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Abstract— Current deep learning (DL) based approaches to
speech intelligibility enhancement in noisy environments are
often trained to minimise the feature distance between noise-
free speech and enhanced speech signals. Despite improving
the speech quality, such approaches do not deliver required
levels of speech intelligibility in everyday noisy environments .
Intelligibility-oriented (I-O) loss functions have recently been
developed to train DL approaches for robust speech en-
hancement. Here, we formulate, for the first time, a novel
canonical correlation based I-O loss function to more effectively
train DL algorithms. Specifically, we present a canonical-
correlation based short-time objective intelligibility (CC-STOI)
cost function to train a fully convolutional neural network
(FCN) model. We carry out comparative simulation experi-
ments to show that our CC-STOI based speech enhancement
framework outperforms state-of-the-art DL models trained with
conventional distance-based and STOI-based loss functions,
using objective and subjective evaluation measures for case
of both unseen speakers and noises. Ongoing future work is
evaluating the proposed approach for design of robust hearing-
assistive technology.

I. INTRODUCTION

Speech enhancement (SE) aims to improve the intelligi-
bility and quality of speech signals in real-time environ-
ments that have been distorted by additive and convolutive
sounds. In recent years, non-linear spectral mapping-based
approaches have shown excellent performance for SE tasks.
For example, a deep denoising autoencoder (DDAE) [1]
and deep neural network (DNN) [2]-based frameworks were
initially proposed for SE and demonstrated excellent results
in suppressing noise components and improving quality and
intelligibility of the estimated speech signal. In addition to
conventional DNN structures, convolutional neural network
(CNN) and long short-term memory (LSTM)-based frame-
works were also used in an attempt to further improve gener-
alisation performance in seen and unseen noisy conditions.
In [3], a real-time SE model was proposed by training a
CNN framework in an encoder-decoder style. The authors
in [4] proposed an end-to-end SE framework based on fully
convolutional neural network (FCN) to recover the enhanced
speech waveform. Later, by replacing a conventional loss
function with an objective evaluation-based cost function,
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Fig. 1: Proposed CC-STOI-based SE model

an improved FCN-based SE framework was proposed to
enhance speech perception in noisy environments [5].

Recently, Reddy et al. [6] used a straightforward CNN
model for SE to achieve a slightly better performance com-
pared to more complicated algorithms. In order to train the
model, different types of noise were inputted and PESQ
was used as an evaluation metric. It is important to note
that despite reducing the parameters, there was no major
improvement observed in the performance of the model.
Hussain et al. [7] integrated temporal attentive-pooling (TAP)
into the CNN approach for the SE task. The convolutional
layer was used to extract the local information of audio sig-
nals and RNN was used to characterize temporal contextual
information. The infant cry dataset was used to evaluate
performance and experimental findings indicated that the
approach can effectively reduce noise level from infant cry
signals.

Despite the outstanding performance of DL-based SE
models, distance-based loss functions, like mean squared
error (MSE) and mean absolute error (MAE), are commonly
utilised to optimise the parameters of such systems. These
cost functions, on the other hand, are not based on hu-
man auditory perception and may not be appropriate for
speech-related applications. We believe that employing hu-
man perception-based evaluation measures to optimise such
systems could result in more optimal task-related outcomes.
Researchers have lately begun using a range of objective
evaluation measures based on human auditory perception to
optimise DL-based systems. Perceptual evaluation of speech
quality (PESQ) [8] and short-time objective intelligibility
(STOI) [9] are among those two widely used metrics for
measuring speech quality and intelligibility. For example, a
number of intelligibility-oriented (I-O) STOI-metric based
DL algorithms have recently been proposed and proven to
be useful for SE. The authors in [5] employed a STOI metric
as an objective function to optimize an FCN model for SE.
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Fig. 2: Proposed FCN-based framework for CC-STOI-based
SE

The proposed I-O STOI-based system proved to be effective
and demonstrated better results than a standard MSE-based
for SE task due to increased consistency between the training
and evaluation target.

In this paper, we propose a first of its kind canonical-
correlation based short-time objective intelligibility (CC-
STOI) based cost function to quantify and optimise corre-
lations between noisy and clean speech signals. We focus on
the magnitude spectra of noisy and clean speech utterances
as we process the signal frame by frame in the frequency do-
main. Next, we utilise an FCN to learn the spectral mapping
function using a CC-STOI function. Apart from formulating
a CC-STOI loss function, we evaluate the performance of
CC-STOI-based system against two loss functions, namely
STOI and MSE. All SE frameworks are trained and evaluated
on the benchmark GRID corpus [10] using two background
noise scenarios, such as speech and non-speech background
noises, generated by synthetically mixing clean utterances
with speech/non-speech background noises to form noisy
data.

Experimental results demonstrate that the DL-based
framework when optimized using a CC-STOI function, can
achieve significant SE performance improvement over both
MSE and STOI-based SE methods under different noise and
SNR conditions in terms of standardized evaluation metrics:
namely, PESQ, STOI, and speech distortion index (SDI) [11].

