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ABSTRACT

Audio-visual representation learning aims to develop systems with
human-like perception by utilizing correlation between auditory
and visual information. However, current models often focus on
a limited set of tasks, and generalization abilities of learned repre-
sentations are unclear. To this end, we propose the AV-SUPERB
benchmark that enables general-purpose evaluation of unimodal au-
dio/visual and bimodal fusion representations on 7 datasets covering
5 audio-visual tasks in speech and audio processing. We evaluate 5
recent self-supervised models and show that none of these models
generalize to all tasks, emphasizing the need for future study on
improving universal model performance. In addition, we show that
representations may be improved with intermediate-task fine-tuning
and audio event classification with AudioSet serves as a strong in-
termediate task. We release our benchmark with evaluation code1

and a model submission platform2 to encourage further research in
audio-visual learning.

Index Terms— Audio-Visual Learning, Representation Learn-
ing, Evaluation, Self-Supervised Learning

1. INTRODUCTION

Emulating the seamless integration of multiple tasks in human
cognition, such as spoken language comprehension, sound event
detection, and visual object recognition has been a long-standing
goal of computational research. Prior research demonstrates that the
pretrain-then-finetune paradigm is an effective and scalable method
of building multitasking algorithmic systems for speech [1, 2], au-
dio [3, 4], and vision [5, 6]. In the pretraining stage, models can
often learn meaningful representations from unlabelled data alone
through optimization of contrastive, masked prediction, or other
self-supervised loss functions. These pretrained representations
can then be applied to diverse tasks just by fine-tuning minimal
additional parameters.

In order to better measure progress in representation learning,
previous works have established multitask benchmarks in speech
[7, 8], audio [9], and vision [10, 11]. However, these benchmark pre-
dominantly evaluate performance in isolation within single modal-
ities. This approach overlooks the inherent multimodal nature of

∗ Equal contribution; sorted alphabetically
1https://github.com/roger-tseng/av-superb
2https://av.superbbenchmark.org

human perception, which synergistically integrates auditory and vi-
sual cues [12, 13]. While audio-visual representation learning has
made significant progress [14, 15, 16, 17, 18], the assessment of
these models tends to be task-specific, leaving the broader gener-
alization capabilities across various audio-visual challenges less un-
derstood. This complicates comparitive analysis of different models
and training strategies, impeding the development of more robust
and versatile audio-visual representation learning approaches.

To address this issue, we propose AV-SUPERB, a standardized
benchmark for comprehensively evaluating representations across
seven distinct datasets involving five speech and audio processing
tasks. AV-SUPERB comprises of three tracks to assess audio, video,
and audio-visual fusion representations. We envision that these dis-
tinct tracks will allow researchers in speech, audio, and video repre-
sentation learning alike to compare learning strategies across models
and modalities, enabling broader analysis of their effectiveness.

Our contributions are four-fold: (1) Diverse-domain evalua-
tion: We propose the first audio-visual learning benchmark that en-
compasses multiple datasets and tasks, covering both speech and au-
dio domains. (2) Easy and reproducible benchmarking: We re-
lease evaluation code and a dedicated model submission platform
that ensures reproducible evaluation on dynamic Youtube datasets
and reduces computational entry barriers. (3) Intermediate-task
fine-tuning: Our work emphasizes the potential benefits of full fine-
tuning on intermediate tasks for improving performance on out-of-
domain downstream tasks. (4) Layer-wise analysis: We show that
different layers contribute variably to task performance, suggesting
that simply using representations of the final layer is suboptimal,
motivating the weighted-sum evaluation approach.

2. RELATED WORK

Recognizing how the close relation between audition and vision fa-
cilitates multimodal human perception, many audio-visual datasets
have been gathered for action recognition [19, 15, 20, 21], speech
recognition [22, 23, 24], speaker recognition [25, 26], and a vari-
ety of other tasks to study audio-visual learning. However, most
models are trained and evaluated on different datasets with different
experiment settings, which increases comparison difficulty and ob-
fuscates the broad applicability of proposed methods. Hence in the
AV-SUPERB benchmark, we select a diverse set of datasets from
multiple tasks to comprehensively compare works in audio-visual
representation learning.

