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ABSTRACT 

Fall accidents are critical issues in an aging and aged society. 

Recently, many researchers developed “pre-impact fall 

detection systems” using deep learning to support wearable-

based fall protection systems for preventing severe injuries. 

However, most works only employed simple neural network 

models instead of complex models considering the usability 

in resource-constrained mobile devices and strict latency 

requirements. In this work, we propose a novel pre-impact 

fall detection via CNN-ViT knowledge distillation, namely 

PreFallKD, to strike a balance between detection 

performance and computational complexity. The proposed 

PreFallKD transfers the detection knowledge from the pre-

trained teacher model (vision transformer) to the student 

model (lightweight convolutional neural networks). 

Additionally, we apply data augmentation techniques to 

tackle issues of data imbalance. We conduct the experiment 

on the KFall public dataset and compare PreFallKD with 

other state-of-the-art models. The experiment results show 

that PreFallKD could boost the student model during the 

testing phase and achieves reliable F1-score (92.66%) and 

lead time (551.3 ms).  
 

Index Terms— Inertial measurement units, Knowledge 

distillation, Pre-impact fall detection, Vision transformer, 

Wearable sensors  

 

1. INTRODUCTION 

 

World Health Organization (WHO) has pointed out that falls 

are the second leading cause of unintentional injury deaths 

worldwide [1]. Fall can also cause post-fall syndrome (e.g., 

the fear of falling again) which may reduce the independence 

of their daily life [2]. Currently, many researchers developed 

“pre-impact fall detection systems” using wearable sensors [3] 

to support fall protection systems for preventing severe 

injuries [4]. The purpose of pre-impact fall detection systems 

is to detect the occurrence of falls during falling with a lead 

time which is determined as the period between the fall 

detection of the system and the ground impact. A longer lead 

time indicates that the protection system has more response 

time to activate the fall protection device as the duration of 

falling is less than 800ms in most fall instances [5]. It shows 

the requirement to develop reliable pre-impact fall detection 

systems to quickly and accurately detect early falls.  

For more robust detection performance, many researchers 

toward to apply deep learning models to backbone of pre-

impact fall detection systems. Convolutional neural network 

(CNN) was generally applied in fall event detection systems, 

which can extract spatial features of raw data with 

convolutional filters. Li et al. [6] firstly proposed an approach 

for pre-impact fall detection during gait rehabilitation 

training based on a 3D CNN using RGB images, which 

achieved 100% accuracy from 5 trainees. Yu et al. [7] applied 

the convolutional long short-term memory (ConvLSTM) 

model to extract spatial-temporal features to perform three-

class classification on non-fall, pre-impact fall, and fall. Their 

state-of-the-art (SOTA) model achieved accuracy of 93.22%, 

94.48%, and 98.66% for non-fall, pre-impact fall, and fall 

classes, respectively. However, most works only employed 

simple neural network models instead of complex models to 

ensure usability in resource-constrained mobile devices and 

strict latency requirements. Such concern may limit the 

performance of the detection model. 

To overcome the issues, we develop a pre-impact fall 

detection system using knowledge distillation (KD) [8-10], 

namely PreFallKD. By this approach, we could transfer the 

detection knowledge from the pre-trained larger model 

(teacher) to the smaller model (student). It allows the system 

to keep the computing power efficient and boost the detection 

performance using the student model. In this study, we 

selected typical CNN as the student model and vision 

transformer (ViT) [11] as the teacher model, while the 

effectiveness of ViT has been validated on different 

classification tasks, including speech recognition [12] and 

image classification [13]. Moreover, we employed data 

augmentation, including random gaussian noise and random 

magnitude scale [14], to increase the size of the minority class 

and total number for more robust model training.  

The main contributions of this work are summarized as 

follows: (1) To the best of our knowledge, this is the first pre-

impact fall detection conducting the KD method. (2) We 

conducted the experiment on the KFall public dataset and 

compare PreFallKD with other SOTA models. (3) The 

experiment results show that the proposed PreFallKD could 

outperform SOTA models with longer leading time. 



 
Fig. 1: An overview of proposed PreFallKD framework. 

 

2. THE PROPOSED METHOD 

 

The overview of PreFallKD is shown in Fig. 1. The input 

window is the 50 frames IMU signals, which include triaxial 

acceleration data, triaxial angular velocity data, and triaxial 

Euler angle data. The ViT-tiny is the teacher model and the 

lightweight CNN is the student model. The student model can 

learn the high dimension knowledge from the teacher model 

by Kullback-Leibler divergence loss function (KL 

Divergence Loss) and learn ground truth by Focal loss. 

