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BASPRO: a balanced script producer for speech
corpus collection based on the genetic algorithm

Yu-Wen Chen, Hsin-Min Wang, and Yu Tsao

Abstract – The performance of speech-processing models
is heavily influenced by the speech corpus that is used for
training and evaluation. In this study, we propose BAlanced
Script PROducer (BASPRO) system, which can automat-
ically construct a phonetically balanced and rich set of
Chinese sentences for collecting Mandarin Chinese speech
data. First, we used pretrained natural language processing
systems to extract ten-character candidate sentences from
a large corpus of Chinese news texts. Then, we applied a
genetic algorithm-based method to select 20 phonetically
balanced sentence sets, each containing 20 sentences, from
the candidate sentences. Using BASPRO, we obtained a
recording script called TMNews, which contains 400 ten-
character sentences. TMNews covers 84% of the syllables
used in the real world. Moreover, the syllable distribution
has 0.96 cosine similarity to the real-world syllable distri-
bution. We converted the script into a speech corpus using
two text-to-speech systems. Using the designed speech
corpus, we tested the performances of speech enhancement
(SE) and automatic speech recognition (ASR), which are
one of the most important regression- and classification-
based speech processing tasks, respectively. The experi-
mental results show that the SE and ASR models trained
on the designed speech corpus outperform their counter-
parts trained on a randomly composed speech corpus.

Index terms – corpus design, Mandarin Chinese speech
corpus, phonetically balanced and rich corpus, recording
script design, genetic algorithm.

I. Introduction

Speech corpus plays a crucial role in the performance of
speech-processing models. The speech corpus that is used

to train and evaluate these models significantly affects their
performance in real-world environments. Recently, massive
amounts of data have been generated and collected. Therefore,
models are often trained using a large amount of data to
achieve better performance. However, not all research insti-
tutions can support such computing resources. Furthermore,
the use of large amounts of data in listening tests to evaluate
models is expensive and time consuming. Moreover, for per-
sonalizing models, the amount of data that can be collected
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from new users is often limited. Therefore, a representative
speech corpus is essential for training and testing.

Active learning [1], [2] is a popular strategy used for
training data sampling and selection. Active learning algorithm
dynamically selects a subset of samples with labels that are
most beneficial to improving the model during training. In
this study, however, we focus on an algorithm that finds a
fixed representative training and testing speech corpus for
general speech-processing models. That is, active learning
selects a corpus for a specific model to optimize it, whereas
the proposed algorithm creates a model-independent corpus.
The proposed algorithm can cooperate with active learning.
Specifically, the model can be initially trained using the
proposed representative corpus, followed by active learning
to select the most beneficial samples for further training.

A representative speech corpus is often referred to as a
phonetically balanced or rich corpus. Phonetic balance means
that the frequencies of phonemes in the corpus are distributed
as close as possible to the frequencies in real-world conditions,
and a phonetically rich corpus implies that the dataset should
cover as many allowed phonemes as possible. In previous
studies, researchers have developed corpora of this type for
multiple languages, such as Amharic [3], Arabic [4], Bangla
[5], Urdu [6], Thai [7], Turkish [8], Mexican Spanish [9],
Romanian [10] and Chinese [11]–[13].

Previously, phonetically balanced and rich corpora were
designed by experts with linguistic backgrounds [14]–[16].
The experts manually wrote or chose sentences that could
form a phonetically balanced corpus. However, creating a
phonetically balanced and rich corpus in this manner is time-
consuming and difficult. In addition, sentences written by the
same person tend to be similar and lack variation. Moreover,
this method cannot be used to generate corpora for specific
knowledge domains.

Automatic methods have also been proposed, in addition to
manual development. Automatic methods usually begin with
a large collection of sentences. An algorithm then selects
sentences from the collection to form a corpus that meets
these requirements. Selecting the desired set of sentences is an
NP-hard set-covering optimization problem. In other words,
evaluating all possible sets of sentences is computationally
too complex to be solved within an acceptable time. To auto-
matically compose a phonetically balanced corpus, [10], [17]
proposed random sampling and evaluating sentence groups and
chose the one that best meets the requirements. [3] and [11]
proposed two-stage methods. The first stage selects important
sentences that contain as many syllables as possible or consist
of units that appear less frequently in the corpus. The second
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stage involves selecting sentences that can achieve the desired
statistical distribution. Additionally, [18] used the perplexity
of each sentence as an indicator to generate a corpus. Most
automatic methods are based on greedy algorithms [5], [6], [8],
[12], [13]. Genetic algorithms (GA), a well-known approach
for solving NP-hard problems, on the other hand, have not
received much attention in speech corpus development.

In [19], the authors proposed a GA-based method to au-
tomatically form a phonetically balanced Chinese word list;
nevertheless, this study focused on word lists rather than
sentence lists. Only a few previous studies have used GA
to automatically select sentence sets [20], [21]. Moreover,
these GA-based methods focus on phonetic and prosodic
enrichment rather than phonetic balance and enrichment. The
development of GA-based Chinese speech corpora has not yet
been thoroughly investigated.

Mandarin Chinese is a tonal syllabic language with five
different tones, including four main tones and a neutral tone.
Syllables that do not consider tone are denoted as base
syllables. On the other hand, syllables that consider the tonal
information are referred to as tonal syllables. Each syllable
comprises an INITIAL (consonant) and a FINAL (vowel)
and is represented by the pinyin system. The INITIAL and
FINAL can be further decomposed into smaller acoustic units
such as phonemes. Compared to phonemes, syllables are more
intuitive to Mandarin Chinese speakers and are used more
frequently. Therefore, we developed a tonal syllable-balanced
and -rich (hereafter referred to as syllable-balanced) corpus to
represent a phonetically balanced and rich corpus.

In this study, we propose an automatic method called
BAlanced Script PROducer (BASPRO)1 to compose a syllable-
balanced Mandarin Chinese speech corpus. First, BASPRO
uses pretrained natural language processing (NLP) systems to
extract candidate sentences from a huge Chinese news text
corpus. Subsequently, a syllable-balanced recording script is
generated using a GA-based method. Finally, the script is
converted into a speech corpus using two text-to-speech (TTS)
systems. The syllable-balanced recording script developed in
this study is called TMNews2 because the sentences in the
script are collected from Mandarin Chinese news articles
collected in Taiwan.

The contributions of this study are as follows.

• We propose BASPRO, which uses machine-learning-
based NLP tools to process and extract candidate sen-
tences from a collection of news articles.