Past multitask benchmarks in speech [7, 8], audio [9], and video
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Fig. 1. We consider three evaluation scenarios: extracting fea-
tures using inputs from one or both modalities. Following [7], the
weighted-sum of features from Transformer layers (if applicable) are
used as input for fine-tuning a small downstream model for each in-
dividual task. Details of selected tasks are given in Section 3.1.

representation learning [27, 10, 11] allow for fairer comparison of
different models and promote research towards general approaches
that are applicable to a variety of real-world tasks. SUPERB [7, 28]
and SUPERB-SG [8] evaluate speech representation models on a
wide range of downstream tasks covering content, speaker, and other
different aspects of speech. Additionally, the HEAR benchmark [9]
evaluates audio representations in diverse domains beyond speech,
such as music and environmental sounds. For video representations,
the SEVERE-benchmark [10] compares video self-supervised learn-
ing models on a diverse set of datasets to measure model sensitivity
to different properties of downstream tasks. Feichtenhofer et al. [27]
extend 4 image self-supervised learning methods to video represen-
tations and compare their efficacy on several downstream datasets,
while Kumar et al. [11] focus on the effects of different factors in
self-supervised video pretraining. However, these works focus on
individual domains and cannot make use of the relationship between
paired audio/visual inputs.

Previous multitask multimodal benchmarks focus on egocen-
tric videos [29], vision-and-language domains [30, 31] or general
multimodal learning[32]. In contrast, AV-SUPERB specializes in
audio-visual tasks from speech and audio processing, allowing for
more holistic assessment of representation models of audio and
video alike.

3. BENCHMARK DETAILS

As shown in Figure 1, audio-visual models typically consist of
two separate unimodal encoders followed by multimodal fusion
layers. Based on this design, we setup three evaluation tracks in AV-
SUPERB to benchmark representations from the two encoder and
fusion layers, referred as audio-only, video-only, and audio-visual
fusion features. This also allows for easy comparison with previous
unimodal representation models.

Instead of striving for best possible performance for each task,
the goal of our benchmark is to provide insight on the generaliza-
tion capabilities of pretrained representations; therefore, we freeze
the parameters of the task-invariant pretrained representation model
(hereby referred as upstream model), and only fine-tune the pa-
rameters of the task-specific model (hereby referred as downstream
model), following previous work [7]. Downstream models are
designed to be simple and lightweight in order to purely evalu-

ate representation abilities. Following the spirit of representation
evaluation, we also limit hyperparameter tuning for downstream
tasks. Although, we recognize that different representations may
have vastly different loss landscapes, hence we search for the best
performing learning rate from 10−1 to 10−5 in log-scale.

3.1. Downstream Task Selection

To keep computational costs reasonable, we mainly focus on
utterance-level classification tasks in speech and audio processing,
with the addition of ASR.

For audio processing, we select two audio classification tasks
that highlight the relevance of different modalities, audio event clas-
sification (AEC) and action recognition (AR). Since audio events are
often directly caused by actions, these tasks are complementary, and
utilizing both audio and visual information can lead to better repre-
sentations. This enables the possibility of learning better representa-
tions from multimodal input compared to unimodal baselines.

For speech processing, we select three audio-visual speech pro-
cessing tasks where visual information is known to be beneficial
[33, 34, 35], automatic speech recognition (ASR), automatic speaker
verification (ASV), and emotion recognition (ER), in order to assess
model capabilities on three fundamental aspects of speech: content,
speaker, and paralinguistic information.

In designing the architecture for the downstream models, we
generally follow the setup used for utterance-level tasks in the SU-
PERB benchmark. Specifically, the downstream model consists of
a two-layer fully-connected network. This network takes the mean
of features extracted from the frozen upstream model as input, and
outputs class probabilities. However, as we also include the frame-
level ASR task, we employ a two-layer BiLSTM model that takes
the whole representation sequence as input and outputs characters.

3.2. Pretrained Upstream Models

To showcase the utility of our benchmark, we opt for the base version
of four audio-visual upstream models, AV-HuBERT [36], RepLAI
[37], Lee et al.’s model [38] (hereby referred as AVBERT through-
out this paper), and MAViL [39]. These models were specifically
chosen because they each excel at different tasks, underscoring the
current gap in multi-tasking capabilities within existing audio-visual
models. They vary substantially in terms of architecture, training
objectives, and preprocessing techniques. We also conduct exper-
iments on the base HuBERT [2] model, an unimodal speech repre-
sentation model with similar design as AV-HuBERT, to make a fairer
comparison between audio & audio-visual features.