 

2.1. Data augmentation  

 

To decrease the negative effect of imbalance problems, we 

oversampled all the pre-impact fall windows 6 times to 

balance the number of windows between the ADL windows 

and pre-impact fall windows in the training dataset. Then, we 

applied two data augmentation techniques to increase the 

total number of training data. One is to add the random 

gaussian noise to each window, as shown in Equation (1) [14], 

where �� is the data mixed with the gaussian noise, � is the 

standard deviation of each axis, N is the random normal 

distribution function with a range from 0 to 1, s is the strength 

parameter and � is the original data. The other is to adjust the 

magnitude scale of windows, as shown in Equation (2), where 

�� is the data with magnitude scale, U is the random discrete 

uniform distribution function with a range from 0.75 to 1.25, 

and s is the strength parameter. We determine s as -0.5. 

 

��  �  0.25 � � � �0,1� � ��������� � �  (1) 

��  �  �0.75,1.25� � ��������� � � (2) 

 

2.2.  Teacher model  

 

The ViT framework is shown as Fig. 1. We reshape input 

windows from x ∈  ��∗�∗  to x ∈  �!∗�∗�"∗ "�  to fit the 

input sequences of ViT, where C is the number of channels, 

L is the window length, A is the number of window axis, N is 

the number of window patches, #$ and %$ are the length and 

axis of each patch. Then, these patches are projected to patch 

vectors by a linear projection. The patch vectors provide 

detailed time-series characteristics. Subsequently, we use the 

trainable class token and position embeddings to strengthen 

the spatial information which were used in the original ViT 

and Bidirectional Encoder Representations from 

Transformers (BERT) [15]. Finally, these embedding feature 

maps are the inputs to the transformer encoder, which 

contains multi-head attention, layer normalization, and 

multilayer perceptron (MLP) mechanisms. Considering the 

number of IMU data in this work is far less than the number 

of images in the original ViT [11], we build a “tiny” ViT 

model (ViT-tiny) with 3 layers, 3 heads, 64 hidden size, 256 

MLP size, dropout 0.2, and #$ is 10, %$ is 3. 

 

2.3.  Student model 

 

The lightweight convolutional neural network (CNN) is 

composed of two convolutional mechanisms and one MLP 

mechanism. Each convolutional mechanism is composed of 

64 3-by-3 filters, a batch normalization, a max pooling layer 

with a 1-by-2 filter, and a dropout operation of 0.1. We use 

the parametric rectified linear unit (PReLU) [16] as an 

activation function, as shown in Equation (3), where the 

coefficient α of the negative part in PReLU is adaptively 

learned. It enhances model fitting with nearly zero extra 

computational cost and little overfitting risk compared to 

ReLU. The MLP mechanism is composed of two linear 

projection layers with a PReLU and a log SoftMax activation 

function. 
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2.4. Knowledge Distillation (KD) 

 

Knowledge Distillation [8] allows PreFallKD to train a small-

size model to distill the knowledge of the larger-size model. 

The soft labels from the teacher model provide more 

information than the hard labels for the student model. 

Because KD can improve the performance of the small model, 

we can deploy it on devices that are limited by low power or 

resources. 

The loss function of PreFallKD to train student model is 

defined as Equation (4), where - is the automatically adjust 

parameter which controls the importance of the teacher 

model’s knowledge, #. is the Focal loss function [17], #/  is 

the KL divergence loss,  &0  is the predicted probability of 

student network and &1  is the predicted probability of teacher 

network. We initial - as 1 and it would drop with each epoch. 

We expect the student can learn more detection knowledge 

from the teacher model at the beginning and gradually reduce 

its dependence on the teacher. 



The Focal Loss function, #. , is defined as Equation (5). It 

used an adjustable term for cross-entropy loss. The value of 

* is set to control the shared weight of positive and negative 

events. The instances with more samples would be set at a 

smaller * to reduce the weight. The value of γ is the scaling 

factor used to focus on the hard events. We implement * = 

0.25 and γ = 2. The KL divergence loss function is defined as 

Equation (6), where m is the number of windows and T is the 

temperature parameter related to the contribution of the 

teacher model. T is set to 1. 
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3. EXPERIMENTAL 

 

3.1. Public dataset  

 

KFall is the first public dataset suitable for pre-impact fall 

detection, not just for post-fall detection. This dataset was 

collected from 32 healthy young Korean males (age: 24.9 ± 

3.7 years; height: 174.0 ± 6.3 cm; weight: 69.3 ± 9.5 kg). It 

incorporated nine-axis inertial sensor data and temporal 

labels. A total of 21 types of activities of daily living (ADLs) 

and 15 types of simulated falls were included. KFall contains 

a total of 5,075 instances, including 2,729 ADL and 2,346 fall 

instances. Each instance is composed of triaxial acceleration 

data, triaxial gyroscope data, and triaxial Euler angle data. 