• BASPRO employs a GA-based method to form a syllable-
balanced recording script from candidate sentences. Ex-
perimental results show that the proposed BASPRO sys-
tem can effectively select sentences according to the
designed optimization criteria.

• The proposed BASPRO system is flexible in terms of
language, data domain, and script size. In addition, it
allows the generated script to have multiple sets, each
satisfying the desired requirements. For example, in this

1The toolkit is available via: https://github.com/yuwchen/BASPRO
2The script is available via: https://github.com/yuwchen/BASPRO/tree/

main/TMNews

work, each of the 20 sets is syllable-balanced, and the
sentences do not overlap between sets.

• We analyze the performance of speech processing models
trained on syllable-balanced (produced by BASPRO) and
randomly composed speech corpora. Experimental results
show that the speech processing models trained on the
syllable-balanced corpus perform better than those trained
on the randomly composed corpus.

II. The Proposed BASPRO System

The proposed BASPRO system consists of three main phases:
data processing, script-composing, and postprocessing. The
input is articles crawled from the Internet, and the output is
a syllable-balanced recording script. Speech corpora can be
generated from recording scripts using TTS systems or by
asking people to make recordings. Figure 1 shows a schematic
of the BASPRO system. First, the data processing phase
extracts candidate sentences from the collected news articles.
Simultaneously, the syllable distribution of the collected ar-
ticles was calculated, which is denoted as real-world syllable
distribution. The script-composing phase then generates a tem-
porary syllable-balanced script from the candidate sentences.
Finally, the postprocessing phase replaces unwanted sentences
in the temporary script and produces the final script.

受到這項利多激勵
三日美國股市大漲
三大指數收盤時都再創新高
明日開始天氣將會回暖
西半部地區高溫有機會來到三十二度
但民眾要開始準備保暖衣物
因為下週起會有二波冷空氣報到
下週一也就是八日
…………

Crawled 
articles

Candidate
sentences

否則封鎖措施不會鬆綁
協助家屬辦理後續事宜
坐在政商各界領袖當中
呼籲打完疫苗要多休息
在前三名從缺的前提下
…

General filter

Sensitive word filter

POS filter

Perplexity filter

Intelligibility filter

Syllable 
distribution

+

Syllable calculation

Speech
corpus

A_1_1:他寧願當一匹孤獨的狼
A_1_2:關於不實的留言和揣測
A_1_3:哪些人容易有心臟衰竭
A_1_4:強逼自己去做這件事情
A_1_5:一顆售價五百至八百元
…..

Script
composing

(GA)TTS
Recording

/

他寧願當一
匹孤獨的狼

Data Processing

Post-
processing

A_1_1:他寧願當一匹孤獨的狼
A_1_2:關於不實的留言和揣測
A_1_3:哪些人容易有心臟衰竭
A_1_4:強逼自己去做這件事情
A_1_5:一顆售價五百至八百元
…..

Recording
script

Fig. 1. Schematic diagram of the proposed BASPRO system. In the data
processing phase, candidate sentences were extracted from the collected
articles. The script-composing phase uses real-world syllable distribution to
compose a syllable-balanced script from the candidate sentences. Finally, the
postprocessing phase replaces unwanted sentences in the script and produces
the final script.

A. Data processing

In the data processing phase, the input is news articles
crawled from the Internet, and the output is candidate sen-
tences. All sentences in the recording script were selected from
the candidate sentences. We used five filters in the data pro-
cessing phase to extract candidate sentences: (1) general, (2)
sensitive word, (3) part-of-speech (POS), (4) perplexity, and
(5) intelligibility filters. The general filter removes sentences

https://github.com/yuwchen/BASPRO
https://github.com/yuwchen/BASPRO/tree/main/TMNews
https://github.com/yuwchen/BASPRO/tree/main/TMNews
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with non-Chinese characters and keeps sentences with exactly
ten characters. The sensitive filter then removes the sentences
containing sensitive words. In this study, we let the sentences
have a fixed length and excluded sentences containing sensitive
words, as these settings are often required for listening tests.
In addition, we designed a POS filter, perplexity filter, and
intelligibility filter to filter out incomprehensible sentences.
Because the resulting corpus will be used for listening tasks,
we do not want any sentences to be difficult to understand and
thus affect the evaluation results.

The POS is a category of lexical items with similar gram-
matical properties. Words assigned to the same POS often
play similar roles in the grammatical structure of a sentence.
We used POS as an indicator to exclude sentences that may
not be suitable for listening tests. For example, a sentence
containing a proper noun may be difficult to understand for
someone who has never heard the word before, leading to a
personal bias in listening tests. Meanwhile, sentences that start
with a preposition, particle, or conjunction, and sentences that
end with a preposition or conjunction are also inappropriate
because they are usually not complete sentences. Therefore,
we used two pretrained POS tagging systems to tag candidate
sentences and remove sentences that met the above POS-based
removal criteria.

Perplexity (PPL) is defined as the model’s uncertainty re-
garding a sentence. Higher perplexity indicates that a sentence
may be more difficult to understand. In this study, we used
pre-trained BERT [22], a neural-network-based model trained
with a masked language modeling objective, to compute
the perplexity of each sentence. Given a sentence W =
(w1, ..., wi, ..., w|W |), wi is the i-th character in W . To
calculate W ’s perplexity, wi is replaced with the [MASK]
token and predicted using all other characters in W , that is,
W\i = (w1, ..., wi−1, wi+1, ..., w|W |). PBERT (wi|W\i) is the
probability of wi given its context calculated by BERT. Then,
the perplexity of sentence W is defined as:

PPL(W ) = − 1

|W |

|W |∑
i=1

logPBERT (wi|W\i) (1)

A high PPL(W ) indicates that W contains characters that
are difficult to predict from their context, suggesting that W
can be difficult to understand. We computed the perplexity
for each sentence and analyzed the distribution of perplexity
across all sentences to determine a threshold. The perplexity
filter then removes sentences whose perplexity is above the
threshold.

The last is the intelligibility filter, which removes sentences
with low intelligibility scores. Figure 2 illustrates the calcu-
lation of the intelligibility score for a sentence. First, a TTS
system was used to convert a sentence into a corresponding
speech utterance. Subsequently, a pretrained automatic speech
recognition (ASR) system is used to predict the content of
the utterance. Finally, the Levenshtein distance between the
sentence and the ASR prediction is used to measure the
intelligibility of the sentence. If a sentence is difficult to
understand, the TTS system may not be able to generate a
correctly pronounced utterance because some characters have

multiple pronunciations. In addition, previous research [23]
showed that ASR predictions are highly correlated with human
perception of intelligibility. In other words, if a sentence is
confusing, the ASR system may fail to correctly recognize
the corresponding speech utterance. Therefore, the distance
between ASR prediction and the original sentence reflects
the intelligibility of the sentence. The intelligibility score is
defined as one minus the distance of the sentence divided by
the length of the sentence. Therefore, a perfect ASR prediction
will lead to an intelligibility score of 1.

