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Abstract—A reconfigurable cognitive computation matrix
(RCCM) in static random access memory (SRAM) suitable for
sensor edge applications is proposed in this paper. The proposed
RCCM can take multiple analog currents or digital integers as
the input vector and performs vector-matrix multiplication with
a weight integer matrix. The RCCM can carry out 1-quadrant,
2-quadrant, or 4-quadrant multiplications in the analog domain.
Therefore, the digital integers for the inputs or weights stored in
the SRAM can be either signed or unsigned, providing extensive
usage flexibilities. Furthermore, three commonly used activation
functions, the rectified linear unit (ReLU), radial basis function
(RBF), and logistic function, are available, converting multiply-
accumulation outputs to single-ended currents as the computation
results. The resultant output currents can be adopted as the input
currents of other RCCMs to facilitate multiple-layer network
implementation. A concept-proving prototype chip, including a
16 × 16 RCCM with 4-bit input and weight resolutions, is
designed and fabricated in a 0.18µm CMOS process. The com-
putation accuracy that is deteriorated by process variation can be
significantly improved by adopting 48 mismatch parameters after
calibration. A handwritten digit recognition database, MNIST, is
employed to evaluate the chip performance, achieving average
efficiency of 3.355TOPS/W.

Index Terms—computing in memories, artificial intelligent cir-
cuits, cognitive computation, edge computing, low-power circuit,
computing-in-SRAM

I. Introduction

CONVENTIONALLY, analog front-end (AFE) circuits,

analog-to-digital converters (ADCs), and digital signal

processors (DSPs) consistently consume a reasonable amount

of power to ensure no drop-out data, even when the in-

formation of interest is absent. The system can be more

power-efficient if a cognitive computation unit (CCU) can be

employed at the sensor edge to dynamically adjust the power

consumption based on the significance of input signals, as

shown in Fig. 1. When the inference results from the CCU

with low latency indicate that the incoming signals are not

informative, the AFE circuits can be switched to a low-power

mode, and the ADCs and DSPs can be kept in hibernation to

save unnecessary processing power. Once the inference results

reveal or predict informative sensor signals in presence, the

AFE circuits can be switched to a high-performance mode,

and the ADCs and DSPs can be woken up to extract the
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Fig. 1. A reconfigurable cognitive computation matrix facilitates dynamic
power adjustment in an intelligent sensing system at the sensor edge.

information of interest [1]–[5]. If only the coarse information

is required, the ADCs and the DSPs can remain in hibernation

or be saved for further power reduction.

Various digital CCUs for internet-of-things (IoT) or sensor

applications [5]–[9] have been designed and developed near

the sensor edge to reduce the power consumption for data

movement. ADCs are required to be employed antecedently

for sensor signal quantization. In many IoT applications with

random sparse events, event-driven CCUs and level-crossing

ADCs [3], [4], [10], [11] with non-uniform sampling rates are

preferred to save conversion and processing power when the

input signals are not of interest. Since most sensor signals

are analog, many CCUs that perform cognitive computation

in the analog domain have recently been proposed, avoiding

the usage of ADCs for further power saving [1], [12]–[15].

However, these CCUs are designed for specific sensor signals

and applications, limiting their diversities in utilization.

Many general-purposed CCUs have been proposed to per-

form multiplication and accumulation (MAC) operations inside

static random access memories (SRAMs), which are ubiq-

uitously accessible in CMOS technologies [16]–[33]. Binary

and ternary neural networks with single-bit weights were first

developed for simple networks [16]–[27]. Recently, SRAM

macros capable of supporting MAC operations with multi-

bit inputs and weights have been burgeoning [28]–[33]. Two

weight matrices are employed to implement positive and

negative weight values in [30]. Furthermore, the two’s com-

plement format can be adopted for the weight representation

to improve area efficiency and reduce computation latency in

[28], [29]. However, specialized processing and algorithmic

adaptive readout units are required to quantize the computation

output sequentially. In these approaches, the input data are

encoded by either pulse intensity [16], pulse duration [21],

or pulse numbers [30]. Then, they are applied on shared
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Fig. 2. The illustration of the potential employment of the proposed RCCM
for (a) regression, (b) classification, and (c) neuromorphic applications.

word lines (WL) [16], [30] or shared global read bit lines

(GRBL) [21], multiplied by digitally represented weight values

stored in the SRAM array. The multiplication results can be

accumulated on the bit lines (BL) in the current [16], [21],

[27]–[30], voltage [25], [26], or charge [22], [24] mode and

are subsequently quantized by ADCs. Although the MAC

computations in the SRAMs mentioned above are in the analog

domain, ADCs that usually dominate the power consumption

[24] are still required to quantize input and output analog

signals. Besides, clock signals are requisite to preset the

voltage or charge on the bit lines before the MAC operation

in the current and charge modes or to limit the conduction

time for power saving in the voltage mode. Other arduous

issues in computing-in-SRAM involve writing disturbance,

area overhead, narrow linear dynamic range, low precision due

to process variation, and limited reconfigurability. Therefore,

designing a CCU in SRAM with diverse data representations

for sensor applications is challenging.

