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ABSTRACT

Due to the modality discrepancy between textual and acous-
tic modeling, efficiently transferring linguistic knowledge
from a pretrained language model (PLM) to acoustic encod-
ing for automatic speech recognition (ASR) still remains a
challenging task. In this study, we propose a cross-modality
knowledge transfer (CMKT) learning framework in a tempo-
ral connectionist temporal classification (CTC) based ASR
system where hierarchical acoustic alignments with the lin-
guistic representation are applied. Additionally, we propose
the use of Sinkhorn attention in cross-modality alignment
process, where the transformer attention is a special case of
this Sinkhorn attention process. The CMKT learning is sup-
posed to compel the acoustic encoder to encode rich linguistic
knowledge for ASR. On the AISHELL-1 dataset, with CTC
greedy decoding for inference (without using any language
model), we achieved state-of-the-art performance with 3.64%
and 3.94% character error rates (CERs) for the development
and test sets, which corresponding to relative improvements
of 34.18% and 34.88% compared to the baseline CTC-ASR
system, respectively.

Index Terms— Pretrained language model (PLM), Cross-
modality alignment, sinkhorn attention, automatic speech
recognition (ASR)

1. INTRODUCTION

Due to the non-autoregressive (NAR) decoding capability for
fast and parallel inference, the temporal connectionist tem-
poral classification (CTC)-based learning [1] for automatic
speech recognition (ASR) is one of the most attractive frame-
works for end to end (E2E) ASR [2]. However, token in-
dependence assumption in CTC based learning makes it d-
ifficult for acoustic encoder to learn rich context dependent
linguistic information. Leveraging a language model (LM),
particularly a pretrained language models (PLM) to improve
the ASR performance is a promising direction. In early s-
tudies [3], based on attention with encoder-decoder (AED)
modeling, a hybrid CTC/AED-based ASR model framework
was proposed to enhance linguistic information in acoustic
encoder. With multi-task learning framework, several meth-

ods have been proposed to learn linguistic information by in-
serting linguistic knowledge in intermediate layers of acoustic
encoders for ASR [4, 5]. In recent years, due to the success
of self-supervised learning in feature exploration, knowledge
transfer learning from both pretrained acoustic model (e.g.,
wav2vec2.0 [6]) and PLM (e.g., bidirectional encoder repre-
sentation from transformers (BERT) [7]) for ASR also have
been proposed [8, 9, 10, 11, 12].

Although stacking text encoder of a PLM on top of the
acoustic encoder could improve the ASR performance[13], it
is preferred to transfer linguistic knowledge encoded in the
PLM to acoustic encoding via cross-modal knowledge dis-
tillation (KD) [11, 14, 15, 16, 17]. However, in most stud-
ies, the KD learning is carried out on the probability logits
of the acoustic model or on the last hidden layer of acoustic
encoders [11, 15, 14] . This learning paradigm is based on a
simple assumption that high abstract-level of acoustic feature
corresponds to tokens of linguistic knowledge in a bottom-
up based processing of speech. However, as studies revealed
that the acoustic feature learning even in low-level should be
guided with linguistic knowledge as a top-down attention pro-
cess [18]. In this study, we propose a novel cross-modality
knowledge transfer (CMKT) learning framework for linguis-
tic knowledge transfer from a PLM to acoustic encoding in
CTC based ASR. Our main contributions are summarized as:
1. A hierarchical acoustic alignment with the linguistic laten-
t representations from a PLM are applied for CMKT, even in
low-level of acoustic features which is different from previous
studies in [12, 19]; 2. In cross-modality alignment, we pro-
pose to use the Sinkhorn attention [20, 21] for feature align-
ment where the transformer attention [22] is a special case of
the iteration of Sinkhorn normalization process; 3. We imple-
mented the CMKT learning algorithm in a CTC based ASR
for acoustic encoding and confirmed its effectiveness via de-
tailed experiments.

2. PROPOSED METHOD

The proposed model framework is illustrated in Fig. 1, and
the adapter and cross-modality matching modules in Fig. 1
are further explained in Fig. 2. In these figures, ‘FC1’, ‘FC2’,
‘FC3’ are linear transforms of fully-connected layers, ‘LN’
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Fig. 1. The proposed cross-modality knowledge transfer
framework for CTC-based ASR.
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Fig. 2. Adapter and Cross-modality matching modules which
are shared by all encoder blocks.

denotes layer-normalization, and ‘CM-encoder’ represents
cross-modality encoder. In the follows, we will explain the
process of each module.

2.1. Features from acoustic and textual modalities

In acoustic modality of Fig. 1, the process in ‘Subsampling’
module and position encoding of acoustic sequence (PEA)
are used to extract the initial input feature as G0. Then the
output from the i-th acoustic encoder block is represented as:

Gi = Encoderi (Gi−1) ∈ Rla×da (1)

where i takes values from 1 to Ma, with Ma representing the
total number of encoder blocks, la and da are length (tempo-
ral dimension) and feature dimension, respectively. In adapter
process, a linear transform FC2 is applied for feature dimen-
sion matching between acoustic and textual modalities (in
Fig. 2):

Hi = FC2 (Gi) ∈ Rla×dt (2)

In this Hi, the feature dimension is dt corresponding to tex-
tual feature dimension, and i is the encoder block index.