Sentence TTS

Distance calculation
Intelligibility

score

Utterance

ASRPredicted sentence
+

我幾乎所有的狀況都有

我今天所有的狀況都有

Fig. 2. Illustration of the intelligibility score calculation. First, a sentence is
converted into an utterance using a TTS system. Then, an ASR system is used
to predict the content of the utterance. The distance between the sentence and
ASR prediction is used to calculate the intelligibility score.

B. Script-composing

In the script-composing phase, we used the GA to select
sentences, from the candidate sentences, to form a syllable-
balanced recording script. The script consisted of several sets,
each containing a fixed number of sentences, and the sentences
did not overlap between sets. First, we introduce the basic
concept of the GA. Then, we present the proposed GA-based
script-composing method.

1) Genetic algorithm (GA): The GA is inspired by natural
selection—a process of eliminating the weak and leaving only
the strong. In the GA, the population is a series of possible
solutions named chromosomes. Chromosomes are composed
of genes that represent specific items. A fitness function is
used to evaluate each chromosome. The fitness score reflects
how well a chromosome “fits” the problem; a higher fitness
score indicates that the chromosome is a better solution.

The GA comprises five steps: (1) initialization, (2) fitness
calculation, (3) selection, (4) crossover, and (5) mutation.
The initialization step creates the initial population and the
fitness calculation step calculates the fitness score of each
chromosome in the population. In the selection step, chromo-
somes with higher fitness scores have higher probabilities of
leaving their offspring in the next generation. In the crossover
step, a pair of selected chromosomes exchanges genes to
form a new pair of chromosomes. Take one-point crossover
as an example, a point called “crossover point” on both
parents’ chromosomes is randomly chosen. Then, the genes
to the right of the crossover point are swapped between the
parent chromosomes, producing two new chromosomes that
carry genetic information from both parents. Lastly, genes in
chromosomes may change randomly during the mutation step.
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2) The GA-based script-composing phase: Figure 3 shows
the GA terms and the corresponding definitions in this study.
The population comprises a collection of scripts. Each chro-
mosome is a script and the best chromosome in the population
is the target syllable-balanced script. A gene is a sentence that
is swapped between chromosomes.

Po
pu
la
tio
n Script 1

Script 2

Script np

Set 1

Chromosome

…

Sentencei Sentencej

Gene

…

Set nsSet ns-1…

n

Fig. 3. GA terms and their corresponding definitions. The population is a
collection of scripts, each chromosome is a script, each gene is a sentence,
and np, ns, and n denote the number of scripts in the population, number
of sets in a script, and number of sentences in a set, respectively. Sentencei
denotes the i-th sentences in the candidate sentence set. The sentences were
randomly sampled from the candidate sentence set during initialization, and
there were no duplicate sentences in each script.

Figure 4 illustrates the GA process. The initial population
step generated multiple scripts, each consisting of random
sentences. The fitness calculation step then calculates the
fitness score of each script in the population. The selection
step replaces scripts with lower scores with scripts with
higher fitness scores. The crossover step exchanges sentences
between the scripts. This process stops when the population
is dominated by one script and the maximum fitness score
no longer increases. We skip the mutation step because it
increases the complexity without improving the performance
of our test.

Initial population

Fitness calculation

Terminate

Selection

Crossover

Yes

No

Result
(Best script)

Fig. 4. Schematic diagram of GA. The termination condition occurs when
the maximum fitness score no longer increases after several generations.

3) Fitness calculation: The fitness calculation step evalu-
ates how well a script satisfies the requirements. Specifically, a
script with a higher fitness score is considered a better choice.
In this study, the fitness score is defined as follows:

Fitness score = w1 × script syllable distribution

+w2 × script syllable coverage

+w3 × set syllable distribution

(2)

where w1, w2, and w3 are the weights.
Let Dscript be the syllable distribution of a script and

Dreal be the real-world syllable distribution, Dscript ∈ Rs,
Dreal ∈ Rs, and s be the number of distinct syllables
in Mandarin Chinese. The script syllable distribution is the
cosine similarity between Dscript and Dreal.

script syllable distribution =
Dscript ·Dreal

‖Dscript‖ ‖Dreal‖
(3)

Similarly, the set syllable distribution is the average cosine
similarity between the real-world syllable distribution and each
set in the script.

set syllable distribution =
1

ns

ns∑
i=1

Di
set ·Dreal∥∥Di
set

∥∥ ‖Dreal‖
(4)

where Di
set is the syllable distribution of the i-th set in the

script, and ns is the number of sets in the script. We include the
set syllable distribution in the fitness score such that each set
is representative and can be used individually. For example,
each set can be used as a validation set in the training of
a speech-processing model and as an indicator for selecting
the best model. Additionally, each set can be used for model
training when only a small amount of data is required.

Script syllable coverage is the fraction of all possible syl-
lables covered in a script. For example, assuming that the
number of distinct syllables in Mandarin Chinese is 1300,
the script syllable coverage score of a script that contains
130 distinct syllables is 0.1 (i.e., 130/1300). Note that in this
study, we consider tonal syllables instead of base syllables.
In other words, the fitness function calculates the distribution
and coverage of the tonal syllables.

4) Selection: The selection step realizes the “survival of
the fittest.” In other words, scripts with higher fitness scores
are retained and replicated, whereas scripts with lower fitness
scores are eliminated. In this study, the truncation selection
method was used. Scripts were sorted by their fitness scores,
and 50% of the fittest scripts were selected and replicated
twice. Figure 5 shows the selection process.

5) Crossover: The crossover step aims to combine the
information of the two scripts and then generates new scripts.
In this study, we used sets as crossover units, instead of
complete scripts. This is because if we use scripts as crossover
units, only one set in each script exchanges the information at
every iteration when using the one-point crossover. However,
if we use sets as crossover units, every set in the script
participates in crossover at every iteration. Figure 6 shows
an example of a crossover pair and Figure 7 illustrates the
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Po
pu

la
tio

n

After
sorting

After
selection

Keep

Copy

Fitness score
Low High

𝑛!
2

𝑛!