An SRAM-based reconfigurable cognitive computation ma-

trix (RCCM) supporting various data representations is pro-

posed in this paper. Ladder-based digital-to-analog convert-

ers (LBDACs) are meticulously amalgamated with 6T-SRAM

cells in the proposed RCCM, avoiding writing disturbance

and limited dynamic range. The proposed RCCM can take

analog currents directly from either sensor or other RCCM

chips or digital integers stored in the SRAM as the input

vector and carry out 1-quadrant, 2-quadrant, or 4-quadrant

vector-matrix-multiplications. Therefore, the digital integers

for inputs and weights can be signed or unsigned, providing

extensive usage flexibility. In addition, three commonly used

activation functions, the rectified linear unit (ReLU), radial

basis function (RBF), and logistic function, are available,

converting multiply-accumulation outputs to single-ended cur-

rents to facilitate multiple-layer network implementation. The

RCCM output currents can be followed by current processing

circuitries, such as translinear circuits [34] or log-domain
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Fig. 3. A current mode ladder-based digital-to-analog converter (LBDAC).

filters [35], to generate desired output currents for controllers

or drivers directly, as shown in Fig. 2(a), composing an

analog universal function generator in regression applications.

Besides, a current-mode winner-take-all circuit [36] can take

RCCM output currents, as shown in Fig. 2(b), generating

one-hot codes for classification applications. Furthermore,

integrated-and-fire (I&F) neuron circuits [37] can take the

RCCM output currents and convert them into spike signals, as

shown in Fig. 2(c), encoding extracted information in terms of

pulse frequency or interval in neuromorphic applications. The

generated spikes can be further processed in spiking neural

networks. In such fashions, power-hungry circuits for data

conversion can be avoided, achieving low-power intelligent

sensing with low latency.

The innovation of this work involves the amalgamation

of LBDACs and 6T-SRAM cells, which allows for various

input and weight representations. The proposed multiplication

scheme also efficiently supports signed or unsigned input and

weight computation by switching connections with minimal

overhead. Furthermore, the proposed algorithms enable the

calibration of uploaded weight values in runtime or the offline

training of the neural network to account for fabrication

mismatches in the RCCM array. This paper is organized as

follows. The data conversion, representation, and multiplica-

tions using LBDACs are introduced in the next section. Section

III illustrates the architecture and operation principle of the

proposed RCCM. Measurement results from a prototype chip

are provided in section IV. The conclusion is finally drawn in

section V.

II. Data Representation, Conversion, and

Multiplication with LBDAC

A. Ladder-Based Digital-to-Analog Converter (LBDAC)

The integers for inputs and weights stored in the SRAM

array are converted to currents by transistor-only ladder-based

digital-to-analog converters (LBDACs) [38] in the proposed

RCCM. The schematic of a 4-bit LBDAC is shown in Fig. 3,

where all transistor dimensions are identical. Because of the

ladder structure with matched impedances, the bias current,

Ibias, is split into binary weighted branch currents that flow

to either the positive (Ip[·]) or the negative (In[·]) branches,

depending on the corresponding digital bits, D[·] and Db[·].
The branch current for the least significant bit (LSB) is the

reference current, Iref = Ibias/16, and is duplicated in I0n.
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Fig. 4. The implementations of input data in different representations. (a)
Input data can be represented as an analog current or an unsigned integer. (b)
Input data is represented as a signed integer.

B. Input Data Conversion

If the input data is an analog current from a sensor, it can

be adopted as the bias current of an LBDAC. As shown in

Fig. 4(a), the summation of all positive branch currents renders

the input magnitude current, Imag, with the input sign bit of

zero, sgnin = 0. The magnitude current can be expressed as

Imag =
Iin
16

3
∑

i=0

D[i] · 2i, (1)

where D[·] specifies a pre-weight value in 4-bit resolution.

Similarly, if the input data is an unsigned integer, a constant

current, Icnst, is employed as the bias current, and the input

magnitude can be expressed as

Imag = Iref

3
∑

i=0

D[i] · 2i, (2)

where D[·] represents the input data in 4-bit resolution with

the input sign bit of zero, sgnin = 0.

If the input is a signed integer, the input sign bit is assigned

to be the most significant bit (MSB), sgnin = D[3]. Depending

on the sign bit, the magnitude current, Imag, can be either the

summation of all positive or all negative branch currents, as

shown in Fig. 4(b). The magnitude current can be expressed
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Fig. 5. The implementations of the multiplication between input data and
a weight value in different representations. (a) Multiplication between an
analog input current or an unsigned integer and an unsigned weight integer. (b)
Multiplication between an analog input current, an unsigned input integer, or a
positively signed input integer and a signed weight integer. (c) Multiplication
between a negative input integer and a signed weight integer.

as

Imag =Iref ·

[(

3
∑

i=0

D[i] · 2i

)

· (1−D[3])

+

(

3
∑

i=0

Db[i] · 2
i + 1

)

·D[3]

]

. (3)

For example, a bit stream of [0101] represents a signed

input integer of 5, of which magnitude can be implemented

as Imag = ΣIp[i] = 5Iref with sgnin = D[3] = 0.

In another case of an input data of [1011] representing a

signed integer of -5, the magnitude can be implemented as

Imag = ΣIn[i] + I0n = 5Iref with sgnin = D[3] = 1.

C. Input-Weight Multiplication

Once the input magnitude current and sign bit are available,

the input magnitude current, Imag, is employed as the bias

current in the weight LBDAC to carry out multiplication with
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digital weight integers. The input sign bit, sgnin, is adopted

to choose output current polarities. The difference between

a pair of output currents, Imult = Ioutp − Ioutn, designates

the multiplication result. Since the multiplication between a

signed input and an unsigned weight is rarely used in artificial

neural network applications, this mode is not supported in

the proposed RCCM. Therefore, when the weight is unsigned,

the input must be an analog current or an unsigned digital

integer. In this case, as shown in Fig. 5(a), the positive output

current is the summation of all positive branch currents, and

the negative output current is zero. Consequently, the resultant

output differential current can be expressed as

Imult ≡ Ioutp − Ioutn =
Imag

16

3
∑

i=0

W [i] · 2i (4)

=
Iref
16
·

(

3
∑

i=0

D[i] · 2i

)

·

(

3
∑

i=0

W [i] · 2i

)

. (5)

In the case of multiplication between an analog or unsigned

input and a signed weight, the negative output current, Ioutn,

is assigned to be the positive branch current in the MSB.

