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ABSTRACT

AV-HuBERT, a multi-modal self-supervised learning model,
has been shown to be effective for categorical problems such
as automatic speech recognition and lip-reading. This sug-
gests that useful audio-visual speech representations can be
obtained via utilizing multi-modal self-supervised embed-
dings. Nevertheless, it is unclear if such representations can
be generalized to solve real-world multi-modal AV regres-
sion tasks, such as audio-visual speech enhancement (AVSE)
and audio-visual speech separation (AVSS). In this study, we
leveraged the pre-trained AV-HuBERT model followed by an
SE module for AVSE and AVSS. Comparative experimental
results demonstrate that our proposed model performs bet-
ter than the state-of-the-art AVSE and traditional audio-only
SE models. In summary, our results confirm the effective-
ness of our proposed model for the AVSS task with proper
fine-tuning strategies, demonstrating that multi-modal self-
supervised embeddings obtained from AV-HuBERT can be
generalized to audio-visual regression tasks.

Index Terms— Audio-Visual Speech Enhancement,
Audio-Visual Speech Separation, AV-HuBERT

1. INTRODUCTION

Speech enhancement (SE) and speech separation (SS) aim to
extract speech signals of interest from a given utterance mixed
with unwanted audio signals. With recent developments in
deep learning (DL), DL-based methods have demonstrated
better results than traditional SE and SS methods, either for
audio-only or audio-visual (AV) applications [1, 2, 3, 4, 5, 6].
Nevertheless, most DL-based AVSE and AVSS models have
their own specific modules designed to better integrate the
audio-visual information for the target task, which may not
be favorable from the viewpoints of some current DL model
design philosophies. One popular learning paradigm is de-
signing a unified scheme that can learn generalizable rep-
resentations with minor model modifications for different
tasks. Self-supervised learning (SSL) is a popular learning
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strategy for this purpose. SSL uses the data itself for its own
learning supervision. It has been effective in several multi-
modal applications, such as vision-and-language [7] and
audio-visual learning [8, 9]. Specifically, for audio-visual ap-
plications [8, 9], a transformer model [10] is pre-trained with
audio-visual data and then fine-tuned for classification tasks,
such as automatic speech recognition (ASR) and lip-reading.

In this study, we investigated whether pre-trained audio-
visual models are beneficial in regression-based speech pro-
cessing tasks, namely AVSE and AVSS. In particular, we
consider AV-HuBERT [8] our audio-visual SSL model and
combine AV-HuBERT with a simple neural regression model
for AVSE and AVSS tasks. The results show that model
performances can be improved, indicating that pre-trained
audio-visual representations from AV-HuBERT are beneficial
in audio-visual regression tasks.

The paper is organized as follows. Section 2 gives some
review on related works. Section 3 presents the details of the
proposed approach, and Section 4 demonstrates our experi-
ments and results. A summary of the paper is presented in
Section 5.

2. RELATED RESEARCH

Recently, an increasing number of audio-only self-supervised
models have been applied to SE and SS. For applications in
SE, some studies [11, 12, 13] utilized pretrained latent repre-
sentations as the SE model input and boosted the performance
by incorporating cross-domain features [14]. For applications
in SS, the authors of [15] proposed a self-supervised pre-
training approach to stabilize label assignments when training
SS models.

There are relatively few studies on self-supervised pre-
training for audio-visual regression-based tasks [8, 9]. AV-
HuBERT [8] is an extension of the Hubert [16] model (an
audio-only SSL model) for multimodal pre-training. The au-
thors in [17] leveraged pre-learned representations from a
pretrained AV-HuBERT for speaker classification and verifi-
cation tasks. In contrast, we focused on two regression-based
speech processing tasks, namely AVSE and AVSS.



Fig. 1. Our proposed AVSE model is based on the AV-
HuBERT, followed by a SE model.