Fig. 5. Illustration of the truncation-selection process. The scripts are sorted
by their fitness scores, and then 50% of the fittest scripts are selected and
replicated twice.

crossover step. As shown in Figure 7, to avoid duplicate
sentences in one script, sentences present in the other script
are held and not swapped in the crossover step. If the number
of duplicate sentences in the paired sets is not the same,
we randomly select sentences such that the number of held
sentences is the same in both sets. Finally, we apply a one-
point crossover to the two sets. Note that holding the same
number of sentences in both sets ensures that the two new
sets have the same number of sentences after crossover.

Population

Script 1

Script np

…Script 2

Script np-1

Set 1 Script 1
(Chromosome 1)

Set 1

Set ns

Set ns

…

…

Set 2

Set 2

Script 1
Set 1

Script 2
Set 1

Sen1 Sen4 Sen13 Sen8 Sen23 Sen2

Sen3 Sen9 Sen12 Sen43 Sen6 Sen16

…

…

Script 2
(Chromosome 2)

Fig. 6. Illustration of the crossover pairs. The crossover step exchanges
sentences between two sets with the same index.

C. Postprocessing

After the script-composing phase, we obtained a syllable-
balanced script. However, we may still want to replace some
sentences in the script because the data-processing phase
does not ensure that all candidate sentences are suitable.
For example, the sensitive word filter cannot remove newly
invented sensitive words that are not included in a sensitive
word list. In addition, POS tagging systems may give incorrect
POS tags because even the best POS tagging system cannot
guarantee 100% accuracy. Therefore, sentences that meet POS
removal criteria may not be removed as expected. Moreover,
sentences with low perplexity and high intelligibility scores
are not necessarily logical from the human perspective.

Therefore, in the postprocessing phase, we still need to
manually label inappropriate sentences to be replaced with
more appropriate sentences. The script generated in the script-
composing phase is denoted as a temporary script. We propose

Script A
Set 1

Script B
Set 1

Sen1 Sen4 Sen13 Sen25 Sen8 Sen23 Sen2

Sen3 Sen9 Sen12 Sen10 Sen43 Sen6 Sen16

Script A
Set 1

Script B
Set 1

Sen1 Sen4 Sen13 Sen25 Sen8 Sen23 Sen2

Sen3 Sen9 Sen12 Sen10 Sen43 Sen6 Sen16

Hold

Hold

Script A
Set 1

Script B
Set 1

Sen1 Sen4 Sen13 Sen25 Sen8 Sen23 Sen2

Sen3 Sen9Sen12 Sen10 Sen43Sen6 Sen16

Hold

Hold

New
Script A

Set 1

New
Script B

Set 1

Sen1 Sen4

Sen13 Sen25 Sen8

Sen23 Sen2

Sen3 Sen9Sen12

Sen10

Sen43

Sen6 Sen16

From Script B

From Script A

(1) The original sets before crossover

(2) Holding duplicate sentences

(3) Making the length the same 

(4) Applying the one-point crossover

Script A
Set k Sen43 Sen42 Sen88 Sen82 Sen29 Sen37 Sen21

Script B
Set k Sen23 Sen2 Sen50 Sen52 Sen19 Sen7 Sen22

Fig. 7. (1) The original sets before crossover. Seni denotes the i-th sentence
in the candidate sentence set. (2) Holding duplicate sentences. In this example,
Sen23 and Sen2 are held because they exist in a set in Script B. Similarly,
Sen43 is held because it already exists a set in Script A. These sentences are
not exchanged during the crossover process to avoid duplicate sentences in
the script. If Sen23 and Sen2 are exchanged to Script B, there will be two
Sen23 and two Sen2 in Script B. (3) Making the length the same. Because
the number of duplicate sentences in Set 1 of Script A and Set 1 of Script B
are not the same (i.e., two sentences in Set 1 of Script A and one sentence
in Set 1 of Script B), we randomly hold one more sentence (Sen9) in Set 1
of Script B. (4) Applying the one-point crossover.

two methods to replace unwanted sentences in a temporary
script: (1) GA-based method and (2) greedy-based method.

The GA-based method is similar to the GA in the script-
composing phase. The only difference is the generation of
scripts in the initial population. In postprocessing, all scripts
in the initial population are initialized based on the tempo-
rary script, with unwanted sentences replaced with sentences
randomly sampled from the candidate sentences. The rest of
the GA steps were the same as those in the script-composing
phase. For the greedy-based method, unwanted sentences
are replaced one by one with sentences from the candidate
sentences that can achieve the highest fitness score. According
to our empirical results, the greedy-based method is more
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suitable when there are only a few unwanted sentences in
the temporary script, whereas the GA-based method is more
suitable when there are many unwanted sentences in the script.

III. Experiments

In this section, we first present a statistical analysis of Man-
darin speech units based on Chinese news articles collected
from five major news media outlets in Taiwan in 2021. We
then show that the proposed BASPRO system can effectively
select sentences based on a specially designed fitness function
to form a syllable-balanced script for collecting speech data.
Finally, we demonstrate that speech processing models trained
on a TTS-synthesized syllable-balanced speech corpus based
on the syllable-balanced script can achieve better performance
than their counterparts trained on a randomly composed speech
corpus. Note that the “syllable distribution and coverage”
in the experiments represent “tonal syllable distribution and
coverage”.

A. Analysis of news articles in Taiwan in 2021

We crawled news articles from five major news media
sources in Taiwan in 2021, with a total Chinese character
count of around 182,583,000. We used the Pypinyin tool [24]
to identify the syllables of each character. See the Appendix
for the list of INITIAL and FINAL in the Pypinyin tool,
and the INITIAL, FINAL, and tone distribution in these news
articles. There are 404 distinct base syllables and 1259 distinct
tonal syllables, which are close to the number of distinct base
syllables and tonal syllables reported in other studies [11],
[25]. Note that there is no consensus on the exact number of
base and tonal syllables in Mandarin Chinese. For example, the
number of base and tonal syllables in [11] are 416 and 1345,
respectively, while in [25] they are 407 and 1333, respectively.

B. Data processing experiment

1) Experimental settings of data processing: The general
filter kept only ten-character sentences. The POS tagging filter
removes sentences that satisfy the POS-based removal criteria
using CkipTagger [26] or DDParser [27]. The removal criteria
when using the CkipTagger and DDParser are listed in Ta-
ble I. The perplexity filter removes sentences with perplexities
higher than 4.0. In intelligibility filter, only sentences with an
intelligibility score of 1.0 were kept. After the data-processing
phase, the total number of candidate sentences was around
167,000. Table II lists the toolkits used in each data-processing
phase.

