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Abstract—A strong representation of a target speaker can aid
in extracting important information regarding the speaker and
detecting the corresponding temporal regions in a multi-speaker
conversation. In this study, we propose a neural architecture
that simultaneously extracts speaker representations that are
consistent with the speaker diarization objective and detects
the presence of each speaker frame by frame, regardless of the
number of speakers in the conversation. A speaker representation
(known as a z-vector) extractor and frame-speaker contextualizer,
which is realized by a residual network and processing data in
both the temporal and speaker dimensions, are integrated into a
unified framework. Testing on the CALLHOME corpus reveals
that our model outperforms most methods presented to date.
An evaluation in a more challenging case of concurrent speakers
ranging from two to seven demonstrates that our model also
achieves relative diarization error rate reductions of 26.35% and
6.4% over two typical baselines, namely the traditional x-vector
clustering model and attention-based model, respectively.

Index Terms—speaker diarization, speaker representations

I. INTRODUCTION

PEAKER diarization is the process of determining when
S individual speakers are active in a recording. The aim is
to generate a diary of the presence of each speaker at each
point in time. This technique has been extensively used for
speech processing in various scenarios, such as conference
conversations, broadcast news, debates, and cocktail parties
[L]. However, the resilience of speaker diarization remains
weak owing to the challenges that are posed by variations in
the recording channels, environment, reverberation, ambient
noise, and the number of speakers [2].

Over the past decade, researchers have tackled diarization
problems using probabilistic models [3]] or neural networks [4].
Several methods involve two steps, segmentation and cluster-
ing. In the segmentation step, a 1.5-second sliding window
(with a 50% overlap) is typically used to divide a session into
a sequence of short segments. Subsequently, a speaker model
is used to extract the speaker representation (e.g., the x-vector
(51, 16N, [7], [8l], i-vector [9], [10], or d-vector [L1]], [12]) of
each segment. Segments with highly homogeneous character-
istics form a group during the clustering process. Different
clustering techniques have been applied according to various
similarity measures, such as probabilistic linear discriminant
analysis (PLDA) and cosine similarity [13], [14], [15], [10].
For example, agglomerative hierarchical clustering (AHC) and
spectral clustering (SC) were used in [6]], [10] and [16]],
[L7], respectively. The unbounded interleaved-state recurrent
neural network (UIS-RNN), which originated from both the
Gaussian mixture model (GMM) [[18]], [19] and hidden Markov

model (HMM) [7], was used in [12]. Moreover, several post-
processing methods, such as Variational Bayes (VB) [20] and
the LSTM-based method [21]], have been applied to refine the
initial diarization results.

Several recent studies [22]], [23], [24], [25] have focused
on end-to-end (E2E) speaker diarization. Fujita er al. [22]]
reformulated the diarization task as a multi-label classification
problem and used the permutation-invariant training (PIT) [26]
technique. Moreover, in [27], reliable speaker representations
were derived using a selector to assist a voice activity detector
in diarizing a session. Self-attention [28], [29] and frame
selection [30] have also been used in E2E speaker diarization.

The traditional segmentation-clustering method cannot han-
dle overlapping speech in a session effectively. Target speaker
voice activity detection (TS-VAD) [31]] has achieved good per-
formance in overlapping speech processing. It relies on an x-
vector/SC procedure [5], [8] to provide first-stage timestamps
of the speech of each “target” (active) speaker, which are used
to extract the first-stage i-vector for each target speaker from
frames in which the speaker is active. Finally, it uses the i-
vectors of all speakers and MFCCs to generate the diarization
results. Unfortunately, it can only be applied to sessions with a
fixed number of speakers, because its neural structure contains
a tensor concatenation of speaker representations. Inspired by
the dual-path recurrent neural network (DPRNN) [32], [33],
we propose a unified structure known as Multi-target Filter and
Detector (MTFAD) that can handle conversations with various
numbers of speakers using a single model. Furthermore, as
the quality of the speaker representations has an impact on
the diarization performance, we extend TS-VAD by using a
neural filter that can directly extract speaker representations
that are suitable for the diarization task.