3. PROPOSED METHOD

3.1. Audio-Visual SE Model

The proposed AVSE approach leverages the AV-HuBERT
model as an upstream processor, as shown in Fig. 1. The
lip image sequence V1:T and noisy speech An

1:T are fed into
the AV-HuBERT; the representations from each layer of the
transformer encoder are denoted as H l, where 0 ≤ l ≤ N ,
and N is the number of layers. Inspired by [11, 12], a train-
able function w(·) is applied to the representations from all
layers as follows:

HWS =

L∑
l=0

w(l)H(l) (1)

where w(l) denotes the weight of the l-th layer and has the
properties w(l) ≥ 0 and

∑
l w(l) = 1. HWS are then con-

catenated with the log1p spectrogram feature from the noisy
speech. The concatenated features are subsequently fed into
a neural SE module consisting of fully connected layers (FC)
and a two-layer bidirectional long short-term memory module
(BLSTM). The output of the SE module is a soft mask and is
multiplied by the magnitude of the spectrogram of the noisy
speech. The training objective is to minimize the L1 distance
between the multiplied spectrogram and that generated from
the clean speech.

3.2. Audio-Visual SS Model

Similar to the proposed AVSE model, our proposed AVSS
model uses the AV-HuBERT model as the front-end module
to process audio-visual inputs. Fig. 2 shows the overall archi-
tecture of the AVSS system. The two image sequences for the
speaker lip movements in a two-speaker video are denoted as
V s1
1:T and V s2

1:T . The mixed speech is expressed as Am
1:T . A

shared AV-Hubert model is used to generate the multi-modal

Fig. 2. Proposed audio-visual SS framework. The output fea-
tures of the shared AV-HuBERT from the two speakers are
coupled via cross-attention and then are fed into the neural
regression model for SS. The WS and MHA blocks represent
the weighted-sum and the multi-head attention modules, re-
spectively.

representations for each speaker, followed by a weighted-sum
operation, which is the same as Eq.1. The resulting outputs
are denoted as HWS,sp1 and HWS,sp2. To better couple the
multi-modal features obtained from the two speakers, we ap-
plied cross-attention over HWS,sp1 and HWS,sp2 with a layer of
multi-head attention (MHA) mechanism, which is expressed
as:

Osp1 = MHA(HWS,sp1, HWS,sp2)

Osp2 = MHA(HWS,sp2, HWS,sp1)
(2)

The outputs of the MHA modules are then summed and fed
into the SE module, which has the same architecture as the
previous AVSE model. The objective of the loss is to mini-
mize the L1 distances between the masked spectrograms and
target spectrograms, which can be expressed as:

Lavss = dist(SE(Osp1

⊕
Osp2)

⊗
Sm,Ssp1)

+dist((1− SE(Osp1

⊕
Osp2))

⊗
Sm,Ssp2)

(3)

where SE, Sm, and Ssp1 and Ssp2 denote the SE model,
magnitude of the spectrograms of the mixed speech, and
speech from each speaker, respectively.

4. EXPERIMENTS

4.1. Dataset and Training strategies

This section presents the experimental setup and results. We
evaluate our proposed models for the AVSE and AVSS tasks
based on the TSMV dataset 1. The dataset contains video
recordings of 18 native speakers (13 males and 5 females),

1https://bio-asplab.citi.sinica.edu.tw/
Opensource.html



Fig. 3. Spectrograms of the enhanced speech by different
methods. (a) Noisy speech of engine noises at -1 dB. (b)
Clean speech. (c)-(f) represent enhanced speech by our pro-
posed method, LAVSE, AV-CVAE, and LogMMSE, respec-
tively.

each speaking 320 utterances of Mandarin sentences. Each
sentence consists of 10 Chinese characters, and the approxi-
mate duration for each utterance is 2–4 seconds.

