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ABSTRACT

Since the advent of deep learning (DL), speech enhancement
(SE) models have performed well under a variety of noise
conditions. However, such systems may still introduce sonic
artefacts, sound unnatural, and restrict the ability for a user
to hear ambient sound which may be of importance. Hearing
Aid (HA) users may wish to customise their SE systems to
suit their personal preferences and day-to-day lifestyle. In this
paper, we introduce a preference learning based SE (PLSE)
model for future multi-modal HAs that can contextually ex-
ploit audio and visual information to improve listening com-
fort (LC). The proposed system estimates the Signal-to-noise
ratio (SNR) as a basic objective speech quality measure which
quantifies the relative amount of background noise present in
speech, and directly correlates to the intelligibility of the sig-
nal. This is used alongside a preference elicitation frame-
work which learns a predictive function to determine the tar-
get SNR. The system is novel, scaling the output of an Audio-
Visual (AV) DL-based SE model to provide HA users with
individualised SE. Preliminary results support the hypothesis
of improving the overall subjective LC, without significantly
impeding the speech intelligibility.

Index Terms— Audio-visual speech enhancement, hear-
ing aids, individualisation, preference learning.

1. INTRODUCTION

Speech enhancement (SE) models are typically evaluated
by criteria that objectively measure both the speech quality
and intelligibility (i.e. PESQ, STOI). However, the ideal SE
model is not necessarily ‘one size fits all’. In the literature,
it has been established that preference for noise reduction
(NR) strength for different signal-to-noise ratios (SNRs)
varies amongst hearing aid (HA) users [1]. Given the scien-
tific description of the highly individualised and non-linear
pathology that constitutes hearing loss [2, 3], there have been
relatively few attempts to personalise modern, non-linear
SE algorithms with respect to the hearing impaired listeners
preferences. This gap has been highlighted recently in [4].

In terms of established HA personalisation, there are
many studies and models for HA fine-tuning, particularly in
personalising the parameters in digital multi-band dynamic

range compression algorithms that exist in most modern
HAs, by adjusting the patient’s audiogram based prescrip-
tion and/or compression parameters [5]. Other studies have
focused on personalising SE models with respect to the lis-
tener’s preference by fine-tuning NR parameters [6] , or
with respect to the audiogram with spectral change enhance-
ment [7]. However, these approaches do not utilise recent
advances in DL technologies, which have significantly im-
proved metrics such as PESQ and STOI compared to other
approaches [4]. More recently, Drakopoulos et al. [8] pro-
posed to effectively invert an entire auditory pathology by
decreasing the error between Normal Hearing (NH) and
Hearing Impaired (HI) simulated auditory nerve responses
using DL.

In terms of individualised SE, Bhat et al. [6] proposed a
formant based SE framework to customise the noise suppres-
sion and speech distortion according to the user preference
elicited via a smartphone based elicitation system. The model
exploits the formant frequency information to control the HA
output while maintaining speech intelligibility. However, to
the best of our knowledge there are no attempts in the liter-
ature to solve the aforementioned issue for audio or audio-
visual (AV) DL based SE. Moreover, the differential in pref-
erences that are shown for varying types of noise experienced
in the real world, e.g. accounting for the trade off between
preference for noise level and naturalness [9, 10], have not
been explicitly accounted for in adaptive DL based SE.

In this paper, we propose a framework for individualised
AV speech enhancement, as shown in Fig. 1, that controls the
output of DL-based AV SE models according to the user pref-
erence of noise reduction at different levels of background
noise to improve the overall LC without compromising on
speech intelligibility. Specifically, a DL-based SNR estima-
tion model is used to describe the individualised preference
for AV SE.

The SE, or perhaps more accurately, Noise Reduction
(NR) algorithm employed in this study is a class of DL based
AV SE [11]. Intelligibility-Oriented AV SE (IOAVSE) [12]
in-particular has been chosen because of it’s high perfor-
mance in comparison with other NR algorithms at low SNR,
as well as it’s Ideal Ratio Mask (IRM) based output which
makes adjustment of the SE target SNR (SNR∗) simple via
the modulation of the activation function of the final output
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Fig. 1. An overview of the Preference Learning Based Audio-
Visual Speech Enhancement Model

layer. Once the user’s preference function has been esti-
mated via preference elicitation, we hypothesise that it can be
utilised to achieve better overall LC than using a static, ‘one-
size-fits-all’ SE model in HA, without significantly impeding
the intelligibility.

We hypothesise that several factors influence the inter-
individual contextual preferences (given environmental SNR)
for the amount of enhancement required: functional hearing
ability (i.e. the ability to discriminate sounds from noise),
and the level of discomfort caused by distortion or unnatu-
ralness. For example, someone with high functional hearing
ability may wish to be aware of surrounding noise which may
contain cues that compete for attentional resources, such as
train announcements, mechanical / car noise, or other conver-
sational speakers. This preference may be further motivated
by a high level of discomfort caused by the distortions intro-
duced with SE. On the other hand, someone with low func-
tional hearing ability may wish for maximum NR, to miti-
gate the cognitive load associated with high listening effort,
particularly if less discomfort is caused by any unnaturalness
introduced by the algorithm.