TABLE I
THE POS-BASED REMOVAL CRITERIA. DESCRIPTIONS OF POS TAGS CAN

BE FOUND IN [26] AND [27]

Toolkit Include Start End

CkipTagger [26] ’Nb’,’Nc’,’FW’ ’DE’,’SHI’,’T’ ’Caa’,’Cab’,’Cba’,
’Cbb’,’P’,’T’

DDParser [27] ’LOC’,’ORG’,’TIME’,
’PER’,’w’,’nz’ ’p’,’u’,’c’ ’xc’,’u’

TABLE II
DATA PROCESSING TOOLKITS USED IN THIS STUDY

POS
filter

Perplexity
filter

Intelligibility
filter

Syllable
calculation

CkipTagger [26]
DDParser [27]

Hugging Face [28]
(bert-base-chinese)

Google-TTS [29]
Google-ASR [30] Pypinyin [24]

2) Experimental results of data processing: Table III lists
several examples of sentences and their corresponding per-
plexities. The experimental results showed that perplexity can
reflect human perception to a certain extent. Specifically, sen-
tences 1-1, 2-1, and 3-1 are literally similar to sentences 1-2, 2-
2, and 3-2, respectively. Only a few characters in each sentence
pair were different, and the pronunciations of the different
characters were similar. However, sentences 1-1, 2-1, 3-1 are
considered natural, while sentences 1-2, 2-2, 3-2 contain typos
or are illogical. According to the results in Table III, sentences
1-2, 2-2, 3-2 have higher perplexity, while sentences 1-1, 2-
1, 3-1 have lower perplexity. Figure 8 shows the perplexity
distribution for ten-character sentences in Mandarin Chinese
news texts. The distribution of perplexity was right-skewed,
with a mean of 2.336. According to Figure 8, we chose
4.0 as the perplexity threshold, which is approximately 1.5
standard deviations from the mean of perplexity for all ten-
character sentences. However, sometimes the perplexity does
not correctly reflect whether a sentence is understandable. For
example, sentence 4 in Table III is difficult to understand but
has the lowest perplexity among the examples.

TABLE III
EXAMPLES OF SENTENCE PERPLEXITY ASSESSMENT

Index Content Manual 
selection 

Perplexity  

1-1 他寧願當一匹孤獨的狼 ✓ 2.501 

1-2 那你願當一起孤獨的狼 ✗ 5.402 

2-1 警方就聞到他渾身酒味 ✓ 3.427 

2-2 喜歡就聞到他純身酒味 ✗ 6.091 

3-1 候選人也積極掃街拜票 ✓ 2.758 

3-2 候選人也積極少接待票 ✗ 5.913 

4 達到與槓鈴跳舞的境界 ✗ 2.385 

 

%

Pr
op

or
tio

n

Perplexity score

Fig. 8. Perplexity distribution for ten-character sentences in Mandarin Chinese
news texts. The red dotted line represents the threshold used for the perplexity
filter.



7

Table IV lists examples of sentences and their corresponding
intelligibility scores. “Ori” is the original input sentence, and
“Pred” is the corresponding ASR prediction. The first and
second examples show that the intelligibility filter can identify
sentences with words that are not easy to understand. To avoid
the need to replace many sentences in the postprocessing
phase, the intelligibility filter removes all sentences with
an intelligibility score lower than 1.0. In other words, the
intelligibility filter only retained sentences with perfect ASR
test results. However, like perplexity, sometimes, the intel-
ligibility score does not perfectly reflect human perception.
For example, the third sentence is not intuitive but has the
intelligibility score of 1.0. As shown in Tables III and IV,
perplexity and intelligibility filters cannot remove all illogical
sentences. Therefore, manual labeling is required during the
postprocessing phase.

TABLE IV
EXAMPLES OF SENTENCE INTELLIGIBILITY ASSESSMENT

 Original sentence Score Comment 
1-Ori 有一種果敢叫奮不顧身 0.8 The word “果敢” is rarely 

used in daily conversation. 1-Pred 有一種果感覺奮不顧身 

2-Ori 災害來臨時除了盼天助 0.7 The word “盼天助” is rarely 
used in daily conversation. 2-Pred 災害來臨時除了看牽著 

3-Ori 
& 

3-Pred 

不科學的比例相當火辣 1.0 The sentence means “the 
unrealistic (body) 
proportions are very hot” 
in English. Because the 
sentence omits the subject 
“body,” it is not intuitive 
and hard to understand. 

 

C. GA-based script-composing experiment

In this section, we demonstrate that the BASPRO system
can effectively select sentences to form a recording script
according to the designed fitness function. We set the number
of sets in the script and the number of sentences in each set
to 20. Thus, the length of the chromosomes was 400. The
weight of script syllable coverage (w2 in Eq. 2) was set to
two, whereas the weights of the script syllable distribution
(w1 in Eq. 2) and set syllable distribution (w3 in Eq. 2)
was set to 1. The population size was set to 25,000 and the
GA was stopped until the maximum fitness score converged.
Figure 9 shows the training curve of GA. The maximum fitness
score drops for some generations because scripts are split and
remixed in the crossover step, which may lower the fitness
score. However, overall, the fitness score increases with the
number of generations and eventually converges.

Figure 10 shows the distribution of syllables in the best
scripts of the first and final generations, and in real-world
texts. The results showed that the syllable distribution of the
best script in the final generation was much closer to the real-
world syllable distribution than the syllable distribution of the
best script in the first generation. The red region in Figure 10
indicates the effect of script syllable coverage score on the
fitness function. In the real world, the ratio of the frequency
of syllables with indices 800 to 1200 to the frequency of
all syllables is close to 0; therefore, when considering only

script syllable distribution and set syllable distribution in the
fitness function, most syllables in this rare region will not be
present in the best script in the final generation. However,
because the fitness function includes script syllable coverage,
more rare syllables are covered in the best script in the final
generation, making the distribution of syllables indexed from
800 to 1200 in (b) and (c) significantly different.

Table V compares the values of script syllable distribution,
set syllable distribution, and script syllable coverage for the
best scripts in the first and final generations. Note that because
there were 20 sets in a script, for the set syllable distribution,
the mean and standard deviation of the 20 sets were cal-
culated. Clearly, all values increase with generation. As
shown in the ablation study in Table VI, there is a tradeoff
between script syllable distribution, set syllable distribution,
and syllable coverage. For example, if the fitness function
only considers the script syllable distribution, the best fi-
nal script can achieve a script syllable distribution value of
0.997. However, in this case, the script syllable coverage
and set syllable distribution can only reach 579 and 0.702,
respectively.