We optimized the AVSE and AVSS models with several
training strategies. The first is partial fine-tuning (PF), which
means that the weights of the feature extraction parts of AV-
HuBERT are fixed, whereas the weights in the SSL block,
that is, the transformer encoder, are updated based on the pre-
trained checkpoint. Second, we investigate the entire fine-
tuning (EF), whose difference from PF is the inclusion of
weight updating for the feature extraction parts. Training
from scratch (TFS) and training of the model without fine-
tuning (WF) AV-HuBERT were also performed for compar-
ison. The following sections detail the setup for the experi-
ments for AVSE and AVSS, respectively.

4.2. Audio-Visual SE Task

4.2.1. Experimental setup

For the pre-processing parts in the videos, we cropped the
mouth of the speakers via pre-trained CNN detectors [18].
For the audio components, we followed the setup described in
[4]. Of the 320 utterances for each speaker, we use the first
200 ones for training, and the remaining 120 ones are used for
testing. To form clean-noisy speech pairs for training, the ut-
terances were artificially corrupted by 100 types of noise [19]
at five different signal-to-noise ratios (SNRs) ranging from
−12 to 12 dB with an increment of 6 dB. The process gener-
ates approximately 600 hours of noisy utterances, and 12,000
noisy utterances are randomly selected to form a 9-hour train-
ing set to reduce the computation cost. To form the testing set,
we selected five types of noise, including baby crying sounds,
engine noise, pink noise, music noise, and street noise, with
SNRs at −1 dB, −4 dB, −7 dB, and −10 dB.

Fig. 4. Results of our proposed AVSS framework. (a) A
two-speaker talking video and the spectrogram of the mixed
speech. (b) and (c) are spectrograms of the recovered speech
for the left speaker and ground truth. (d) and (e) are spec-
trograms of the recovered speech for the right speaker and
ground truth.

4.2.2. Model specification and training setup

We used Base AV-HuBERT with 12 transformer layers pre-
trained on the LRS3 dataset [20] for five iterations as the
checkpoint to build our AVSE system. The feature dimen-
sions of the BLSTM model following AV-HuBERT were 256.
For the fine-tuning process, the initial learning rate was set at
1e-4, and AdamW [21] was used as the learning optimizer.
For each training strategy, we trained the model for 50 epochs
and selected the model that yielded the best performance on
the validation sets.

4.2.3. Experimental results

In this section, we compare the experimental results of the
proposed AVSE model with those of other baseline SE mod-
els, including two AVSE models [4, 22] and one traditional
audio-only method, namely LogMMSE [23]. We conducted
an objective comparison with two standardized evaluation
metrics that are widely used to evaluate SE performance—the
perceptual evaluation of speech quality (PESQ) [24] and
short-time objective intelligibility measure (STOI) [25].
PESQ measures the quality of processed speech, whereas
STOI is developed for evaluating speech intelligibility. PESQ
and STOI scores range from −0.5 to 4.5 and 0 to 1, respec-
tively. Higher scores indicate better performance.

Table 1 lists the PESQ and STOI scores for each SE
method. From the table, we observe that the SE task is quite
challenging because the traditional audio-only methods did
not yield much improvement. In addition, the models us-
ing audio-visual information outperformed the audio-only
methods, confirming the effectiveness of including visual
formation in SE. Next, focusing on our proposed method, we
can see that PF, EF, and WF all outperform TFS, indicating
that the learned features in the pretrained AV-HuBERT model



indeed result in a better AVSE system. We also implemented
an AVSE system that used only the encoder part of the AV-
HuBERT model (i.e., without the transformer part). These
results are also reported in Table 1 and termed AVSE (w/o
Trans.). From the table, we noticed that AVSE (w/o Trans.)
does not perform as well as TFS does, suggesting that the
transformer module is also effective for feature learning in
the AVSE.

Fig.3 shows spectrograms of the enhanced speech from
different SE approaches. We can observe the high-frequency
components of the speech enhanced by partially fine-tuning
the AV-HuBERT are better preserved than those from the
LAVSE and AV-CVAE approaches, showing the consistency
of the superiority of our approach.