Additionally, we incorporate two baselines that use handcrafted
features as input for downstream models. Specifically, we employ
log mel filterbank (FBANK) for audio and histogram of oriented gra-
dients (HoG) for video, respectively.

4. EXPERIMENTAL RESULTS AND DISCUSSION

Previous work has shown that simply using representations extracted
at the last layer of a frozen self-supervised model often results in sub-
optimal performance [40, 7]. Hence, we take a learnable weighted-
sum of representations extracted over different Transformer layers as
the final representation for each downstream task. For the audio-only
and video-only tracks, only unimodal input and the relevant layers
are used for extracting representations. For the audio-visual fusion
track, both of the unimodal encoders plus fusion layers are used. As
the size of representations extracted from fusion Transformer layers
differ from those of unimodal layers, we take the weighted-sum for
fusion Transformer layers only.



Representation Type Params.
Overall
Score

Audio-Visual Speech-Visual

AEC AR ASR ASV ER

AS-20K VGGSound
Kinetics-
Sounds

UCF101 LRS3-TED VoxCeleb2 IEMOCAP

(mAP ↑) (Acc. ↑) (Acc. ↑) (Acc. ↑) (CER ↓) (EER ↓) (Acc. ↑)

Audio-only

FBANK 0 36.88 2.8 7.76 24.73 19.91 21.43 27.16 51.52
HuBERT 95M 53.66 14.3 30.21 51.46 36.06 2.96 15.58 62.14

AV-HuBERT* 90M 53.20 12.6 31.14 49.02 38.58 3.01 14.45 58.54
RepLAI 5M 39.70 12.3 27.01 45.90 33.85 66.09 32.58 57.53

AVBERT 10M 44.81 20.5 37.67 55.28 43.26 80.23 23.74 60.94
MAViL 86M 54.11 21.6 39.91 57.28 45.68 24.43 20.71 59.46

Video-only

HoG 0 25.39 1.5 3.81 18.70 25.67 71.46 36.32 35.83
AV-HuBERT* 103M 33.48 2.4 5.90 24.73 37.55 50.91 11.90 26.59

RepLAI 15M 36.40 5.5 13.5 46.68 56.69 71.33 36.95 40.72
AVBERT 37M 47.69 11.5 28.73 62.67 77.42 72.29 20.00 45.8
MAViL 87M 49.70 18.0 32.08 74.01 79.37 74.03 24.58 43.03

Audio-visual fusion

AV-HuBERT 103M 53.42 13.3 32.69 52.23 41.46 2.75 9.46 46.45
AVBERT 43M 54.85 22.9 44.54 71.31 71.76 70.12 18.31 61.87
MAViL 187M 62.36 26.7 47.22 79.51 77.98 30.18 19.67 54.94

*In order to fairly compare HuBERT & AV-HuBERT, we set features of the opposing modality to 0 and extract features from the 12-layer fusion
Transformer for audio-only and video-only tracks.

Table 1. Main results. Best results for each track are highlighted in bold. Second-best results are underlined. We observe that MAViL excels
at audio processing tasks, while HuBERT and AV-HuBERT are better for speech processing tasks.

4.1. Downstream Datasets and Training Details

Evaluation results for the three tracks are given in Table 1. For
AEC, we evaluate on AudioSet [41] and VGGSound [42], and for
AR, we select Kinetics-Sounds [15] and UCF101 [20]. Notably, in
VGGSound and Kinetics-Sounds, audio and visual information are
more correlated. This is reflected in our results, as audio-visual fu-
sion results in larger gains compared to AudioSet and UCF101. We
report testing set mean average precision for multi-label classifica-
tion on AudioSet, and accuracy for the remaining three datasets.

