-human commu-
nications. For Google ASR, we used the Google-provided
application programming interface for implementing ASR
using a python program . In addition, character accuracy is
used to evaluate the recognized results. A higher recognition
score represents a better recognition performance for human-
machine communication. For the subjective listening test,
eight native Taiwanese Mandarin speakers aged 20 to 25
years were chosen as participants. The experiments were
conducted in a soundproof booth, and the stimuli were played
to the subjects through a set of M-audio BX5 D3 speakers at
a comfortable listening level. The word correct rate (WCR)
[28] was used to evaluate the intelligibility performance and
denoted as “accuracy.”

For comparison with the proposed CNN system, the
DDAE and the joint dictionary learning-based non-negative
matrix factorization (JD-NMF) algorithms were carried out
on the TMHINT dataset for enhancing the input dysarthric
speech. The DDAE model, which is composed of several
fully-connected hidden layers, was applied to enhance the
dysarthric LPS to normal output. The MSE cost function was
employed to provide model parameters. On the other hand,
the JD-NMF algorithm applied the NMF technique to jointly
learn the source dysarthric and target normal dictionaries
from straight vocoder features [29]. Thereafter, another
dysarthric speech sample was converted to the normal speech
of the target speaker using this joint dictionary. By specifying
a small number of bases using the NMF technique, JD-NMF
can learn a set of bases that are representative of the entire
set of exemplars (estimated from the training data). In this
study, we optimized JD-NMF and DDAE to achieve the most
optimal performance.

IV. RESULTS AND DISCUSSION

We first qualitatively analyzed the processed utterances
using amplitude envelopes in the following procedure. Two
different dysarthric-normal-utterance pairs selected from the
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Fig. 3. The amplitude envelopes obtained from ten channels with respect to
the center frequency at 5 kHz. Those envelopes were derived from (A) and
(F) the dysarthric speech waveforms, (B) and (G) the target normal speech,
and the enhanced (C) and (H) JD-NMF, (D) and (I) DDAE, and (E) and (J)
CNN utterances. In addition, those enve-lopes in the left column were the
associated dysarthric-normal speech pair selected to form the closed testing
set, while those in the right-side figure were the associated dysarthric-normal
pair selected form the open testing set.

testing sets were aligned first by applying DTW. Each
dysarthric speech was then processed by the JD-NMF-
, DDAE-, and CNN-based SE systems and denoted as
“dysarthric,” “JD-NMF,” “DDAE,” and “CNN,” respectively.
All ten processed utterances were then placed individually
to the input of the following vocoder system, which was
consisted of the preemphasis, band-pass filter (BPF) and
envelope detection. The pre-emphasis process preserved the
signal components above 1200 Hz with a high-pass filter.
Eight BPFs with cutoff frequencies at 80, 201, 384, 656,
1065, 1675, 2588, 3955, and 6000 Hz were applied to
decompose the input speech into 8 different sub-band se-
quences. A low-pass filter with a 400-Hz cutoff frequency
was then performed in the final step of a vocoder system on
each sub-band signal to generate the frequency-band-related
envelope. For each of ten vocoded speech, only the envelope
at the latest frequency band (related to BPF between 3955
and 6000 Hz) was illustrated in Fig. 3 for analyzing. Notably,
both normal speeches were denoted as “Target” in the figure.
In addition, those envelopes depicted in the left column of
the figure were the associated dysarthric-normal pair selected
from the closed testing set, while those in the right-side figure
were the dysarthric-normal utterances selected from open set.

In Fig. 3, the envelopes of DDAE and CNN exhibit
amplitude trajectories that are more similar to those of
the target when compared with the similarity between the
amplitude trajectories of the envelopes of JD-NMF and the
target. This observation indicates that the DDAE and CNN
models are able to achieve more ac-curate transformations for
a dysarthric speech on both testing sets. This comparison also
suggests the good model capability of each of DDAE and
CNN. However, the envelope of the CNN is more similar to
that of the target in comparison with the similarity between
the envelope of the DDAE and that of the target; this is
especially obvious in Fig. 3 (J) in the open test set. This
observation reveals that the proposed CNN-based SE system
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can achieve lesser sound distortion, detailed signal structures,
and high-modulation depth signal infor-mation for listeners.
Notably, similar observations can be made at other frequency
bands. In addition, each envelope in the red dotted ellipses
in Fig. 3 represents one consonant part. According to [30],
for tonal Mandarin speech, the precise consonant structure
of the CNN demonstrated in this figure suggests decent
intelligibility for listeners.

Figure 4 shows the averaged accuracy scores obtained via
the Google ASR system for the non-enhanced dysarthric
samples and the samples obtained using the JD-NMF algo-
rithm, DDAE, and CNN. From the figure, it can be observed
that CNN achieved the highest accuracy when compared with
those of the non-enhanced dysarthric samples, JD-NMF, and
DDAE in both closed and open test conditions. For the closed
test condition, the accuracy of the dysarthric samples was
30.0%, whereas those of the JD-NMF algorithm, DDAE, and
CNN were 11.0%, 84.7%, and 91.8%, respectively. For the
open test, the accuracy score of the dysarthric samples was
18.0%, whereas those of the JD-NMF algorithm, DDAE, and
CNN were 7.0%, 19.0%, and 28.6%.