The inertial sensor was configured at a frequency of 100 Hz 

and attached to the low back of each subject. The temporal 

labels in each fall instance contain the fall onset moment and 

the fall impact moment based on synchronized motion videos. 

The fall onset moment is defined as the moment the fall 

begins; the fall impact moment is the moment the body hit the 

ground. Detailed information is introduced in [18]. 

 

3.2. Data preparation  

 

For ADL instances preprocessing, each ADL instance is 

divided into ten parts equally. Then, we randomly captured a 

window with a size of 50 frames (0.5s) from each part. The 

windows obtained from ADL instances are labeled as ADL 

windows. This way is to reduce the imbalance problem of 

ADL windows and pre-impact fall windows, but catch the 

entire instance’s characteristics.  

For fall instance preprocessing, the sliding window 

technique was applied with the size of 50 frames and a sliding 

step of 10 frames (0.1s) to the time interval from the starting 

point to the fall impact moment. The windows before the fall 

onset moment were labeled as ADL windows. The windows 

reaching or over the fall onset moment for more than 5 frames 

(0.05s) were labeled as pre-impact fall windows.  

During the training phase, all ADL windows and pre-

impact fall windows would feed to PreFallKD. During the 

testing phase, the first 3 pre-impact windows reaching over 

the fall onset moment in each fall instance were collected and 

all ADL windows were involved in the testing dataset 

because the period of falling is less than 800ms in most fall 

instances [19]. Such testing data could simulate real-world 

situations to test the detection reliability and lead time. 

Overall, the training phase has 270657 ADL and 290484 pre-

impact windows, and the testing phase has 46826 ADL and 

7023 pre-impact windows. 

 

3.3. Performance evaluation 

 

This work utilizes leave one group out cross validation 

approach to evaluate performances. The approach divides all 

subjects into 5 groups and iterates 5 times until each group 

was used as the testing set. For each iteration, one of the 

group’s data in the testing dataset is for testing, two of the 

groups’ data in the training dataset is for teacher pre-training, 

and the remaining two groups’ data in the training dataset is 

for student-training. This method ensures that the model does 

not learn any characteristics about the subjects in the testing 

dataset in advance. 

Five common evaluation metrics are considered in this 

work to assess the models, including accuracy, recall, 

precision, specificity, and F1-score, where true positive (TP), 

false positive (FP), true negative (TN) and false negative (FN) 

are defined as follows: 

• TP: A window is determined as TP if at least one window 
labeled with “fall” is identified as fall events.  

• TN: A window is determined as TN if the window labeled 
with “ADL” is identified as ADLs.  

• FP: A window is determined as FP if the window labeled 
with “ADL” is identified as fall events.  

• FN: A window is determined as FN if all windows labeled 
with “fall” are identified as ADLs.  

In addition to these metrics, lead time, model parameters, 

and computation time are used to evaluate the model’s 

computing performance. The longer lead time indicates that 

the protection system has more response time. To estimate 

the computation time in the real world, the simulation 

environment comprises the STM32L476JGY micro control 

units (MCU) with an operating frequency of 80 MHz. The 

<=�.>?$0 value can be estimated as 11.4 MFLOPS [20]. 

 

3.4. Implementation detail 

 

In the teacher pre-training and student-training process, the 

AdamW optimizer [21] is utilized. The cosine learning rate 

schedule with warmup is applied with a learning rate of 0.001 

and 10 warmup epochs. The number of waves in the cosine 

schedule is 0.5. The batch size is 64. Specifically, the teacher  



Table 1: Performance of different models evaluated on the KFall dataset

 

Table 2: The computing performance of different models 

evaluated on the KFall dataset 

Model 

Evaluation Metrics 

Lead time  

(ms) 

Parameter 

 (byte) 

Computation 

time (ms)  

Baseline-CNN 511.2±79 59557 36.8 

Lightweight-CNN 537.2±71 59557 36.8 

CNNLSTM 493.5±62 81093 98.5 

ViT-tiny 235.4±62 251010 348.6 

PreFallKD 551.3±66 59557 36.8 

 

model is trained for 150 epochs and the student model is 

trained for 100 epochs. The teacher model only uses the Focal 

Loss function. The student model uses our KD loss function. 