For speech processing, we choose LRS3-TED for ASR, Vox-
Celeb2 for ASV, and IEMOCAP for ER. For ASR, we optimize
CTC loss for character-level ASR, and report character error rate.
For ASV, we first train for speaker identification on a subset of the
dev split, then calculate cosine similarity to do verification on the
test split and report equal error rate. For ER, we follow the conven-
tional evaluation policy of removing unbalanced classes to perform
four-way classification (neutral, happy, sad, angry) and report accu-
racy. Additional details related to datasets and training are given on
our submission platform2.

4.2. Overall Results

We find that existing models generally obtain large gains over hand-
crafted features, yet none of the five models tested were able to out-
perform all others in every task. To gauge universal performance
across tasks, we provide an overall score calculated as the mean of
either task-specific accuracies or the complement of error rates.

For the three speech processing tasks (ASR, ASV, ER), AV-
HuBERT performs the best on ASR and ASV, and HuBERT achieves
superior performance on ER. Notably, the unimodal HuBERT scores

competitively on ASR and ASV as well, despite not being trained to
utilize any visual grounding information.

For the four audio processing datasets, MAViL and AVBERT
consistently outperforms all other models in all three tracks. We
hypothesize that this is largely due to the diversity and large size of
AudioSet data used for pretraining. Despite the domain mismatch,
AVBERT also performs competitively for the ASV and ER speech
tasks, especially in the audio-visual fusion track.

However, MAViL and AVBERT cannot perform ASR well, as
simply using handcrafted FBANK features achieves lower error
rates. Comparing their scores in the audio-only and fusion tracks,
we see that their fusion layers are unable to effectively utilize the
additional lip reading information, as performance is reduced when
video is provided.

4.3. When does Visual Grounding Improve Audio Representa-
tion Learning?

Compared to unimodal audio representation models, audio-visual
models may take advantage of information learned from visual
grounding to improve audio representations even when only audio
input is available at inference. Of the five selected models, HuBERT
and AV-HuBERT use similar architectures and optimize the same
masked cluster prediction objective using k-means clusters of MFCC
features as initial targets. Although HuBERT is only trained on uni-
modal speech data, AV-HuBERT is trained to predict multimodal
cluster targets obtained from both audio and visual modalities. By
comparing their results on the audio-only track, we see that visual
grounding information from multimodal cluster prediction improves
representations for VoxCeleb2, VGGSound and UCF101.



Intermediate Task
Fine-tuning Data

Audio-Visual Speech-Visual

AEC AR ASR ASV ER

AS-20K VGGSound Kinetics-Sounds UCF101 LRS3-TED VoxCeleb2 IEMOCAP
(mAP ↑) (Acc. ↑) (Acc. ↑) (Acc. ↑) (CER ↓) (EER ↓) (Acc. ↑)

AV-HuBERT
Audio 12.6(-0.6) 22.83(-8.31) 38.19(-10.83) 28.70(-9.88) 13.89(-10.88) 22.38(-7.93) 53.92(-4.62)
Video 2.5(+0.1) 6.12(+0.22) 25.35(+0.62) 42.03(+4.48) 35.48(+15.43) 11.40(+0.50) 32.69(+6.10)
Fusion

LRS3-TED
(video-text pairs)

5.1(-8.2) 17.11(-15.58) 38.52(-13.71) 40.74(-0.72) 22.66(-19.91) 11.35(-1.89) 43.58(-2.87)

MAViL
Audio 28.3(+6.7) 44.79(+4.89) 62.93(+5.65) 50.10(+4.42) 23.99(+0.44) 21.77(-1.06) 58.17(-1.29)
Video 20.9(+2.9) 36.68(+4.58) 77.39(+3.38) 86.93(+7.56) 78.59(-4.56) 23.93(+0.65) 39.15(-3.88)
Fusion

AudioSet-2M
39.1(+12.4) 55.94(+8.72) 84.93(+5.42) 88.07(+10.09) 30.65(-0.47) 18.61(+1.06) 46.35(-8.59)

Table 2. Intermediate-task fine-tuning does not generally improve performance across all tasks. Results after intermediate-task fine-tuning
(left) and absolute improvements compared to the original self-supervised model (right) are shown. Fine-tuning data for each model is
color-coded to the corresponding downstream dataset.