The main contributions of this study are threefold: First,
we significantly extend the practical scope of TS-VAD while
inheriting its excellent performance in the speaker diarization
task. In this sense, MTFAD offers an advantage over TS-VAD
because it does not set a limit on the number of speakers in a
session. In addition to expanding the practical use, because the
training data of different speaker numbers can be used together
to train a single model, the model is more powerful than
multiple separate models that are each trained with the data of
a specific number of speakers. Second, we design a filter that
can be jointly trained with the diarization model to extract
speaker representations. Using this filter, we achieve better
diarization performance and avoid pretraining of the i-vector
extractor. Third, unlike in certain previous studies [6], [12],
which dealt with only non-overlapping speech, our model also
performs well on data containing overlapping speech regions.
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Fig. 1. Structure of MTFAD, where @, NN, and 1" denote the concatenation
operator, number of speakers, and number of frames, respectively. X* and
s® are the Speaker-aware frames and diarization scoring vector for speaker 4,
respectively. Both the black and gray blocks are trainable. ® is an element-
wise product operator of MFCCs, and the binary masks (labels of speaker
occurrences) are obtained in the first step (x-vector/AHC diarization). Each
speaker representation (e.g., z-vector) goes through the Feature Mixer with
the frame-level MFCCs separately to generate the Speaker-aware frames.

II. MULTI-TARGET FILTER AND DETECTOR

A. Framework

Inspired by TS-VAD [31], we propose a two-step diarization
method known as MTFAD that can adapt to different numbers
of speakers. MTFAD not only addresses the main weakness of
TS-VAD, which can handle only a fixed number of speakers
(e.g., four in [31]]) in a session, but also uses an improved
speaker representation. As illustrated in Fig. [T} the first step
of MTFAD (the Filter) relies on the traditional x-vector/AHC
diarization method to generate the initial timestamps for each
speaker (i.e., the labels of speaker occurrences). With the
timestamps, the frames corresponding to each speaker are
used to extract the speaker representation. In this case, the
representation may be the traditional i-vector and x-vector, or
our specially designed z-vector for diarization (see Section
[M-C). The second step of MTFAD (the Detector) requires two
inputs: the frame-level MFCCs and the representation of each
speaker. The frame-level MFCCs first go through a four-layer
convolutional neural network (CNN). The convolutionized
MFCCs and each speaker representation are concatenated as
the input of the Detector. The output of the Detector is the
final diarization result for each speaker.

In TS-VAD, the second step is implemented using BiLSTM.
First, the first two layers of the BILSTM take the frame-level
MFCCs and four i-vectors as the input, and output four speaker
detection (SD) vector sequences. Subsequently, the four SD
vector sequences are concatenated along the feature dimension
and passed through the third layer of the BiLSTM to generate
the final diarization result for each speaker. It is this concate-
nation that causes the TS-VAD to only handle four-speaker
recordings. Furthermore, in the filter part, TS-VAD uses the
i-vector as the speaker representation, which is defeated by
the x- and z-vectors in our experiments. The detailed MTFAD
structure is described in the following subsections.
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Fig. 2. The Frame-Speaker Contextualizer. The operator O denotes the
residual addition of two tensors. Each X? (Y7) passes through the Frame-
wise (Speaker-wise) Contextualizer separately. X, is used as X;,, for the
subsequent Frame-Speaker Contextualizer.

B. Detector: Feature Mixer / Frame-Speaker Contextualizer

The Detector consists of a Feature Mixer and three consecutive
Frame-Speaker Contextualizers. Each speaker representation
is concatenated with the convolutionized MFCCs, and sub-
sequently processed by the Feature Mixer to generate the
corresponding Speaker-aware frames (SAFs), X, where i is
the speaker index, as indicated in Fig. As illustrated in
Fig. [2} the stack of the Speaker-aware frames of all speakers,
X, € RPXTXN 'is the input of the Frame-Speaker Contex-
tualizer, where D, T', and N denote the dimension of the SAF
features, number of frames, and number of speakers, respec-
tively. Inspired by DPRNN, the Frame-Speaker Contextualizer
is designed to handle different numbers of speakers in one
session. It contains two stages. In the first stage, the SAF
of each speaker goes through the Frame-wise Contextualizer
separately to generate the temporal contextual information of
each speaker using

Xt = Linear(Contextualizerp(X")) + X" (D

The output of the first stage, X, is the stack of Xi,
i =1,...,N. The input of the second stage, Y, is generated
by applying a dimension permutation to X. Slicing the input
by time frames yields Y/ € RP*¥ 4 = 1,...,T, which is
treated as the activity of the individual speakers in a single
frame j. Similar to the frame-wise processing of the SAF, Y/
goes through the Speaker-wise Contextualizer to generate the
speaker contextual information for each frame using