Fi
tn

es
s s

co
re

Generation

Maximum fitness
Mean fitness

Fig. 9. Training curve of the GA. Overall, the fitness score increases with
the number of generations and then eventually converges.

TABLE V
STATISTICS OF THE BEST SCRIPTS IN THE FIRST AND FINAL GENERATIONS

Syllable distributionGeneration Syllable
coverage Script Set

First 668 0.894 0.622 (std: 0.033)
Final 1120 0.964 0.751 (std: 0.019)

TABLE VI
ABLATION STUDY OF THE FITNESS FUNCTION

Syllable distributionFitness
function

Syllable
coverage Script Set

All 1120 0.964 0.751(std:0.019)
Syllable coverage 1122 0.827 0.494(std:0.035)
Script distribution 579 0.997 0.702(std:0.042)

Set distribution 343 0.943 0.889(std:0.003)

Next, we compare the greedy and GA-based replacement
methods in the postprocessing phase. Figure 11 shows the
fitness scores of the resulting scripts for different replacement
percentages. Specifically, 80% means that 320 (i.e., 400 × 0.8)
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Syllable index

(a) First generation 

(b) Final generation

(c) Real-world

Syllable coverage

Fig. 10. Distribution of syllables in the best scripts of the first and final
generations and in real-world texts. The results show that the best script in
the final generation has a syllable distribution that is closer to real-world
syllable distribution than the best script in the first generation. The red region
reveals the effect of script syllable coverage; that is, more rare syllables are
covered in the best script in the final generation.

sentences in the script have been replaced with new sentences.
The results show that if a large portion of sentences needs
to be replaced, the GA-based method performs better than
the greedy-based method. Conversely, if only a few sentences
must be replaced, the greedy method outperforms the GA-
based method.
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Fig. 11. Comparison between the GA- and greedy-based replacement methods
in the postprocessing phase. The greedy-based method outperforms the GA-
based method when the replacement percentage is lower than 10%; however,
as the replacement percentage increases, the GA-based method outperforms
the greedy-based method.

Finally, Figure 12 compares the statistics of a script pro-
duced by the BASPRO system and the TMHINT Mandarin
Chinese recording script [16] used in many previous studies.
For a fair comparison, the number of sets and sentences in
each set was set to 32 and 10, respectively, following the
TMHINT script. The top two panels of Figure 12 show that
the BASPRO-produced script covers more syllables, while

the bottom two panels of Figure 12 show that the syllable
distribution of the BASPRO-produced script is closer to the
real-world syllable distribution.

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0 100 200 300 400

0 200 400 600 800 1000 1200

Base syllable coverage

Syllable coverage

Script syllable distribution

Set syllable distribution

BASPRO TMHINT

Fig. 12. Comparison between the script produced by the BASPRO system
and TMHINT script. The maximum base syllable and (tonal) syllable coverage
were 404 and 1259, respectively. The maximum corpus syllable distribution
and syllable distribution scores are 1.

D. Experiment on speech-processing tasks

In this section, we investigate whether speech-processing
models trained on the syllable-balanced TMNews corpus can
outperform their counterparts trained on a randomly composed
corpus. We experiment on two common speech processing
tasks, including speech enhancement (SE) and ASR.

1) Experimental settings for both tasks: To verify the
usefulness of the proposed BASPRO system, we compared the
performances of speech-processing models trained on syllable-
balanced and randomly selected corpora. In the following
experiments, CorpusBAL referred to a syllable-balanced cor-
pus, whereas CorpusRAN represented a randomly composed
corpus. CorpusBAL was formed based on a syllable-balanced
script, TMNews. CorpusRAN was formed using randomly
selected sentences. Both CorpusBAL and CorpusRAN have
large and small versions, denoted by Corpus(BAL,RAN) Large
and Corpus(BAL,RAN) Small, respectively. The large and
small corpora contained 20 and 5 sets, respectively, with 20
sentences in each set. That is, 400 sentences form a large
corpus and 100 sentences form a small corpus.

For each sentence in the script, we used two TTS systems,
GoogleTTS [29] and TTSkit [31], to generate corresponding
utterances. The utterances generated by GoogleTTS were
female voices, while the utterances generated by TTSkit were
male voices. As a result, the Corpus(BAL,RAN) Large corpus
contains 800 utterances, and the Corpus(BAL,RAN) Small
corpus contains 200 utterances.

Table VII lists the statistics of each speech corpus. The
syllable distribution of CorpusBAL was closer to the real-
world syllable distribution than that of CorpusRAN. In ad-
dition, CorpusBAL Small had better syllable coverage than
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CorpusRAN Large, although the number of sentences in Cor-
pusBAL Small was only a quarter of that in CorpusRAN Large.

TABLE VII
STATISTICS OF THE SPEECH CORPORA

Corpus
Base

syllable
coverage

Syllable
coverage

Script
syllable

distribution

Set
syllable

distribution
CorpusBAL Large

(TMNews L) 392 1061 0.970 0.743
(std: 0.020)

CorpusBAL Small
(TMNews S) 333 629 0.934 0.701

(std: 0.10)

CorpusRAN Large 319 609 0.869 0.603
(std: 0.365)

CorpusRAN Small 241 387 0.818 0.637
(std: 0.015)

a) Experimental settings for the SE task: We trained the
SE model on small corpora, and tested it on large corpora.
In practical applications, the test data are also larger than
the training data. Therefore, we believe that the experimental
results under this setting can better reflect performance in a
real environment.

For the training data, each clean utterance was contaminated
with 25 noises randomly selected from 100 noises [32] at
-1, 1, 3, and 5 SNR levels. The training data contained
20,000 utterances (100 (sentences) × 2 (voice types) × 25
(noise types) × 4 (SNR levels)). The training data were
divided into training and validation datasets. The validation set
contained 20% of the training data and was used to select the
best model for training. Therefore, in our experiments, using
this training–validation setup, we trained five models with a
training corpus and reported the mean and standard deviation
of the results evaluated on the testing corpus. For the test set,
each clean utterance was contaminated with three noise types
(white, street, and babble) at 2 and 4 SNR levels. The test set
contains 4,800 utterances (400 (sentences) × 2 (voice types)
× 3 (noise types) × 2 (SNR levels)).