2. ENVIRONMENTAL SEGMENTAL
SIGNAL-TO-NOISE RATIO ESTIMATION

Signal-to-noise ratio (SNR) is a basic objective speech quality
measure which quantifies the relative amount of background
noise present in a speech clip, usually in terms of sound pres-
sure, measured in decibels (dBs). It is defined as the ratio
of signal intensity to noise intensity. In contrast to working
directly on the entire signal in our experiments, we used the
Segmental Signal-to-Noise Ratio (SNRseg or SSNR), which
calculates the average of the SNR values (in dB) of short seg-
ments (15 to 20 ms) given as equation 1:

(1)

The user’s preferred SNR essentially refers to the SNR
that a user prefers when listening to a target, whilst experi-
encing a given level (amount) of background noise. Several

Fig. 2. SSNR prediction model

Table 1. SSNR Prediction Model Results

Model Type LCC SRCC MSE
S 0.934 0.927 0.538

DL-based assessment tools have been developed utilising a
range of model architectures, e.g., BiLSTM [13], CNN [14],
and CNN-BiLSTM [15]. Additionally, attention mechanisms
[16] and multitask learning [17] have also been employed to
enhance assessment abilities. For a non-intrusive measure of
SSNR, we have built a SSNR prediction model for our pro-
posed framework. We have chosen power spectral features as
input and CNN-BiLSTM with self-attention as a model archi-
tecture after experimentation. The CNN-BiLSTM+AT model
architecture has 3 convolution blocks each consisting of 4
convolutional layers (16, 32, 64, and 128 filters), followed by
single-layered BiLSTM (128 units), a fully connected layer
(128 units) and a self attention layer. The output of the atten-
tion layer is fed to a fully connected layer (1 unit) a global av-
erage operation was then used to produce the prediction score
as illustrated in Fig. 2.

2.1. Evaluation

To evaluate the SSNR prediction model, three evaluation met-
rics were used: linear correlation coefficient (LCC), Spear-
man rank correlation coefficient (SRCC) and mean squared
error (MSE) [16]. Higher LCC and SRCC scores show that
the predicted scores are of higher correlations to the ground
truth assessment scores, whilst a lower MSE score indicates
that the predicted scores are closer to the ground-truth assess-
ment scores. The experimental results of the SSNR prediction
model for the GRID corpus with the ‘Pedestrian’ CHIME-3
noise type, at a range of -12 to 9 db SNR is shown in Table 1.

3. PREFERENCE LEARNING SYSTEM

This section presents the individual components present in the
proposed PLSE framework.



3.1. Pretrained AV SE model

The model employed for this study is IO-AVSE [12]. The DL
architecture consists of a deep fully convolutional network-
based U-Net style architecture and a concatenation style fu-
sion between the AV modalities after visual feature extraction.
It uses the Short-time Objective Intelligibility (STOI) as a loss
function.

3.2. SNR Control / Update Mechanism

The basic idea here is to utilise the user preferences and the
environmental SSNR prediction in order to control in real-
time the target SNR∗ of the SE system.

SNR∗ α f(ŜNR,A) and A = ŜNR β + β0 (2)

A α (
∑

p1:n /10) + 0.5 where p1:n ∈ (−1,+1) (3)

where ŜNR is the predicted environmental SNR. The
elicitation sequence begins at 50% enhancement and A{(0, 1)
(for input into equation 4). p is the preference vector from the
elicitation phase, and β and β0 are learnt from inputs p and
ŜNR.

Generalised Logistic Activation Function (Richards Curve)

SNR∗ α A+
(K −A)

(C +Qe−Bt)1/v
(4)

Where A, the lower asymptote (which essentially acts as
a SNR∗ noise floor) is to be inferred from the learned pref-
erence function. Equation 4 scales the activation and thus the
SNR∗ for the final output layer of magnitude spectrogram
estimation from the IRM-SE model. This approach should
generalise to other types of mask, which will be demonstrated
in future work.

3.3. Preference Elicitation Method

During preference learning, the user’s preference for SE given
the environmental SNR is elicited by means of a traditional
and widely employed ‘volume up and down’ interface. The
interface controls the target SNR∗ instead of the volume.
This could be thought of as controlling the relative volume
of the noise. Because this is a simple, familiar interface, the
user can elicit their preference which will in turn adjust the
SNR∗ of the SE model in real-time, whilst listening to the
resultant sound and sequentially adjusting, or not adjusting,
their preference.

3.4. Experimental Setup

The data used, Y, for this study is the GRID-CHIME3, aug-
mented dataset [18, 19]. For each of the experimental phases,
6 unique sentences from 4 target speakers from the corpus are

Fig. 3. Audio-visual presentation of GRID-CHIME3 dataset
and User interface for preference elicitation (top left) and lik-
ert evaluation (top right)

overlaid onto each of 5 noise levels sampled from the ‘pedes-
trian’ noises of the CHIME3 dataset, cut and volume adjusted.
This leads to 5 SNRs (-9,3,0,3,9) dB
The experiments are split up into 3 phases:
1. Preference Elicitation Phase: Here the participant en-
gages with the ‘up, down or no change’ interface.
2. Max SNR Evaluation Phase: SE with maximum SNR∗

, i.e. sigmoid-scaled final output layer from the pre-trained
model.
3. Pref SNR Evaluation Phase: SE with the inferred SNR∗

from the learned preference function, i.e. output layer scaled
according to equation 2.