The positive output current, Ioutp, is the summation of other

positive branch currents, as shown in Fig. 5(b). The output

differential current can be expressed as

Imult =
Iref
16
·

(

3
∑

i=0

D[i] · 2i

)

·

(

2
∑

i=0

W [i] · 2i −W [3] · 23

)

.

(6)

For example, if the signed weight is denoted by a bit stream

of [1110] as -2, the positive output current is given by

Ioutp =
∑2

i=0 Ip[i], and the negative output current is assigned

as Ioutn = Ip[3]. Therefore, the resultant output current is

Imult ≡ Ioutp − Ioutn = Imag/16 · (6− 8) = −2 · Imag/16.
In the case of a signed input integer, the sign bit, sgnin,

determines whether the polarities of the output branches in

the weight LBDAC should be flipped. If the input is positive,

the multiplication implementation is the same as the previous

case shown in Fig. 5(b). If the input is negative, the negative

output current is assigned to be the negative branch current in

the MSB. Besides, the positive output current is the summation

of other negative branch currents, as shown in Fig. 5(c). The

output differential current can be expressed as

Imult =
Imag

16

(

2
∑

i=0

Wb[i] · 2
i + 1−Wb[3] · 2

3

)

. (7)

For example, if the input is -5 with Imag = 5Iref and

sgnin = 1 and the signed weight integer is denoted by

[1110] as -2, the positive output current is realized as Ioutp =
∑2

i=0 In[i]+I0n = 2/16Imag, and the negative output current is

Ioutn = In[3] = 0. Therefore, the resultant output current can

be represented as Imult = Ioutp − Ioutn = Imag/16 · (2− 0) =
10 · Iref/16.

D. Consolidation

A consolidated implementation, employing two cascaded

LBDACs, for multiplication accommodating afore-mentioned
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Fig. 6. A simplified consolidated block diagram of the proposed multiplier
that employs two LBDACs supporting diverse data representations.

input and weight signed/unsigned modes is illustrated in

Fig. 6. The first LBDAC can take analog current as the

input by replacing Ibias with Iin or take 4-bit digital input

data, D[3 : 0], in either signed or unsigned representation,

providing the magnitude current, Imag, for the subsequent

LBDAC. Depending on the input sign mode, the input sign

bit, sgnin, is either 0 or D[3]. If the signed input integer is

negative, D[3] = 1, and the Imag is the summation of all

negative branch currents; otherwise, the Imag is the summation

of all positive branch currents. If the weight is unsigned, the

negative output current is zero, Ioutn = 0, and the positive

output current is the summation of all positive branch currents,

Ioutp = Iout,MSB+Iout,main. Finally, if the weight is signed,

the output branch current in the MSB contributes the negative

output current, Ioutn = Iout,MSB, and the others are summed

up to compose the positive output current, Ioutp = Iout,main.

Considering an example where the input and the weight are

-5 and -2, respectively, the signed input and the weight integers

are denoted as [1011] and [1110], respectively. Since the input

sign bit (sgnin) is one, the magnitude can be implemented as

Imag = ΣIn[i] + I0n = 5Iref . Because sgnin = D[3] = 1,

the polarities of the WPE output branches are flipped. Ac-

cording to Fig. 8(d), since sgnin = 1 and sgninb = 0,

Ioutn = Iout,MSB = 0. Besides, Ioutp = ΣIn[0] + I0n =
2 · Imag/16 = 2 · 5Iref/16. Therefore, the resulting output current

is Imult = Ioutp − Ioutn = Ioutp = 10 · Iref/16.

III. Reconfigurable Cognitive Computation Matrix

A. Architecture

The block diagram of a version of the proposed recon-

figurable cognitive computation matrix (RCCM) is shown

in Fig. 7. The RCCM core consists of one column of the

input processing element (IPE) array and multiple columns of

the weight processing element (WPE) array. Input auxiliary

control (IAC) blocks adjacent to the IPEs provide magni-

tude currents and input sign bits to the WPEs in the same

row. Activation function (AF) blocks take currents from the

WPE array and evaluate the chosen activation function in

the analog domain. Three commonly used activation functions

are available in the proposed RCCM, including the rectified
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Fig. 7. The block diagram of a prototype version of the proposed reconfig-
urable cognitive computation matrix.

linear unit (ReLU), the radial basis function (RBF), and

the logistic function. The resultant output currents from the

proposed RCCM are sent to transmitter (TX) blocks, which

can interface with receiver (RX) blocks in other RCCMs.

The control circuitries for the SRAM array, including the

serial peripheral interface (SPI), word-line selection, column

headers, and sensing amplifiers, are located at the peripheries

of the matrix.