Y’ = Linear(Contextualizers(Y?)) + Y7. )

?j, j = 1,...,T, is stacked and permuted to X, €
RPXTXN X . is used as the input, X;,, of the subsequent
Frame-Speaker Contextualizer. In Eq. , the number of
speakers IV is the length of the input sequence; therefore, it
is variable. Finally, for each speaker, the corresponding SAF
from the output of the previous Frame-Speaker Contextualizer
is passed through a linear-sigmoid layer to generate the final
diarization result. MTFAD enables information sharing among
all speakers and frames with the Frame- and Speaker-wise
contextualizers, which not only retains the advantages of TS-



TABLE I
DER (%) oF MTFAD WITH X-VECTOR ON THE SWB+SRE DATASET.
DURING TESTING, THE X-VECTORS WERE DERIVED FROM THE SPEAKER
TIMESTAMPS LABELED BY THE FIRST-STAGE DIARIZATION OF

TABLE II
RESULTS (%) ON THE SWB+SRE DATASET. ALL MTFAD MODELS ARE
BASED ON THE FIRST-STAGE DIARIZATION OF X-VECTOR/AHC.

X-VECTOR/AHC. THRESHOLD DENOTES THE CASE THAT NUMBER OF Method Threshold Oracle
CLUSTERS IN AHC IS DETERMINED AUTOMATICALLY, AND ORACLE DER JER DER JER
DENOTES THE CASE THAT NUMBER OF CLUSTERS IN AHC IS BASED ON
TRUE NUMBER OF SPEAKERS. IDEAL DENOTES THE CASE THAT THE x-vector/AHC 38.49 53.38 40.38 5258
TARGET SPEAKERS IN THE TEST SESSION ARE ALL KNOWN, AND THEIR
X-VECTORS ARE DERIVED FROM CORRESPONDING RAW UTTERANCES. MTFAD (i-vector) 23.72 36.21 19.50 29.24
MTFAD (x-vector) 25.16 38.91 18.61 28.88
Ratio (|T|/(|T| + |1])) Threshold Oracle Ideal MTFAD (z-vector) 23.06 32.67 13.46 18.95
g{;} ggzg gggz }ggg speakers differed in the two sets. To achieve an overlap ratio
50% 30.05 26.26 11.14 of 20%, with two, three, and four participants, we selected
75% 29.80 26.22 10.36 the parameters 3 for 3, 6, and 9 seconds in the algorithm,
100% 30.43 27.74 10.22

VAD, but also does not exhibit the limitation of handling only
conversations of a fixed number of speakers.

C. Filter: z-vector (diari“z”ation vector)

We argue that the quality of speaker representations is critical
for the diarization performance. Therefore, we design a filter
specifically for extracting speaker representations that are
suitable for diarization. Using the speaker timestamps provided
by the x-vector/AHC diarization step and the MFCCs of the
session, the filter generates the corresponding speaker repre-
sentations (i.e., z-vectors), as indicated in Fig. E} The filter
comprises ResNet and Attentive Statistic Pooling [34]. These
z-vectors can be used as inputs to the Detector instead of the
x-vectors or i-vectors. In MTFAD, the speaker representation
extraction and detection are combined into an end-to-end pro-
cess by integrating the Filter with the Detector. Furthermore,
because the Filter and Detector are trained jointly, the z-vector
is expected to be more suitable than the x- and i-vectors for
solving the diarization problem.

III. EXPERIMENTS AND RESULTS

Two corpora were used in our experiments: one was sim-
ulated from the Switchboard and NIST SRE datasets, and
the other was CALLHOME. All overlapping regions were
counted during the performance evaluation. The results were
evaluated by diarization error rate (DER) and Jaccard error
rate (JER), with the standard 250 ms collar. The JER is based
on the Jaccard index [35]. In all experiments, we calculated
the loss between the projected result and the answer using
cross-entropy in the training phase. For the model settings,
both the Feature Mixer and Frame-wise Contextualizer were
implemented using BILSTM. The Speaker-wise Contextualizer
can be implemented using Transformer [36] or BILSTM. As
the number of speakers is limited in both datasets (i.e. less
than 10), a lightweight BiLSTM is sufficient to gather all in-
formation regarding the speakers. Therefore, in this study, the
Speaker-wise Contextualizer was implemented using BiILSTM.