During the Evaluation phases, the participants are asked to
recall 3 keywords from the sentence (colour, letter and digit),
and to rate the LC on a 5 point likert scale. The results of
interest for the main hypothesis are then the differential be-
tween Phases 2 and 3, which rely on successful elicitation in
Phase 1.

4. PRELIMINARY RESULTS AND DISCUSSION

To get preliminary insights as a proof-of-concept test, 4 sub-
jects were tested. The subjects ages ranged from 27 to 35 and
all were male. There was one native British English speaker
(participant 1) and the rest were non-native English speakers
(2-4).

4.1. Results

4.1.1. Preference Functions

In Figure 4, the participant’s preference functions, learned
from the elicitation phase, are shown. The functions are also
maximised by a ceiling, this limits the output scaling (param-
eter A in equation 4) where f(ŜNR) > 1, such as not to
introduce distortions to the audio. Both participant 1 and 2
exhibit a negatively sloping function, showing preference for
less SE at higher SNRs. This makes sense according to the
expected challenge of the listening situations. Participant 3
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Fig. 4. Visualisation of participant 1-4’s preference functions.
Participant 1, red (with ceiling); 2, green; 3, blue; 4, yellow

Table 2. Subjective Testing Results
Participant (max/pref) Intelligibility (%) LC (Mean)

1 (max) 90 1.8
1 (pref) 92 3.8
2 (max) 66 3.5
2 (pref) 83 4.1
3 (max) 72 3.0
3 (pref) 69 3.1
4 (max) 83 3
4 (pref) 83 3.8

shows a positive sloping preference function, it is thought that
this is why the intelligbility is impeded (slightly) after prefer-
ence learning as there is less SE at lower SNR’s. This war-
rants further consideration to investigate if this is intended or
a product of a flaw in the elicitation framework. Paricipant 4
shows a flat preference function, though showing preference
for 0.8 scaling as opposed to the default 1 (max). For this par-
ticipant, allowing a small amount of background noise across
SNRs is beneficial for LC.

4.1.2. Change in Perceived Intelligibility and Quality

In the table 2, preliminary results for the experimental set up
given in Section 3.4 are shown.

On average, there was a 4% increase in intelligibility,
however, due to a possible training effect (particularly for
participant 2 who showed some initial confusion with the
sentence-keyword-recall set up), there may be some bias be-
tween phases for intelligibility due to this. To avoid this in
future experiments, a practice round for the subjective evalu-
ation will be given prior to the ‘max’ and ‘pref’ SE evaluation
phases.

In terms of LC, there was an average increase of 0.9 in

likert scale (2 s.f.) or 18%, with every participant showing
some increase in LC. This is suspected to be a more signifi-
cant result.

4.2. Limitations

Whilst these preliminary results are promising and warrant
further investigations, there are a number of limiting factors to
consider. The first of which is the fact that in real-life scenar-
ios where a HA is worn, there is expected to be some degree
of noise which is not occluded actively or passively by the
HA. To overcome this, it may be necessary to obtain realis-
tic estimates for this ‘leak-in’ sound pressure, to simulate and
incorporate into the experimental design. Additionally, the
speech-in-noise data is synthetic, where as in the real world
natural effects would be observed such as Lombard and rever-
berations. As N participants here is quite small, more experi-
ments will be required to show the efficacy of the system (for
NH and HI).

4.3. Conclusion and Future Work

This paper presented a proof-of-concept of an individualised
speech enhancement framework that utilise user preferences
to dynamically change the SE output in order to improve the
user’s listening comfort (LC). It is to be noted that, the prelim-
inary results are inline with the original hypothesis that there
would be no significant decrease in intelligibility, whilst the
LC would increase significantly.

As a main priority, although the market for ‘hearables’ is
growing (particularly for normal hearing), this work will be
extented to increase the LC and quality specifically for the
hearing impaired which suffer pathologically to understand
speech in noise. This could in turn help increase HA up-
take, which is estimated to be low in proportion to those who
need HA [2]. Therefore, extensive and robust testing, includ-
ing measurements of audiogram, along with normal hearing
results for comparison, will be carried out with hearing im-
paired participants, in order to test statistical significance of
any changes in intelligibility, LC and/or sound quality.

It is also of interest to investigate the differential of dif-
ferent noise types on preference for target SNR of the SE
system, which would extend the SNR prediction model pre-
sented here to a hierarchical model. This may further increase
the LC for multimodal HA users. All of these considerations
are undergoing further implementations and experiments, in-
cluding integration with other HA signal processing to deliver
multi-modal HA demonstrators.
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