II. METHODOLOGY

Current DL-based SE frameworks are normally trained to
minimize the MSE between estimated and target magnitude
spectrums. As a result, we start with an FCN-based U-Net
model [12] for SE that has been trained with an MSE
loss function. The MSE loss function between the noisy and
estimated magnitude spectrum can be computed as:

LMSE = min(
1

N

N∑
n=1

‖Ŷn − Yn‖2) (1)

where ŶN and YN is the estimated and corresponding target
magnitude spectrum, N is the number of speech frames, and
‖ · ‖2 represents L2-normalization.

Similar to [13], we adopted a deep FCN-based U-Net
architecture for SE utilizing a CC-STOI loss function to
estimate the enhanced magnitude spectrum. The proposed

CC-STOI-based SE model is shown in Figure 1, and the
FCN-based U-Net framework is shown in Figure 2. Our goal
is to evaluate how incorporating CCA into the STOI loss
function affects the quality and intelligibility of the estimated
speech signal when compared to standard MSE and STOI
loss functions.

A. Short-time Objective Intelligibility based on Canonical
Correlation Analysis

To train a frequency domain I-O SE model, we utilized a
modified STOI proposed in [13] as an objective function. The
STOI function takes the clean and estimated speech signals
as input and computes the score by: i) removing the silent
frames from clean and estimated speech signals, ii) applying
the short-time Fourier transform (STFT), iii) Estimating
the envelope of clean and noisy speech using one-third
octave-band analysis of the STFT frames, iv) Normalizing
and clipping to compensate for global level differences and
stabilisation of the STOI evaluation, and v) measuring intelli-
gibility. To optimise the correlation between the two spectral
envelopes, we replaced the correlation coefficient of standard
STOI with the CCA. The correlation coefficient between the
two speech signal is estimated using the equations below to
optimise the CC-STOI function.

di,j = fCCA(ŷi,j , yi,j) (2)

where yi,j and ŷi,j represent the spectral envelope of the
target and estimated speech signals, respectively. The final
CC-STOI is the average of the intelligibility measure over
all bands and frames:

dCC−STOI =
1

IJ

I∑
i=1

J∑
j=1

di,j (3)

where I = 15 represents the number of one-third octave
bands and J presents the total number of short-time tem-
poral envelope vectors. Please see [9] for a more complete
description of each step. Because the CC-STOI calculation
is differentiable, it may be used directly as the objective
function to optimise the SE model.

LCC−STOI = − 1

M

M∑
m=1

dCC−STOI(Ŷm, Ym) (4)

The CC-STOI score between the estimated and clean
magnitude spectra of audio utterances is measured using
dCC−STOI(Ŷm, Ym). Unlike MSE, where the goal is to
reduce the distance, we want to improve speech intelligibility
by maximizing the CC-STOI score.

B. Proposed SE Framework

This section presents the proposed FCN-based U-Net
framework for SE as shown in Fig. 2. The network architec-
ture for feature extraction and the speech resynthesis pipeline
are discussed in detail below.
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1) Audio feature extraction: For SE, the speech feature
extraction step employs a U-Net [12] style network incorpo-
rated with an audio SE-modified encoder and decoder block.
The magnitude of noisy speech STFT of dimension F × T
where F and T are the frequency and time dimensions of
the spectrogram, is fed into the network. Moreover, input is
provided for two convolutional layers consisting of 4 and 2
strides to reduce time-frequency until it reaches 64. The re-
duced features are processed via three convolutional blocks,
each with convolution layers that have a filter size of three
and stride of one, following which the frequency pooling
layer is used to reduce the size of the frequency dimension
by two. It is important to note that amidst the execution of
convolutional blocks, spatial dimension is preserved. When
noisy spectrogram is provided as an input, the proposed
model estimates the clean spectrogram, and when using an
inverse STFT, the predicted magnitude is blended with the
noisy phase to produce enhanced speech.

The decoder is made up of three convolutional blocks
each with two upsampling layers to upsample the dimension
by two. The upsampling layer is followed by convolutional
layers with a filter size of three. The acoustic features are
then fed into two transposed convolutional layers with a filter
size of four and a stride of two to upsample the TF dimension
until it equals the input dimension. To keep the output in the
0 to 1 range, we utilise a sigmoid activation function. The
predicted mask is then multiplied by the input spectrogram
to produce the output masked spectrogram. When the noisy
STFT magnitude is provided as input, the proposed model
estimates the magnitude of clean STFT. Using an inverse
STFT, the predicted magnitude is combined with the noisy
phase to generate enhanced speech.

III. EXPERIMENTS AND RESULTS

A. Experimental Setup

A small vocabulary GRID corpus [10] is utilised to train
our proposed I-O SE model and assess how the CC-STOI
loss function influences entire SE efficiency. The dataset
contained a video recordings of 34 male and female speakers,
each with 1000 utterances lasting roughly three-seconds.
In this paper, we only utilized the audio data to assess
the performance of our proposed framework. The audio
data was initially recorded at 48 kHz sampling rate which
subsequently resampled to 16 kHz for processing. In this
paper, we randomly selected ten speakers for the training
set, two speakers for validation, and three speakers for the
test sets. To evaluate the performance of the proposed I-
O SE framework, we employed three objective evaluation
measures to measure the quality, intelligibility, and speech
to noise distortion index, i.e., PESQ, STOI, and SDI.