Although the proposed RCCM architecture can be scaled

up, the demonstrative matrix dimensions are 16× 16 with 4-

bit computing precision for digital inputs and weights, based

on the trade-off between the chip fabrication cost and inference

performance. More specifically, the accuracy from a fully-

connected neural network of size [784 × 64 × 16 × 10],

reported in [30], saturates at 4-bit precision when the MNIST

dataset is employed for inference. Besides, the accuracy from

a ResNet-20 neural network, reported in [29], only improves

incrementally by less than 1% when the computing precision

increases from 4 bits to 8 bits in the inference tasks using

the CIFAR-10 and CIFAR-100 datasets. However, the power

consumption and area overhead for 8-bit precision increase

exponentially with lower computation efficiency when com-

pared with 4-bit precision. Therefore, although the precision

issue in existing analog-based computing-in-SRAM is not

fundamentally resolved, we chose 4-bit computing precision

to compromise hardware cost and system performance, as

other research works [28]–[31], in implementing the presented

prototype RCCM chip.

B. Input and Weight Processing Elements

Intriguingly, the schematic of an LBDAC can be sliced up

into five almost identical units, as shown in Fig. 8, where

dummy transistors are inserted in the MSB and LSB units.

Each LBDAC slice can then be blended with a standard 6T-

SRAM cell, composing a unit cell of the processing element
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Fig. 8. The schematics and symbols of the processing elements (PEs) in
the proposed RCCM. (a) The symbol and schematic of the input processing
element (IPE). (b) The schematic of a bit cell of the processing element. (c)
The layout illustration of a single bit cell of the processing element. (d) The
symbol and the schematic of the weight processing element (WPE).

(PE) shown in Fig. 8(b). Each PE is composed of compo-

nents for analog input (M1a), digital data (6T-SRAM cell),

and analog output (M2−4(a,b)), colored in red, white, and

black, respectively, in PE symbols. The gate terminals of top

pMOS transistors in an LBDAC shown in Fig. 3 are controlled

by digital signals toggled between VDD and Gnd. In the

cognitive computation (CC) mode, transistor (M1a) is turned

on. As a result, the split input current, Ibias or Imag in each

unit, flows to either Iout or Ioutb, according to the value stored

in the 6T-SRAM cell and the broadcast input sign signals,

sgnin and sgninb. In the memory operation (MO) mode, the

analog input transistor (M1a) is turned off, terminating the

input current.

The layout illustration of a single-bit PE cell is shown in

Fig. 8(c). The layout of the 6T-SRAM bit cell is referenced

on [39], [40] with the minimum dimensions. The additional

seven pMOS transistors and a pMOS dummy device(M1b) are

then placed above the 6T-SRAM cell and sized accordingly to

maximize the usage of the area with minimum widths. The

additional eight pMOS transistors occupy 1.5 times the area

of the 6T-SRAM cell. In contrast to digital-based computing-

in-SRAM approaches, which offer high computation precision

without being affected by process variation, the overhead area

for bitwise multiplication and accumulating partial sums can

exceed 3.5 times that of a 6T-SRAM cell [45]. Consequently,

the proposed analog-based PE bit cell exhibits advantages in

area efficiency.

Although the fifth-bit cell can be preset to zero without
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Fig. 9. The symbol and schematic of an input auxiliary control (IAC) block.

consuming the same 6T-SRAM layout area as other bit cells,

it is still implemented by the same 6T-SRAM cell in the pro-

totype chip implementation for layout matching consideration

with slightly better usage flexibility. The fifth-bit cell can still

be programmed to be 0, keeping the original functionality

intact. When this cell is programmed to be 1, the maximum

value of the unsigned integer to be implemented can increase

from 15 to 16. The maximum value for the signed integer to

be implemented can increase from 7 to 8. The range to be

represented can be slightly increased.

The output current connections in input processing elements

(IPEs) and those in weight processing elements (WPEs) are

slightly different. In IPEs, each unit’s output currents of Iout
and Ioutb are summed up, yielding the magnitude current,

Imag, and its complement, Imagb, as shown in Fig. 8(a). In

WPEs, the Iout in the MSB are separated from those in rest

bits, rendering output currents of Iout,MSB, Iout,main, and

Ioutb, as shown in Fig. 8(d).

C. Input Auxiliary Control Block

The input auxiliary control (IAC) block shown in Fig. 9

delivers the magnitude current and the input sign bit from the

adjacent IPE to all WPEs in the same row. The bias current,

Ibias, for the input LBDAC can be either an externally injected

input current, Iin, in the analog input mode or a constant

current, Icnst, in the digital input mode. The input sign

bit, sgnin, is multiplexed between the MSB and the ground

according to the input sign mode. Loading the input LBDAC

with low impedance for high linearity is crucial. Since the

input impedance of a flipped-voltage-follower-based current

mirror (FVF-CM) [41] is lower than that of general current

mirrors, it is employed to load the input LBDAC. Finally, the

output current is replicated by cascode pMOS current mirrors

and broadcast to WPEs in the same row to avoid massive

overhead in each column. Although the currents of Imagb

are not utilized, they are loaded by FVF-CMs to match the

impedance seen by Imag.

5

Icnst IRBF

0.5 Ioutp

0.5 Ioutn Icm

0.5 Ioutn

0.5 Ioutp Icm

Isig

IReLU

IoutpIoutn

Activation
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(AF)

Weight 

Sign Mode

IoutnIoutp

FVF-CM FVF-CM

Iout,main Iout,MSB

0 1
Weight 

Ctrl

(a)

(c)

(b)

Ioutb

FVF-CM

Fig. 10. The symbol of an activation function (AF) block. (a) The schematic
of the weight control block. (b) The schematic of the circuit for rectified linear
unit (ReLU) function evaluation. (c) The schematic of the circuit for radial
basis function (RBF) and logistic function evaluation.