Our proposed models are implemented on python 3.8 in a 

Window 11 environment. The models were trained and tested 

on a computer equipped with an Intel core i7-12700F CPU, 

32GB RAM, and a Nvidia GTX 3080 GPU. 
 

4. EXPERIMENTAL RESULTS 

 

To demonstrate the superiority of the proposed framework for 

pre-impact fall detection, we implement several SOTA 

models on the same dataset. The experimental setup of all 

models is identical to the proposed method, and their 

parameters are optimized. The models are as follows:  

• Baseline-CNN is composed of 2 convolutional blocks and 
2 fully connected layers. The training process excludes any 
data augmentation and KD processes. This model is used 
to understand the effect of our data preprocessing. 

• Lightweight CNN is the structure of our student model.  

• CNN-LSTM is modified from the SOTA model in pre-
impact fall detection [18], which is composed of 2 
convolutional mechanisms and 2 LSTM mechanisms.  

• ViT-tiny is the same as our teacher model. 
Except the baseline-CNN, the training data are processed with 
data augmentation techniques. 

Table 1 demonstrates the performance of different models 
on the KFall dataset. Pre-impact fall detection system using 
ViT-tiny achieves the best detection performance with 
98.36% accuracy and 93.84% F1-score, which outperforms 
SOTA CNNLSTM [7]. Such results prove the effectiveness of 
the self-attention mechanism in pre-impact fall detection 
systems compared to other typical neural network models. 
Moreover, the experiments present that the proposed 
PreFallKD using knowledge distillation via CNN-ViT could 

comprehensively boost the detection performance of student 
model (lightweight CNN). It improves 0.72% accuracy, 
5.65% precision, 1.09% specificity and 2.26% F1-score. This 
result shows the KD method successfully transfers the high 
dimension knowledge and the long-term dependencies learned 
from ViT-tiny to lightweight CNN. Interestingly, the 
performance of PreFallKD outperforms SOTA model. Table 
1 also shows that baseline-CNN got the worst accuracy 
(96.56%), recall (80.26%), and F1-score (85.89%). It often 
misclassified the pre-impact fall as ADL. Compared to 
Baseline-CNN, light weight CNN using data augmentation 
approaches achieves the better 96.58% recall and 90.40% F1-
score. The main reason is that the smaller number of pre-
impact fall windows hinder the detection in learning effective 
features to distinguish pre-fall impact from ADL. Our 
experiments display that efficient data augmentation 
techniques could help pre-impact fall detection systems tackle 
the imbalance issue and achieve better detection performance. 

Table 2 demonstrates the computational performance of 
different models in terms of lead time, model parameters, and 
computation time of the model. Baseline-CNN, lightweight-
CNN, and student model of PreFallKD share the same model 
architecture, so their model parameters and computation time 
are identical. Obviously, the lead time of ViT is 235.4±62 
notably less than that of other models since it requires larger 
computing time and parameters compared to other models. 
Although we greatly reduced the number of layers and hidden 
size of ViT, its computation efficiency may fail to support the 
fall protection system requiring 333ms to inflate the protection 
airbag [22]. Our results show that PreFallKD has the longest 
lead time of 551.3±66 ms which is sufficient to activate 
protective devices in time. It proves the superiority of 
PreFallKD considering the balance between detection 
performance and response time.  

 

5. CONCLUSIONS 

 

We develop a pre-impact fall detection system via CNN-ViT 

knowledge distillation, namely PreFallKD, to boost detection 

performance and reduce computational loading during the 

testing phase. Additionally, we validate the effectiveness of 

data augmentation techniques in pre-impact fall detection 

systems while tackling issues of data imbalance. The results 

show that PreFallKD achieves reliable F1-score (92.66%) 

and lead time (551.3 ms). In future work, we plan to combine 

other model compression techniques (e.g., punning and 

quantization) to improve the system performance. 

Model Preprocessing KD 
Evaluation Metrics 

Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-score (%) 

Baseline-CNN No No 96.56 92.36 80.27 99.01 85.89 

Lightweight-CNN Yes No 97.33 84.97 96.58 97.44 90.40 

CNNLSTM Yes No 97.67 88.35 94.58 98.13 91.36 

ViT-tiny Yes No 98.36 92.02 95.73 99.36 93.84 

PreFallKD Yes Yes 98.05 90.62 94.79 98.53 92.66 
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