B. STOI vs CC-STOI

To assess the correlation between CC-STOI and modified
STOI [13] that accounts a 16 kHz frequency domain signal
while ignoring down sampling and silent frame removal
steps, we first plot a scatter plot between CC-STOI and
modified STOI scores. The scatter plot is used to observe the

(a) (b)

Fig. 3: Scatter plot between (a) CC-STOI and STOI scores
for clean and noisy utterances and (b) CC-STOI and STOI
scores for clean and enhanced utterances

relationship between CC-STOI and modified STOI scores.
Figures 3(a) and 3(b) show scatter plots for CC-STOI and
modified STOI scores computed between clean and noisy
utterances, and clean and enhanced utterances. The scatter
plots show that the CC-STOI score correlates well with the
modified STOI score and can be used for training DL models.

C. Speech vs Non-speech Background Noises

We generated two sets of noisy data, i.e., speech and non-
speech, to evaluate the performance of CC-STOI. Initially,
we contaminated clean utterances with speech noises ranging
from 0 to 20 dB SNR, to generate speech noisy data.
For more challenging task, we later contaminated clean
utterances with four real-world background noises provided
by CHiME-3 corpus [14] between -12 and 9 dB SNR at a
step of 3 dB, namely Bus, Cafeteria, Pedestrian, and Street
(termed Bus, Caf, Ped, and Str), to generate non-speech noisy
data.

The performance of DL SE frameworks trained using three
loss functions for speech and non-speech background noises
is compared in Tables I and II. Tables I and II show that DL
SE frameworks, when trained with different loss functions,
significantly improves the overall quality and intelligibility
of noisy speech signal. It can also be seen that DL-based
framework with three loss functions also provides less dis-
tortion ratio compared to original noisy speech. In summary,
the frameworks optimised with the three loss functions were
successful for SE. However, we found that, in comparison
to SE frameworks trained with the LMSE and LSTOI loss
functions, DL framework trained with LCC−STOI performed
better in terms of PESQ, STOI, and SDI scores, respectively.

In terms of MOS with CHiME3 noises, Fig.4 shows the
results of three distinct speech augmentation approaches. In
comparison to MSE loss and STOI loss, the experimental
results demonstrate that the CC-STOI performed better.
Furthermore, as compared to MSE and STOI losses, the CC-
STOI performed better in lower SNRs. The subjects were
normal-hearing listeners and were asked to report the results
in terms of mean opinion score (MOS). Fig.4 depicts the
MOS score of the GRID corpus for non-speech CHiME-
3 background noises at -9, 9 dB SNR at a step of 3 dB
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TABLE I: PERFORMANCE COMPARISON OF DL MOD-
ELS USING STANDARDISED OBJECTIVE EVALUATION MET-
RICS USING SPEECH NOISY DATA UNDER SPEAKER-
INDEPENDENT CONDITIONS.

Framework Loss Evaluation Metrics
Avg.Function PESQ STOI SDI

Noisy – 2.442 0.875 0.237 1.184
MSE 2.746 0.893 0.193 1.277

U-Net STOI 2.802 0.912 0.212 1.308
CC-STOI 2.831 0.912 0.225 1.322

TABLE II: PERFORMANCE COMPARISON OF DL MOD-
ELS USING STANDARDISED OBJECTIVE EVALUATION MET-
RICS USING NON-SPEECH NOISY DATA UNDER SPEAKER-
INDEPENDENT CONDITIONS.

Framework Loss Evaluation Metrics
Avg.Function PESQ STOI SDI

Noisy – 1.868 0.647 2.036 1.517
MSE 1.975 0.704 2.013 1.564

U-Net STOI 2.107 0.792 2.055 1.651
CC-STOI 2.155 0.801 2.064 1.673

using three loss functions. The experimental results show that
LCC−STOI achieved better speech perception performance
in terms of noise suppression when compared with LSTOI

and LMSE especially under low SNR conditions.

IV. CONCLUSION

In this study, we proposed a new canonical-correlation
based I-O technique to improve the training and generalisa-
tion performance of conventional DL-based SE systems by
using a more effective intelligibility evaluation metric as an
alternate cost function. In particular, a customised canonical-
correlation-based solution has been developed that utilised
a canonical-correlation based version of the modified STOI
loss function to train the DL SE framework. Our results
show that utilising canonical correlation as part of a STOI-
based DL system improves not only the intelligibility but also
the quality of the output estimated signal by exhibiting less
distortion. Overall, the CC-STOI loss function performed
well and produced better results for a variety of SE as-
sessment criteria, revealing the potential of modified STOI
for optimization of frequency-domain SE applications. We
plan to expand on this work by evaluating the performance
of CC-STOI based SE for more complex real-world audio-
visual datasets. This ongoing future work will pave the
way for design of future of multi-modal hearing-assistive
technologies.
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