Apart from the evaluation conducted using Google ASR,
we also conducted a listening test for the dysarthriac samples
and for the results obtained using the JD-NMF algorithm,
DDAE, and CNN to perform the intelligibility test. We
list the evaluation results of the listening test in Fig. 5. In
addition, the average intelligibility scores (%) and standard
deviations are presented in the same figure. From Fig. 5, it
can be observed that CNN achieved the highest intelligibility
score when compared with the dysarthriac samples, JD-NMF
algorithm, and DDAE in both closed and open tests. The
intelligibility scores of the dysarthriac samples, JD-NMF
algorithm, DDAE, and CNN in the close test condition
are 49.0 ± 6.2, 17.5 ± 2.0, 97.4 ± 1.3, and 98.4 ± 0.8,
respectively. However, the average scores achieved using

the dysarthriac samples, JD-NMF algorithm, DDAE, and
CNN in the open test condition are 37.9 ± 2.8, 29.8 ± 3.2,
34.8±3.5, and 47.6±1.9, respectively. These results indicate
the effectiveness of the proposed CNN in providing good
speech intelligibility for normal listeners.

From Figs. 4 and 5, it is seen that the DDAE and CNN
systems, which employ a similar training procedure on the
same corpus, achieve different intelligibility improvements
with regard to dysarthric speech. The difference is caused
by the differences in signal processing between the DDAE
and CNN. In the DDAE, the input LPS was analyzed by the
fully-connected model. The localized time-frequency signal
structure cannot be effectively characterized by the DDAE
to the extent to which CNN can. The analysis implies that
the CNN model is more suitable for processing dysarthric
utterances to promote effective communication.

In addition to the observations made regarding the model
structure, we observe that the intelligibility scores of both
the DDAE and CNN in the closed set are better than those
in the open set. One possible explanation for this is that
overfitting [29] may have occurred owing to the insufficiency
of training data in this study. Many approaches have been
proposed to address overfitting. One simple solution is to
collect as many dysarthric–normal speech pairs as possible to
provide a large training set to train DL-based models, thereby
improving the effectiveness of a SE system with regard to
processing dysarthric speech. In contrast, the application of
data augmentation approaches, including [31], [32], to SE is
also a feasible solution for alleviating this issue. Therefore,
a relatively small training set is sufficient for training a SE
model when combined with augmentation features. It should
be noted that it is difficult for patients to record samples for
a long time, leading to the small size of the training data set.
To reduce the burden of the patients with regard to recording
the samples, an assistant sound generation system [33], [34],
[35], [36] could be used as an alternative means of generating
various dysarthric utterances, thereby increasing the volume
of the training corpus.

V. CONCLUSIONS

Herein, we proposed a CNN-based SE approach to en-
hance dysarthric speech and improve the speech intelli-
gibility of dysarthric utterances. Owing to the effective
signal process employed for localizing the time-frequency
characteristics, the proposed method achieves a superior
evaluation performance on both the closed and open testing
sets. Specifically, the CNN-based model achieved a superior
recognition performance in both the Google ASR system-
based evaluation and the evaluation performed using the
subjective listening test. In addition, analyses performed
on envelopes in the frequency domain suggest that the
proposed CNN-based SE system yields more detailed signal
amplitude structures than those obtained via the conventional
approaches. These results demonstrate that the proposed
CNN-based SE system can potentially be used as an assistive
system to overcome the degradation of speech intelligibility
caused by dysarthria.

63

Authorized licensed use limited to: National Taiwan University. Downloaded on April 27,2023 at 07:35:36 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] S. Doclo, M. Moonen, T. Van den Bogaert, and J. Wouters, “Reduced-
bandwidth and distributed MWF-based noise reduction algorithms for
binaural hearing aids,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 17, no. 1, pp. 38–51, 2009.

[2] J. Thiemann, M. Müller, D. Marquardt, S. Doclo, and S. van de
Par, “Speech enhancement for multimicrophone binaural hearing aids
aiming to preserve the spatial auditory scene,” EURASIP Journal on
Advances in Signal Processing, vol. 2016, no. 1, pp. 1–11, 2016.

[3] W. Hartmann, A. Narayanan, E. Fosler-Lussier, and D. Wang, “A direct
masking approach to robust asr,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 21, no. 10, pp. 1993–2005, 2013.

[4] J. Li, L. Deng, R. Haeb-Umbach, and Y. Gong, “Robust automatic
speech recognition: a bridge to practical applications,” 01 2015.

[5] J. Chen, J. Benesty, Y. Huang, and E. Diethorn, “Fundamentals of
noise reduction in spring handbook of speech processing-chapter 43,”
2008.

[6] P. Scalart et al., “Speech enhancement based on a priori signal to noise
estimation,” in Proc. ICASSP, vol. 2, pp. 629–632, 1996.

[7] Y. Ephraim and D. Malah, “Speech enhancement using a minimum-
mean square error short-time spectral amplitude estimator,” IEEE
Transactions on acoustics, speech, and signal processing, vol. 32,
no. 6, pp. 1109–1121, 1984.

[8] Y. Tsao and Y.-H. Lai, “Generalized maximum a posteriori spectral
amplitude estimation for speech enhancement,” Speech Communica-
tion, vol. 76, pp. 112–126, 2016.

[9] L. R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257–286, 1989.

[10] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proc. AISTATS, pp. 315–323, 2011.

[11] C.-C. Hsu, H.-T. Hwang, Y.-C. Wu, Y. Tsao, and H.-M. Wang, “Voice
conversion from non-parallel corpora using variational auto-encoder,”
in Proc. APSIPA, pp. 1–6, 2016.

[12] K. Kobayashi, T. Hayashi, A. Tamamori, and T. Toda, “Statistical
voice conversion with wavenet-based waveform generation.,” in Proc.
Interspeech, pp. 1138–1142, 2017.

[13] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu,
“Wavenet: A generative model for raw audio,” arXiv preprint
arXiv:1609.03499, 2016.

[14] S. Pascual, A. Bonafonte, and J. Serrà, “SEGAN: Speech Enhancement
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