A. SWB+SRE Simulated Corpus

We utilized the additional Switchboard corpus and the NIST-
SRE dataset. The total number of speakers in the 683 hours of
data from SRE and Switchboard was 6,392. We simulated the
training data and evaluation data by Algorithm 1 in [28]]. The

resulting in 137, 226, and 320 hours of data, respectively.

In the training phase, the ground-truth, Rich Transcription
Time Marked (RTTM) format, was used as the first-stage
diarization. In the inference phase, we used the x-vector/AHC
to produce the first-stage RTTM files for the evaluation data.
The Threshold parameters in the x-vector/AHC were set based
on the performance of the training set. The generation of
speaker representations followed the approach described in
Section In both phases, the i-vector and x-vector speaker
representations were obtained using the pretrained extractors
of Kaldi [37]. For the z-vector, first-stage RTTM was used as
the input to the MTFAD model.

Results and discussion. First, we investigated the impact
of the quality of the speaker representations on the diarization
performance. The Filter in MTFAD was removed and the z-
vectors were replaced with the x-vectors (cf. Fig. [T). During
the MTFAD training, the x-vectors were extracted from the
utterances of the target speakers in the unmixed Switchboard
and NIST-SRE datasets (denoted as T) or derived from the
speaker timestamps labeled by the first-stage diarization of
x-vector/AHC (denoted as I). The ratio of |T|/(|T| + |I])
represents the extent to which true speaker representations are
used for training. As indicated in Table [[| this ratio hardly
affected the performance. However, regardless of the ratio,
all Ideal test conditions outperformed their Threshold and
Oracle counterparts. Although Ideal is a cheating condition,
these results demonstrate the importance of accurate speaker
representation. Therefore, we conclude that extracting better
speaker representations is key to producing superior results.

Thereafter, we compared the effects of different speaker
representation models, including the z-vector, i-vector, and x-
vector models. As indicated in Table [lI, whereas the MTFAD
model with the i-vector or x-vector exhibited improved perfor-
mance over the baseline x-vector/AHC method, the MTFAD
model with the z-vector achieved the best performance. The
results confirm that the z-vector jointly trained with the
MTFAD model is more effective than the x-vector and i-vector
that are obtained from pretrained models, and better speaker
representation yields superior diarization performance.

B. CALLHOME (LDC2001597)

CALLHOME is a telephone dataset containing conversations
in multiple languages. The dataset includes a total of 500
conversations are recorded at a sampling rate of 8 kHz. The
number of speakers in each conversation varies from two to



TABLE 11T
RESULTS (%) ON CALLHOME (ASSUMING THE NUMBER OF SPEAKERS
IS KNOWN). BOTH TS-VAD AND MTFAD WERE BASED ON THE
FIRST-STAGE DIARIZATION OF THE X-VECTOR/AHC AND I-VECTOR. FOR
EACH SPECIFIC NUMBER OF SPEAKERS, MTFAD* AND TS-VAD WERE
TRAINED ON THE SAME TRAINING DATA. MTFAD WAS TRAINED WITH
ALL TRAINING DATA CONTAINING DIFFERENT NUMBERS OF SPEAKERS.

Method Oracle #2 Oracle #3 Oracle #4

DER JER DER JER DER JER

SA-EEND

"EDA [29] 8.35 N/A 13.20 N/A 21.71 N/A

x-vector/AHC 9.17 24.94 15.24 37.04 20.28 45.35

TS-VAD 9.51 20.60 14.71 33.62 20.18 44.77

MTFAD* 8.72 17.90 14.50 33.60 18.15 43.24

MTFAD 7.82 17.87 13.10 3243 18.12 39.02

TABLE IV

RESULTS (%) oN CALLHOME. ALL MTFAD MODELS WERE BASED ON
THE FIRST-STAGE DIARIZATION OF THE X-VECTOR/AHC.

Method Threshold (Estimated) Oracle
DER JER DER JER
x-vector/AHC [29] 19.43 N/A 18.98 N/A
SA-EEND-EDA [29] 15.29 N/A 15.43 N/A
MTFAD (i-vector) 14.52 30.09 14.10 27.92
MTFAD (x-vector) 14.55 30.01 13.15 26.80
MTFAD (z-vector) 14.31 29.21 12.66 24.56

seven. As the CALLHOME dataset was too small to train our
model, we used the SWB+SRE dataset for pretraining.