D. Activation Function Block

The weight control circuits shown in Fig. 10(a) take the

accumulated output currents, Iout,MSB and Iout,main, from the

WPE array and prepare the input currents, Ioutp and Ioutn,

for the activation function circuits by adopting a multiplexer

and two flipped-voltage-follower-based current mirrors (FVF-

CMs). Although the currents of Ioutb are not utilized, they

are loaded by FVF-CMs to match the impedance seen by

other output current branches. Two current mirrors shown in

Fig. 10(b) implement the ReLU function. Besides, as shown in

Fig. 10(c), an RBF and a sigmoid logistic activation function

can be evaluated by a bump circuit [42] and a differential pair,

respectively. The input currents of the proposed nonlinear cir-

cuit for RBF and logistic function evaluation are the differen-

tial currents of 1/2(Ioutp− Ioutn) and 1/2(Ioutn− Ioutp) added

with an adjustable common-mode current, Icm. Two diode-

connected nMOS transistors in series convert input currents to

voltages. The magnitude of Icm can be a hyperparameter of the

activation function that scales the input variables accordingly.

The output currents of these nonlinear circuits for activation

function are all single-ended. They can be fed into a current-

mode winner-take-all circuit for classification or summed up

directly for generative or regressive applications. These output

currents can also be sent to transmitter (Tx) blocks and be

adopted as the analog input currents for other RCCM chips to

realize multi-layer networks.

Since the accumulation currents, Ioutp and Ioutn, are fed

to the activation function circuits, the proposed architecture

does not support partial sum directly. However, through the

hardware-software co-design approach, where the inputs and

weights can be specified to be unsigned, the ReLU activation

function can be employed so that output currents across several

RCCM chips can be accumulated, facilitating the vector-matrix

multiplication operation with dimensions larger than those of

a single RCCM.
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Fig. 11. (a) The micrograph of a prototype RCCM chip. (b) The enlarged
micrograph of the proposed RCCM and its components.

E. Power and Efficiency Analysis

The proposed RCCM adopts ladder-based DACs for digital-

to-analog conversion and multiplication inherently and per-

forms the cognitive computation in the current domain, avoid-

ing power-hungry circuitries for conventional data conversion,

such as ADCs and clock generators, to achieve efficient analog-

to-information conversion directly. The standby power is dom-

inated by flipped-voltage followers and activation function

circuitries located at the matrix’s peripheries. As the input and

output dimensions are large, the portion of the standby power

can be negligible. In this case, the RCCM power consumption

depends on analog input current levels. If the input data is

digital, the power consumption of the RCCM depends on the

input bias current level, which facilitates a direct trade-off

between computation speed and system power consumption.

The power consumption of the developed RCCM chip de-

pends on the weight values and magnitude level of the analog

input currents or the chosen bias current (Icnst), which can be

directly traded off the computation latency. If the RCCM is

in the unsigned mode and all the digital integers stored in the

IPEs and WPEs are equal to half of the full scale, the current

of one IAC block and one IPE can be estimated as

IIPE = 2Icnst + 2IFVF, (8)

where IFVF = IAmp + 2Ib is the total current consumption

of the FVF-CM, IAmp is the current consumption of the

amplifier, and Ib is the bias current of the FVF-CM. The

current of the one WPE can also be estimated as

IWPE =
1

2
Icnst. (9)

When the ReLU is chosen to be the activation function, the

current consumption of one AF block can be estimated as

IAF =
1

4
Icnst × 16× 2 + 3IFVF + IAmp. (10)

In measurements, Icnst = 240 nA, IAmp = 200 nA, and

Ib = 20 nA, the power consumption of the prototyped RCCM,

which includes 16 IACs, 16 IPEs, and 256 WPEs, is 82.9µW.

The total power consumption is estimated as 164.7µW when

the ReLU is chosen as the activation function. If the MAC

operation can be performed within 1.2µs, the estimated power

efficiency is 2.57TOPS/W.
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Fig. 12. Measured multiplication results in different sign modes. (a) Both
input and weight integers are unsigned. (b) The input integer is unsigned, and
the weight integer is signed. (c) Both the input and weight integers are signed.

IV. Measurement Results

A prototype chip, including a version of the proposed

RCCM, has been designed and fabricated in a 0.18µm CMOS

logic process. The chip micrograph is shown in Fig. 11(a).

The demonstrative RCCM comprises a 16 × 16 WPE array,

16× 1 IPE and IAC arrays, and a 1× 16 AF array, occupying

an area of 542µm × 239µm, as shown in Fig. 11(b). Five

SRAM bit cells are employed for each PE with the LSB

padded with zero for 4-bit resolution, ranging from -8 to 7

and from 0 to 15 for signed and unsigned integers, respectively.

The maximum value of the stored signed or unsigned integers

can be 8 or 16 if the LSB is set to one. A serial peripheral

interface, synthesized from the standard library cells, and

SRAM interface circuitries, including the read/write controls,

decoders, and readout sensing amplifiers, are located at the

peripheries of the matrix.

A. Multiplication in Different Data Representations

The output currents from a WPE are measured in different

sign modes to verify the multiplication operations in diverse

digital representations. The measured multiplication output

currents are shown in Fig. 12(a), (b), and (c), demonstrating

1-quadrant, 2-quadrant, and 4-quadrant multiplications, respec-

tively. Besides, four time-varying sinusoidal currents, of which

frequencies are 1×, 3×, 5×, and 7× of 194Hz, are adopted

as four analog current inputs to the designed RCCM chip.