The corpora were evaluated using MetricGAN+ [33], [34],
a state-of-the-art SE model. Because the input of MetricGAN+
is a spectrogram, the input signal was transformed into a
spectrogram using a short-time Fourier transform (STFT) with
a window length of 512 and hop length of 256. In addition,
the batch size was 32, the loss function used was L1 loss, and
the optimizer was Adam with a learning rate of 0.001. The
perceptual evaluation of speech quality (PESQ) [35] and short-
time objective intelligibility (STOI) [36] are used as objective
evaluation metrics.

b) Experimental settings for the ASR task: In the ASR
experiments, we downloaded the pretrained transformer-based
ASR model from SpeechBrain [37], and then fine-tuned the
ASR model using the speech corpora collected in this study.
The pre-trained ASR model was trained on the AISHELL
dataset, which is also a Mandarin speech corpus. We fine-
tuned a pre-trained model because our training speech was not
sufficient to train the ASR model from scratch. In addition, this
setup simulates the personalization of an ASR system, that is,
fine-tuning an ASR system with a few recordings of a new
user. Similar to the 80% training-20% validation setting in the
SE task, given a training corpus, we obtained five models and

reported the means and standard deviations of the evaluation
results. For each training and validation split, we fine-tuned
the model for 50 epochs and selected the best model using a
validation set.

We used the pinyin error rate (PER), character error rate
(CER), and sentence error rate (SER) to evaluate ASR perfor-
mance. PER calculates the difference between the predicted
and ground-truth syllable sequences. Note that Pypinyin [24]
was used to convert characters to tonal syllables before calcu-
lating PER. PER and CER were calculated using Levenshtein
distance. In SER, a predicted sentence is considered to be
incorrect if any character is wrong.

2) Experimental results for SE: Table VIII compares the
performances of the SE models trained on CorpusBAL Small
and CorpusRAN Small. The results show that the SE model
trained on CorpusBAL Small outperformed the SE model
trained on CorpusRAN Small in terms of both PESQ and
STOI under all testing conditions. In addition, both models
performed worse when tested on CorpusBAL Large than on
CorpusRAN Large. This may be because CorpusBAL Large
covers more syllables than CorpusRAN Large, thus making
it a more challenging test corpus. Table IX presents the
corresponding t-test results. The p-values of the STOI results
on both CorpusBAL Large and CorpusRAN Large testing data
are about 0.1, while the p-values of the PESQ results are
about 0.5. That is, the improvement in the SE performance
on STOI is more statistically significant than that on PESQ.
This result may be because syllable coverage and distribution
have a greater impact on intelligibility (STOI) than on quality
(PESQ).

TABLE VIII
PERFORMANCE OF THE SE MODELS TRAINED ON CORPUSBAL AND

CORPUSRAN

Testing
Training CorpusBAL Small CorpusRAN Small

STOI PESQ STOI PESQ

CorpusBAL Large
0.832

(std: 0.0149)
1.792

(std: 0.1154)
0.793

(std: 0.0426)
1.744

(std: 0.1068)

CorpusRAN Large
0.832

(std: 0.0133)
1.804

(std: 0.1182)
0.796

(std: 0.0426)
1.755

(std: 0.1101)

TABLE IX
T-TEST OF THE CORPUSBAL SMALL AND CORPUSRAN SMALL SE

RESULTS

p-value
Testing data STOI PESQ

CorpusBAL Large 0.10028 0.51936
CorpusRAN Large 0.10524 0.46861

The fitness function contains the set syllable distribution
score, because we want each set to be representative. We
argue that the model selected by a small syllable-balanced
validation set is more robust than the model selected by a
small randomly selected validation set. Table X compares the
performances of the SE models selected with different valida-
tion sets. The SE model was trained on CorpusBAL Small and
tested on CorpusBAL Large and CorpusRAN Large. In Table X,
valid:bal indicates that the validation set is a syllable-balanced
set in CorpusBAL Small, whereas valid:ran indicates that the
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validation set is randomly selected sentences from Corpus-
BAL Small. The results show that the average performance of
the SE models selected with a syllable-balanced validation set
is better than that of the SE models selected with a randomly
selected validation set.

TABLE X
SE PERFORMANCE USING DIFFERENT VALIDATION SETS

Testing
Training CorpusBAL Small

(valid:bal)
CorpusBAL Small

(valid:ran)
STOI PESQ STOI PESQ

CorpusBAL Large
0.832

(std: 0.0149)
1.792

(std: 0.1154)
0.814

(std: 0.0266)
1.790

(std: 0.0655)

CorpusRAN Large
0.832

(std: 0.0133)
1.804

(std: 0.1182)
0.816

(std: 0.0265)
1.802

(std: 0.0694)

3) Experimental results for ASR: Table XI shows the
performance of the ASR models fine-tuned using Corpus-
BAL and CorpusRAN. First, the results reveal that fine-
tuning an ASR model always improves ASR performance. In
addition, the ASR models fine-tuned on CorpusBAL gener-
ally performed better than their corresponding models fine-
tuned on CorpusRAN. This is because the CorpusBAL Large
and CorpusBAL Small corpora cover relatively complete and
rich pronunciations; thus, the ASR model can be fine-tuned
comprehensively. However, we also see that when tested
on CorpusRAN Small, the ASR model fine-tuned on Cor-
pusBAL Large performs slightly worse than the ASR model
fine-tuned on CorpusRAN Large. One possible explanation
is that both CorpusBAL Large and CorpusRAN Large cover
more syllables than CorpusRAN Small, as shown in Table VII.
Therefore, fine-tuning the model with either corpus did not
make a significant difference when testing on a small test
set. However, such a biased small test set could mislead
the model. When using a small corpus as a test set, more
consideration should be given to the pronunciation balance and
coverage. Finally, the ASR performance tested on CorpusRAN
is better than the ASR performance tested on CorpusBAL,
which is consistent with the SE experiments. This is because
CorpusBAL covers more rare syllables and is, therefore, more
challenging than CorpusRAN.

Table XII presents the corresponding t-test results. This
evaluation shows that the performance of the two ASR models
using corpora of different scripts across all evaluation metrics
is significantly different on the CorpusBAL Large and Cor-
pusBAL Small testing data (p-value�0.05). On the Corpus-
RAN Large testing data, the p-value for CER is 0.18967, which
means that the performance difference is not significant. Note
that the CER is the only case in which CorpusRAN Small
performs better than CorpusBAL Small on CorpusRAN Large
in Table XI. On the CorpusRAN Small testing data, the perfor-
mance differences in PER, CER, and SER are not significant
(p-value>0.05). The experimental results show that syllable
coverage and distribution should be considered for both train-
ing data and testing data, especially when the amount of data
is small.