4.4. Layer-wise Contribution Analysis

After fine-tuning the learnable weighted-sum over all upstream
model layers on a downstream task, we may compare layer utiliza-
tion by examining the weights of each layer in the weighted-sum.
[43] Since the magnitude of representations from each layer may
differ, we normalize layer weights for each layer by multiplying the
weight with the L2-norm of representation values on the training set.

For MAViL, we find the layers that are commonly more dom-
inant are the last three layers in the audio encoder, and the last
two layers in the video encoder and fusion layers. Despite this,
we observe an exception for emotion recognition on IEMOCAP. For
IEMOCAP, the most dominant layer is the 0th layer instead.

For AV-HuBERT, the final layer often contributes little. In the
audio-only setup, we see that the layer with the most contribution is
the penultimate layer for most speech and audio tasks besides ASR.
For ASR, the last two layers are highly dominant on all three tracks.
For non-ASR tasks, we note that when additional visual inputs are
given, prior layers increase in contribution only when audio-visual
fusion outperforms audio-only performance for AV-HuBERT (VG-
GSound, Kinetics-Sound, UCF101, VoxCeleb2), suggesting that
prior layers in AV-HuBERT are more related to visual information,
while the last few layers contain more audio information.

Overall, the variation in layer usage for different tasks, models,
and modalities strongly motivates the use of the learnable weighted-
sum technique for evaluation, instead of sub-optimally evaluating
the final layer alone.

5. HOW DOES INTERMEDIATE-TASK FINE-TUNING
AFFECT PERFORMANCE?

Studies in natural language processing show that pretrained language
models can be improved by initial fine-tuning on an intermediate
task, followed by further fine-tuning on the target task [44, 45].

In previous sections, we focus on assessing models pretrained
in a self-supervised manner. However, model creators often release
models variants that are fine-tuned further for performing specific
downstream tasks. For example, MAViL adds 3 Transformer fusion
layers after the audio and video encoders, and the whole model
is fine-tuned on (audio&video, class) pairs for audio event clas-
sification. We hypothesize that these supervised models variants
may provide improved representations for speech/audio tasks after
intermediate-task training.

In order to support our hypothesis, we additionally evaluate fully
fine-tuned variants of AV-HuBERT and MAViL on our benchmark,
to determine when intermediate-task fine-tuning is beneficial. The
variant of AV-HuBERT uses the same architecture, and is fine-tuned
on 433 hours of (video, text) pairs from LRS3-TED to perform visual
speech recognition, whereas the MAViL variant is fine-tuned on the
entirety of AudioSet-2M. Experiment results are shown in Table 2.

For AV-HuBERT, we see that visual speech recognition on
LRS3-TED is not a suitable intermediate task in general. Video-
only representations obtain small gains in generalizability, at the
cost of greatly reducing audio-only and fusion performance. We
posit that intermediate-task fine-tuning with (video,text) pairs shifts
AV-HuBERT Transformer layers to favor video input alone, reduc-
ing usability for audio-only and audio-visual inputs.

Contrarily, for audio-visual fusion with MAViL, we see that
intermediate-task training on AudioSet-2M not only brings substan-
tial improvements to all AEC and AR datasets, but also improves
ASV while maintaining ASR performance. This suggests that fine-
tuning on AudioSet-2M may be sufficiently diverse to improve
speaker separability of representations without much loss of content
information.

6. CONCLUSIONS

We introduce AV-SUPERB, the first benchmark for assessing
general-purpose capabilities of audio-visual representations. AV-
SUPERB includes a suite of 7 speech and audio processing datasets
covering 5 audio-visual tasks. The benchmark is split into three
tracks: two unimodal audio-only or video-only representations
tracks, as well as a bimodal audio-visual fusion track. This enables
easy comparison between unimodal and bimodal learning. Despite
advances made in recent years, our experiments show that none of
the models tested generalize to all tasks, leading us to conclude
that further research is required to develop universal audio-visual
models.

As discussed in Section 3.1, although our benchmark aims to
comprehensively evaluate audio-visual models, only a limited set of
tasks and datasets are included in its current form. For future work,
we wish to incorporate more tasks relevant to additional facets of
audio-visual processing, such as cross-modal retrieval, audio-visual
localization, and sound/video generation, as well as improving the
diversity and comprehensiveness of data sources.
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