The calculated four-bit weight values based on discrete cosine

transformation (DCT) are loaded into the SRAM cells in the

corresponding IPEs and WPEs to synthesize a time-varying

square wave. The resulting current from measurements is

compared with the theoretical values in Fig. 13, demonstrating
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Fig. 14. The histogram of the distribution of measured INL and DNL values
across the 16 × 16 weight array while sweeping the weight from 0 to 15 in
the unsigned mode.

the multiplication and accumulation operations between analog

input currents and unsigned weight values.

B. Process Variation and Calibration

The effects of process variation on the accuracy of the LB-

DACs are evaluated by characterizing the integral nonlinearity

(INL) and differential nonlinearity (DNL) across the 16× 16
weight array while sweeping the weight from 0 to 15 in the

unsigned mode. The histograms of the measured INL and DNL

values are shown in Fig. 14. The means and standard deviation

values are far below 0.5 LSBs, indicating the process variation

is tolerable in implemented 4-bit LBDACs.

The output currents from all 16 × 16 WPEs are measured

with all input and weight integers set to 15 to assess the

impact of process variation on computation accuracy. With

the same digital code, the output currents exhibit strong row

and column dependence, as shown in Fig. 15(a). The row

dependence stems from the insufficient sizing of the mirror

transistors in the FVF-CM in the input auxiliary control (IAC)

block shown in Fig. 9. Similarly, the column dependence is

(a) (b)

Fig. 15. (a) Measured output currents from all WPEs show substantial
column- and row-dependent variations. (b) After calibration, measured output
currents from all WPEs exhibit better uniformity.

attributed to the insufficient sizing of the mirror transistors in

the FVF-CMs in the activation function (AF) block shown in

Fig. 10. To address this issue, the row and column mismatch

ratios are characterized first. The products of characterized

row and column mismatch ratios can then be employed for

mismatch compensation in the corresponding WPEs. More-

over, since FVF-CMs for Ioutp and for Ioutn differ, the column

mismatches for Ioutp and Ioutn are calibrated separately. As

a result, the designed 256 WPEs can be calibrated using 16

parameters for the row mismatches and 32 parameters for the

column mismatches, respectively. After calibration with these

48 mismatch parameters, the output currents in the unsigned

weight mode are plotted in Fig. 15(b) with significantly better

uniformity.

When the signed weight values are swept from -8 to 7,

the measured output currents from all WPEs are plotted in

Fig. 16(a), along with corresponding differential currents.

After calibration, the output and the differential currents are

plotted in Fig. 16(b) with remarkable variation reduction. The

measured mean values are employed to calculate the integral

nonlinearity (INL) and differential nonlinearity (DNL) for

error and linearity characterization. As shown in Fig. 16(c), the

adopted processing elements exhibit low average computation

error and good linearity. Finally, the standard deviations with

all different signed weight values before and after calibration

are plotted in Fig. 16(d). The maximum standard deviation is

dramatically reduced by more than 5.78 times (from 2.66 LSBs

to 0.46 LSBs), validating the proposed calibration approach.

C. Activation Function Characterization

The circuits for activation function evaluation are character-

ized by sweeping an input current, Iin, with a weight value

of +7 for the positive input range and a weight value of -

7 for the negative input range. The measured transfer curve

from the circuit in Fig. 10(b) for ReLU function emulation

is shown in Fig. 17(a). The measured transfer characteristics

from the circuit for RBF and logistic function evaluation are

shown in Fig. 17(b) and (c), respectively, with several levels

of the input common-mode current, Icm. The transfer curves
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Fig. 16. (a) Measured output currents from all WPEs before calibration
reveal considerable variations due to component mismatches. (b) Measured
output currents from all WPEs exhibit significantly reduced variations after
calibration. (c) The integral nonlinearity (INL) and differential nonlinearity
(DNL) calculated from measured mean values characterize computation errors
and circuit linearity. (d) Measured standard deviations with different weight
values before and after calibration to verify the effectiveness of the calibration
procedure.

can be approximated as

IRBF ≈ Icnst · e
−(Imult/SRBF)

2

(11)

Isig ≈
Icnst

1 + e−
Imult/Ssig

, (12)

where SRBF and Ssig are scaling factors, exhibiting linear

dependence on Icm as shown in Fig. 17(d) and (e).

D. MNIST and CIFAR-10 Demonstration

A handwritten digit database, the Modified National In-

stitute of Standards and Technology database (MNIST), is

employed to demonstrate the functionality and characterize the

performance of the designed RCCM chip. The samples from

the MNIST database are resized to 8×8 by chopping off pixels

at edges and performing average pooling within every 3 × 3
windows. A three-layer 64-64-16-10 fully-connected neural

network is trained with the input and weight resolutions of

4 bits. Due to the limited input dimension of the prototype

RCCM chip, the first two layers are implemented in computer

software. The pre-trained weights in the third layer and the

computation outputs from the second layer are sent to the

RCCM chip through the SPI and are stored in the on-chip

SRAM arrays. Output currents from ten WPE columns are

measured and compared as inference results.
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Fig. 17. (a) Measured transfer characteristics of the circuit for ReLU
function evaluation. (b) Measured transfer characteristics of the circuit for
RBF evaluation. (c) Measured transfer characteristics of the circuit for logistic
function evaluation. (d) The measured scaling coefficient SRBF linearly
depends on Icm. (e) The measured scaling coefficient Ssig linearly depends
on Icm.

At first, the fully-connected network is trained without

considering the mismatches due to the process variation.

Compared with 95.86% from the entire network implemented

in computer software, the accuracy obtained from the designed

RCCM chip that implements the third layer drops to 94.03%
due to the process variation. Since the power consumption

depends on the input data, the histogram of measured power

consumption for all 10,000 test samples is plotted in Fig. 18(a)

with the mean value of 63.3µW.