In the training phase, we pretrained the MTFAD models
on the SWB+SRE dataset. We followed the instructions of
Kaldi to divide the set equally into two parts. CALLHOME-
1 was used to fine-tune the pretrained models, whereas
CALLHOME-2 was used for evaluation. We determined the
Threshold parameters in x-vector/AHC based on the per-
formance of CALLHOME-1. In the inference phase, we
used x-vector/AHC to produce the first-stage RTTM files on
CALLHOME-2. We used the same approach to produce three
types of speaker representations as the experiments on the
SWB+SRE simulated corpus.

As the speaker numbers in a session in CALLHOME varies
from two to seven, it was necessary to pretrain and fine-tune
the TS-VAD models separately for each number of speakers.
For this purpose, the SWB+SRE and CALLHOME-1 datasets
were split into 2-, 3-, and 4-speaker subsets for training the
corresponding TS-VAD models. For each TS-VAD model, we
also trained the corresponding MTFAD* model using the same
training data and procedure for comparison.

Results and discussion. First, we compared MTFAD with
TS-VAD. The results of the evaluation using CALLHOME-2
are presented in Table The experiments were conducted
under the 2-, 3-, and 4-speaker conditions, and the number
of speakers was assumed to be known. All MTFAD and TS-
VAD systems were based on the first-stage diarization of the
x-vector/AHC. It can be observed From the table that MT-
FAD* always outperformed the corresponding TS-VAD and
x-vector/AHC baselines under the same conditions. Moreover,
MTFAD achieved better results than MTFAD* because it was
trained with all training data containing different numbers

TABLE V
DER (%) ON THE 2-SPEAKER CALLHOME TASK. REL. % REPRESENTS
THE RELATIVE REDUCTION OVER THE BASELINE X-VECTOR/AHC.

Method DER rel. %
x-vector/AHC [29] 8.93 -
BLSTM-EEND [24] 23.07 -158.3
SA-EEND [28] 10.99 -23.1
SA-EEND-EDA [29] 8.35 6.5
SA-EEND-EDA + Frame Selection [30] 7.84 12.2
MTFAD 7.82 124

of speakers, whereas each MTFAD* model was trained with
only a subset of training data containing a specific number
of speakers. The results demonstrate the advantage of the
MTFAD Detector: MTFAD significantly performed TS-VAD
because its detector could use all data during training. After
overcoming the weakness of TS-VAD, MTFAD with the i-
vector has already outperformed SA-EEND-EDA [29].

Subsequently, we compared the effects of different speaker
representation models, including the z-vector, i-vector, and
x-vector models. It can be observed from Table [V] that
all the three MTFAD models outperformed not only the x-
vector/AHC baseline, but also the strong SA-EEND-EDA
model [29]. Furthermore, the results confirm that the z-vector-
based MTFAD was superior to the i-vector-based and x-
vector-based MTFAD under both the Threshold and Oracle
conditions. Furthermore, greater improvements were observed
under the Oracle condition. This is because the model could
estimate a more accurate z-vector for each speaker when the
number of speakers was correct in the first-stage diarization. In
contrast, under the Threshold condition, the incorrect number
of speakers being predicted in the first-stage x-vector/AHC
could cause certain z-vectors to not match the actual speakers,
thereby leading to fewer reductions in the DER and JER. The
results in Tables [Tl and [TV] reveal that, with its well-designed
Filter and Detector, MTFAD is a flexible and effective diariza-
tion model that can extract more accurate speaker vectors to
handle conversations with different numbers of speakers.

Finally, we compared MTFAD with other models. As most
end-to-end models have only been evaluated in 2-speaker
experiments, we compared different models in the 2-speaker
CALLHOME task. It is clear from Table [V] that MTFAD
outperformed all models, with a 12.2% relative reduction in
the DER over the x-vector/AHC [29]. According to Tables
and [V MTFAD outperformed all of the models compared in
this study for both 2-speaker and multi-speaker tasks.

IV. CONCLUSION

We have proposed the MTFAD model, which is composed of
a Frame-Speaker Contextualizer based detector and z-vector
filter, for speaker diarization. The structure of its detector
allows MTFAD to handle conversations with varying numbers
of speakers and to use data with any number of speakers
during training. The detector addresses the weaknesses of
TS-VAD while preserving its strengths. The z-vector filter
that is dedicated to diarization also improves the performance
compared to the traditional i-vector and x-vector approaches.
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