Table XIII compares the performance of best model selec-
tion using different validation sets. The ASR model was fine-
tuned on CorpusBAL Small and tested on CorpusBAL Large
and CorpusRAN Large. The best model was selected using a

TABLE XI
PERFORMANCE OF ASR MODELS TRAINED ON CORPUSBAL AND

CORPUSRAN

Testing data Training data PER CER SER
w/o fine-tuned 14.94 19.73 74.88

CorpusBAL Small
9.658

(std: 0.259)
15.544

(std: 0.212)
67.648

(std: 0.957)CorpusBAL Large
CorpusRAN Small

10.738
(std: 0.277)

16.696
(std: 0.264)

70.324
(std: 1.311)

w/o fine-tuned 8.78 11.69 55.62

CorpusBAL Small
4.885

(std: 0.062)
9.244

(std: 0.141)
47.922

(std: 0.518)CorpusRAN Large
CorpusRAN Small

5.063
(std: 0.034)

9.094
(std: 0.186)

49.126
(std: 0.905)

w/o fine-tuned 14.30 17.75 70.00

CorpusBAL Large
6.61

(std: 0.163)
11.84

(std: 0.397)
56.70

(std: 1.823)CorpusBAL Small
CorpusRAN Large

7.91
(std: 0.357)

13.08
(std: 0.529)

61.30
(std: 3.114)

w/o fine-tuned 8.55 12.30 53.50

CorpusBAL Large
3.24

(std: 0.221)
7.89

(std: 0.433)
42.20

(std: 1.483)CorpusRAN Small
CorpusRAN Large

3.02
(std: 0.103)

7.41
(std: 0.379)

44.20
(std: 1.483)

TABLE XII
T-TEST OF THE CORPUSBAL AND CORPUSRAN ASR RESULTS

p-value
Testing data PER CER SER

CorpusBAL Large 0.00022 0.00006 0.00617
CorpusRAN Large 0.00051 0.18967 0.03256
CorpusBAL Small 0.00008 0.00305 0.02148
CorpusRAN Small 0.07949 0.09961 0.06559

syllable-balanced set (cf. valid:bal in Table XIII) or a randomly
selected sentences set (cf. valid:ran in Table XIII). The results
show that the ASR model selected by a syllable-balanced
validation set yields lower CER and SER than the ASR model
selected by a randomly selected validation set.

TABLE XIII
ASR PERFORMANCE USING DIFFERENT VALIDATION SETS

Testing data Training data PER CER SER
CorpusBAL Small

(valid:bal)
9.658

(std: 0.259)
15.544

(std: 0.212)
67.648

(std: 0.957)
CorpusBAL Large CorpusBAL Small

(valid:ran)
9.630

(std: 0.263)
15.622

(std: 0.274)
67.898

(std: 0.672)
CorpusBAL Small

(valid:bal)
4.885

(std: 0.062)
9.244

(std: 0.141)
47.922

(std: 0.518)
CorpusRAN Large CorpusBAL Small

(valid:ran)
4.870

(std: 0.132)
9.250

(std: 0.168)
47.976

(std: 0.445)

IV. Conclusion

In this paper, we first present a statistical analysis of Mandarin
Chinese acoustic units based on a large corpus of news texts
collected from the internet. We then proposed the BASPRO
system that selects sentences from a large text corpus to
compose a syllable-balanced recording script with similar
statistics. The experimental results showed that the BASPRO
system can effectively produce a syllable-balanced script based
on the designed fitness function. Using BASPRO, we obtained
a recording script called TMNews. Subsequently, we used
TTS systems to convert sentences in the TMNews script into
utterances to form a speech corpus. Through SE and ASR
experiments evaluated on speech corpora based on different
recording scripts, we confirmed that SE and ASR models
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trained on a syllable-balanced speech corpus based on the
TMNews script outperformed those trained on a randomly
formed speech corpus. In this study, we primarily focused on
the design of audio-recording scripts rather than the audio
recordings. There are too many variations in the recorded
utterances, such as the recording device and the gender, age,
and accent of the speaker. Therefore, the recording setting
is beyond the scope of this study, and we used synthetic
speech with relatively simple characteristics for the SE and
ASR evaluation experiments. Furthermore, the data-processing
phase does not ensure that every candidate sentence is logical
and appropriate from a human perspective. Therefore, manual
screening is required during the postprocessing phase. In the
future, we hope to develop a method that better reflects hu-
man understanding of sentence semantics and reduces human
involvement in corpus design.
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Bopomofo ㄅ ㄆ ㄇ ㄈ ㄉ ㄊ ㄋ ㄌ ㄍ ㄎ ㄏ ㄐ ㄑ ㄒ ㄓ ㄔ ㄕ ㄖ ㄗ ㄘ ㄙ

Pinyin b p m f d t n l g k h j q x zh ch sh r z c s

Example 不 頗 摸 費 得 特 那 樂 歌 科 喝 幾 七 西 之 吃 師 日 茲 雌 斯

er
ㄦ 兒

a
ㄚ 啊

o
ㄛ 喔

e
ㄜ 鵝

ai
ㄞ 哎

ei
ㄟ 欸

ao
ㄠ 熬

ou
ㄡ 歐

an
ㄢ 安

en
ㄣ 森

ang
ㄤ 昂

eng
ㄥ 亨

ong
ㄨㄥ轟

i
ㄧ 衣

ia
ㄧㄚ呀

io
ㄧㄛ唷

ie
ㄧㄝ耶

iao
ㄧㄠ腰

iou
ㄧㄡ優

ian
ㄧㄢ煙

in
ㄧㄣ因

iang
ㄧㄤ央

ing
ㄧㄥ英

iong
ㄩㄥ雍

u
ㄨ 烏

ua
ㄨㄚ哇

uo
ㄨㄛ窩

uai
ㄨㄞ歪

uei
ㄨㄟ威

uan
ㄨㄢ灣

uen
ㄨㄣ溫

uang
ㄨㄤ汪

ueng
ㄨㄥ翁

v
ㄩ 迂

ve
ㄩㄝ約

van
ㄩㄢ淵

vn
ㄩㄣ暈

(a) INITIAL list

(b) FINAL list

TABLE XIV
THE INITIAL AND FINAL LIST IN THE PYPINYIN TOOL

(a) INITIAL distribution

(b) FINAL distribution

%

%

% (c) Tone distribution

“ ”

Pr
op

or
tio

n

Fig. 13. The INITIAL, FINAL, and tone distribution in news articles crawled from five major news media in Taiwan in 2021. “ ” in (a) refers to the syllable
pronunciation without INITIAL.
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