With the characterized mismatch ratio parameters (Rrw,

Rcl,p, and Rcl,n), the weights in integer (Wint) to be uploaded

to the RCCM chip can be calibrated and rounded from the

original weights in real (Wreal) and clamped between -8 and 8

in runtime. The pseudocode of the runtime calibration is listed

in Algo. 1. The accuracy from the weight-calibrated RCCM

chip increases to 95.58%, close to the performance obtained

through the software. The same experiment was performed

with different supply voltages to investigate the effects of

voltage variation. As shown in Fig. 18(b), the accuracy drops

slightly when the supply voltage drops to 1.5V and degrades

significantly when the supply voltage is 1.4V due to the

insufficient headroom for FVF-CMs. The prototyped RCCM

chip performs the same experiment at different temperatures

as shown in Fig. 18(c). The accuracy variation is less than

0.5% when the temperature is swept from 0◦C to 80◦C.
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Algorithm 1: Weight calibration in runtime

% Update Wint from Wreal

For Each (row,col) do

if Wreal(row, col) >= 0 then

Wreal(row, col)←
Wreal(row,col)

Rrw(row)·Rcl,p(col)

else
Wreal(row, col)←
(Wreal(row,col)+8·Rrw(row)·Rcl,n(col))

Rrw(row)·Rcl,p(col)
− 8

Rounding from Wreal to Wint

For Each (row,col) do

if Wint(row, col) > 8 then
Wint(row, col)← 8

if Wint(row, col) < −8 then
Wint(row, col)← −8

Upload Wint to the RCCM chip for inference
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Fig. 18. (a) The histogram of the RCCM chip power consumption in inference
with all MNIST test samples. (b) The MNIST accuracy dependence on the
supply voltage. (c) The MNIST accuracy dependence on the temperature.(d)
The accuracies of classification tasks using the MNIST and CIFAR-10
databases with different training and calibration settings.

Secondly, the network training process can include previ-

ously characterized 48 mismatch ratios. In the offline training

process, the loss function and the gradient for backpropagation

are calculated based on Wreal, which are derived from existing

weights in integer (Wint) and mismatch ratios (Rrw, Rcl,p, and

Rcl,n). Subsequently, once the Wreal values have been updated,

an updated set of Wint is generated through a stochastic

rounding process. Upon completion of the training process,

the trained Wint values can be uploaded to the RCCM chip for

inference, accounting for the process variation. In this case, the

accuracy obtained from the designed RCCM chip only drops

slightly from 96.06% to 95.69%, as shown in Fig. 18(d). The

pseudocode of the offline training process is listed in Algo. 2.

A ResNet-20 implementation with reference to [43], con-

sisting of 20 layers of residual blocks, is adopted to verify

the chip performance on the CIFAR-10 dataset. The last layer

is modified to a two-layer [64-16-10] network so that the

Algorithm 2: Offline Training with 48 mismatch ratios

For Each batch do
Update Wreal through back-propagation

% Calibrate the Wreal with mismatch ratios

For Each (row,col) do

if Wreal(row, col) >= 0 then

Wreal(row, col)←
Wreal(row,col)

Rrw(row)·Rcl,p(col)

else
Wreal(row, col)←
(Wreal(row,col)+8·Rrw(row)·Rcl,n(col))

Rrw(row)·Rcl,p(col)
− 8

Stochastic rounding from Wreal to Wint

% Calculate Wreal from Wint with mismatch ratios

For Each (row,col) do

if Wint(row, col) >= 0 then
Wreal(row, col)←
Wint(row, col) · Rrw(row) ·Rcl,p(col)

else
Wreal(row, col)←
(Wint(row, col) + 8) ·Rrw(row) ·Rcl,p(col)
−8 ·Rrw(row) ·Rcl,n(col)

Upload Wint to the RCCM chip for inference

TABLE I
Implemented ResNet-20 Architecture

Layer type CNN CNN CNN FC FC

size 32× 32 16 × 16 8× 8 64 × 16 16× 10

# of Layers 7 6 6 1 1

# of Filters 16 32 64 NA NA

prototyped RCCM chip can be employed to compute the last

layer. The implemented architecture is summarized in Table I.

The accuracy obtained from the software is 91.28%. Without

considering the mismatches, the accuracy obtained from the

RCCM chip drops to 83.59%. If the runtime calibration is

adopted to adjust the weight values according to the charac-

terized mismatch ratios, the accuracy improves to 90.68%, as

indicated in Fig. 18(d).

E. Power and Energy Distribution

When the RCCM chip is in the MO mode, the bias currents

of the RCCM chip are turned of. When the chip is switched

in the CC mode, the bias currents for the FVF-CMs located

in the IAC and AF blocks are turned on with the standby

power of 34µW. The employed serial peripheral interface

(SPI) for digital data upload is synthesized from standard

library cells, operating at a 5MHz clock rate with 7µW
power consumption. It was designed for functionality only

and has not been optimized for speed and power consumption.