Methods Mod. PESQ STOI
Noisy 1.18 0.60
LogMMSE [23] (A) 1.21 0.61
AV-CVAE [22] (AV) 1.34 0.63
LAVSE [4] (AV) 1.31 0.61
AVSE (w/o Trans.) (AV) 1.25 0.61
AVSE (WF) (AV) 1.30 0.63
AVSE (TFS) (AV) 1.26 0.60
AVSE (EF) (AV) 1.37 0.66
AVSE (PF) (AV) 1.40 0.68

Table 1. Results of speech enhancement via the audio-only
or audio-visual methods.

4.3. Audio-Visual Speech Separation

4.3.1. Experimental setup

AVSS experiments were based on the TMSV dataset. As
shown in Fig.4(a), we made a two-talker video by merging
two individual videos side by side, while redoing the sound-
track by mixing the original ones. The spectrogram depicted
in Fig.4(a) is the mixed speech from the utterances of the left
speaker, as shown in Fig.4(c), and the right speaker, as shown
in Fig.4(e). We randomly selected two utterances from two
different speakers to form a mixed speech for separation. A
total of 12,000, 1,200, 1,200 mixed utterances for training,
validation and testing were made with spoken sentences and
speakers mismatched.

4.3.2. Model specification and training setup

We used the same AV-HuBERT checkpoint as that used for
the AVSE task. For the multi-head attention modules, we used
12 heads with a feature dimension of 512. The neural regres-
sion module of the AVSS model was the same as that used
in the AVSE model. For the fine-tuning process, the initial
learning rate, optimizer, and training epochs were the same as
those for the AVSE task.

4.3.3. Experimental results

Fig.4 shows spectrograms of the mixed speech and the sep-
arated speech by the proposed AVSS approach. Fig.4(a)
demonstrates a two-speaker sample video where the speakers
are speaking simultaneously. The spectrogram of the mixed
speech in Fig.4(a) is composed of the clean utterances from
the left speaker and the right speaker. The spectrograms of
the separated speech obtained by fine-tuning AV-HuBERT
of our AVSS model are presented in Figs.4 (b) and (d), with
the respective ground-truth Figs.4 (c) and (e). We can ob-
serve from the spectrograms that our method can effectively
separate mixed speech using the corresponding visual infor-
mation.

To quantitatively assess the results of different train-
ing strategies, we used two metrics for evaluation: the
scale-invariant signal-to-noise ratio (SI-SNR) and source-
to-distortion ratio (SDR). These two metrics are common for
evaluating separated speech [26]. Table 2 reports the two
scores of the separated speech using the different training
strategies of our AVSS methods. The scores related to PF
were the best among the training strategies, suggesting that
the learned representations of AV-HuBERT can be effective
for the AVSS task as well. Nevertheless, note that in the
AVSS task, TFS is only second to PF, unlike AVSE, where
the performance of TFS is worse than that of PF, EF, and
WF, as reported in Table.1. We argue that including multiple
attention heads improves the coupling of multimodal features
from different speakers, thereby closing the performance gap
between TFS and the others via leveraging the pre-trained
AV-HuBERT features.

Methods SISNR (dB) SDR (dB)
AVSS (WF) 3.03 4.08
AVSS (TFS) 3.53 4.63
AVSS (EF) 3.27 4.31
AVSS (PF) 3.59 4.59

Table 2. Results of audio-visual speech separation by differ-
ent fine-tuning strategies.

5. CONCLUSION

In this study, we proposed novel AVSE and AVSS frame-
works that leveraged a pretrained AV-HuBERT model. For
AVSE, we demonstrated that after partially fine-tuning the
AV-HuBERT model, our AVSE system outperformed other
baseline SE models. For AVSS, we noted similar trends and
the advantages of using AV-HuBERT embeddings. In sum-
mary, this study demonstrated how a pre-trained AV-HuBERT
model can improve the training of AVSE and AVSS tasks,
showing its promising ability for AV regression tasks.
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