The power distribution of the prototyped chip is illustrated in

Fig. 19(a). Although the proposed RCCM is not designed for

convolution neural networks (CNN) specifically, a 16-channel

one-layer CNN with a kernel size of 4×4 can be implemented

in the prototyped RCCM chip, as shown in Fig. 19(b). If
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TABLE II
Comparison Table

JSSC [21] JSSC [30] JSSC [28] JSSC [29] This Work

Year 2019 2021 2020 2021 2023

Technology (nm) 65 7 55 28 180

Supported Input Type Signed Unsigned Unsigned Unsigned Signed/Unsigned analog current

Input Precision (bit) 7 4 1 2 4 4 4 8 4 analog current

Supported Weight Type Signed Signed Signed Signed Signed/Unsigned

Weight Precision (bit) 1 4 2 5 5 4 8 8 4 4b*4b

Output Precision (bit) 7 4 3 5 7 12 16 20 analog current

Output Type digital bits digital bits digital bits digital bits current

Activation Functions N/A N/A N/A N/A ReLU, RBF, Sigmoid

Energy Efficiency (TOPS/W)

40.3∼51.3 351 72.03 37.5 18.37 68.44 33.52 16.63 3.355

(6.69)1 (0.53)1 (6.73)1 (3.50)1 (1.72)1 (1.66)1 (0.81)1 (0.40)1 (3.355)1

(46.83)2 (8.49)2 (13.45)2 (35.01)2 (34.30)2 (26.50)2 (25.96)2 (25.75)2 (53.68)2

Network for MNIST LeNet-5 784-64-16-10 ResNet20 N/A 64-64-16-103

MNIST Accuracy(%) 98∼98.3 96∼98.5 99.02 99.18 99.52 N/A 95.69

Array Size 2kB 4kb 3.75kb 64kb 1kb

1
The presented energy efficiency is normalized to a 180-nm implementation, assuming energy ∝ (Tech.)2 [21].

2
The presented energy efficiency is normalized by the equivalent operand precision of 1 bit in a 180-nm implementation, assuming energy ∝ (Tech.)2 [44].

3
Only the third-layer is implemented on chip.
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Input array Weight array

Activity Function Block(ReLu)

One channel

RCCM

 Channels: 16  Kernel sizes: 4x4

Output result

16 channelInput data

Stride = 1

Input array Weight array

Activity Function Block(ReLu)
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RCCM

 Channels: 16  Kernel sizes: 4x4

Output result

(a)

(b) (c)

Fig. 19. (a) The power distribution of the prototyped RCCM chip.(b) The
energy distribution of the CNN implementation in (c). (c) The configuration
of a convolution neural network (CNN) implementation using the prototyped
RCCM chip.

the image size is 8 × 8 and the stride is 1, the computation

energy distribution of such one-layer CNN can be estimated

and shown in Fig. 19(c).

F. Estimated Power Efficiency and Comparison

The power efficiency of the RCCM can be characterized by

the number of trillion operations per second (TOPs) per watt.

The operation mode of the RCCM chip is switched from the

memory operation (MO) mode to the cognitive computation

(CC) mode to observe the chip response time. In the MO

mode, since the transistor M1a shown in Fig. 8(b) is turned off,

no currents flow through LBDACs. Once the RCCM chip is

switched to the CC mode, the transistor M1a is activated, and

the bias current Icnst shown in Fig. 9 is injected into the IPE.

The computed input magnitude current, Imag, is duplicated

and injected into the WPEs. The resultant MAC computation

2.105μsec

(a)

(b)

Fig. 20. (a) The measured and simulated transient responses when the RCCM
chip is switched from the MO mode to the CC mode. (b) The post-layout
simulation results of a step response to estimate the MAC operation time of
the designed RCCM.

output currents charge diode-connected nodes (VTX) in the

transmitter blocks (TX), which can be observed through an on-

chip buffer. The measured overall response time of the RCCM

chip is 2.1µs, which is in line with the post-layout simulation

as shown in Fig. 20(a). The same post-layout simulation setting

is adopted to estimate the MAC operation response time.

From the post-layout simulation results shown in Fig. 20(b),

the MAC operation takes 1.206µs in the proposed RCCM.

Therefore, the estimated power efficiency of the proposed

RCCM is 256Ops/1.206µs × 63.268µW = 3.355TOPs/W with a

1.8V supply voltage. Finally, the performance of the proposed
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SRAM-based RCCM is compared with state-of-the-art in Ta-

ble II. Assuming that the computation speed bottleneck is the

parasitic capacitance, which is proportional to the square of the

feature dimension, the efficiency numbers can be normalized

accordingly [44]. The normalized energy efficiency achieved

by the prototyped RCCM chip is comparable to that of other

state-of-the-art chips fabricated in more advanced processes.

V. Conclusion

An SRAM-based reconfigurable cognitive computation ma-

trix (RCCM) with extensive data representation flexibilities

is presented in this paper. The proposed RCCM performs

vector-matrix multiplication between an input vector, of which

elements can be analog currents or digital integers, and a

weight integer matrix. Since the RCCM can be reconfigured to

carry out either 1-quadrant, 2-quadrant, or 4-quadrant multipli-

cations, the digital integers stored in the SRAM for inputs and

weights can be in the signed or unsigned format. Besides, three

commonly used activation functions, the rectified linear unit

(ReLU), radial basis function (RBF), and logistic function, are

also available and evaluated in the analog domain, rendering

single-ended currents as the computation results. Therefore,

multi-layer networks can be realized by cascading multiple

RCCM chips. A concept-proving prototype chip is designed

and fabricated in a 0.18µm CMOS process, including a

16 × 16 RCCM with 4-bit input and weight resolutions. The

measurement results verify the diversity of supported data

representations. The computation errors and variation induced

by process variation are characterized. A calibration procedure

employing 48 mismatch parameters is proposed to improve

the computation accuracy and reduce variations. The chip

performance is verified with a handwritten digit database,

MNIST, achieving an accuracy of 95.69% with a 1.8V supply

voltage. The estimated average efficiency of the proposed

RCCM chip is 3.355TOPS/W.
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