The initial textual feature is obtained from token embed-
ding ‘EMB’ and position encoding of text ‘PET’ as Z0 ∈
Rlt×dt with sequence length lt and feature dimension dt. This
Z0, together with representations from acoustic modality is
transformed by a sequence of cross-modality encoders (as
CM-encoder in Fig. 2). For an acoustic representation H
from Eq. (2) (encoder block index is omitted for easy expla-
nation), the transform in each CM-encoder is formulated as:

Zj = fj(Zj−1,H), (3)

where j is the index of textual encoder block with values
from 1 to Mt. In each CM-encoder, there is a sequential
process with modality feature transform, layer-normalization,
and feed forward transform as:

ZH→Zj−1 = OT(H → Zj−1) (4)

Ẑj−1= LN
(
Zj−1 + ZH→Zj−1

)
Zj = LN

(
Ẑj−1 + FC

(
Ẑj−1

)) (5)

In Eq. (4), ZH→Zj−1 is a transported representation (from a-
coustic modality to textual modality), and OT(.) denotes op-
timal transport (OT). As it is showed that the acoustic feature
H ∈ Rla×da , and the textual feature Zj−1 ∈ Rlt×dt are two
modalities with different lengths. After OT, the representation
ZH→Zj−1 keeps the same dimensions of that of Zj−1. The fi-
nal output of the cross-modality matching is represented as
ZMt . For transferring linguistic knowledge from the BERT,
we suppose that this ZMt should approximate a target textu-
al representation which is provided by the pretrained BERT
model as:

ytoken = Tokenizer (y) ; Z̃0 = [CLS,ytoken,SEP]

Z̃m = BERTm

(
Z̃m−1

)
∈ Rlt×dt

(6)

where ‘BERTm’ is the m-th transformer encoder layer
of BERT model, m takes values from 1 to Mb, with Mb

representing the total number of BERT encoder layers.
‘Tokenizer’ is a process to convert standard text to word
piece based tokens [7]. Token symbols ‘CLS‘ and ‘SEP‘
represent the start and end of an input sequence. In mod-
el learning stage, for linguistic knowledge transfer, the loss
function is defined as cross-modal alignment loss by:

Lalign =

lt−1∑
j=2

1− cos (zj,:, z̃j,:), (7)

where zj,: and z̃j,: are row vectors of feature matrices ZMt

and Z̃i from ‘BERTi’, respectively. In this formulation, the
sum ranges from 2 to lt − 1 in order to exclude the ‘[CLS]’
and ‘[SEP]’ tokens from the loss estimation (refer to Eq. (6)
in text encoding).



2.2. Sinkhorn attention for CMKT learning

In Eq. (4), the solution is represented as (index subscript is
omitted for easy explanation):

ZH→Z = γ̂ ×H ∈ Rlt×dt (8)

where γ̂ is a transport coupling matrix based on minimizing
an entropy regularized OT (EOT) LEOT (H,Z) as:

γ̂ = argmin
γ∈

∏
(H,Z)

LEOT (H,Z) (9)

And the objective function LEOT (H,Z) is defined as:

LEOT (H,Z)
∆
=
∑
i,j

γi,jCi,j + αγi,j log γi,j , (10)

where α is a regularization coefficient, γi,j and Ci,j are ele-
ments of transport coupling γ and cost matrices C. The solu-
tion of Eq. (9) can be implemented as an iteration of Sinkhorn
projections as [20, 23]:

γ0 = exp

(
− 1

α
C

)
, γk+1 = Fc

(
Fr

(
γk

))
, (11)

where Fc(.) and Fr(.) are column- and row-wise normaliza-
tion operators, respectively. In real applications, in Eq. (11),
only a few iterations are enough to obtain fairly well results
(in our experiments, 3 times of iterations were set).

In iteration process of Sinkhorn attention, the row-wise
normalization Fr(.) can be formulated as:

Fr (γ) =
γ∑

j

γi,j
= softmax (FC (C)) , (12)

where ‘FC’ is a linear transform. When choosing negative
inner product as the cost function for C, Eq. (12) is further
cast to:

Fr (γ) = softmax
(
ZWZ (HWH)

T
)
, (13)

where WZ and WH are feature transform matrices for a-
coustic and textual representations, respectively. From this
equation, we can see that the transformer attention [22] can
be regarded as a special case of the Sinkhorn attention with
proper chosen of linear transforms and cost functions which
also have been studied in [21].

2.3. Loss function in CMKT learning

For transferring back linguistic information in acoustic en-
coding, the following transforms are designed as indicated in
Fig. 2:

Ĥi = FC3 (LN (Hi)) ∈ Rla×da

Ha,t
i = Gi + LN

(
Ĥi

) (14)

Based on this new representation Ha,t which is supposed
to encode both acoustic and linguistic information, the final
probability prediction for ASR is formulated as:

P̃ = Softmax
(
FC1

(
Ha,t

Ma

))
(15)

In training with CMKT, the total loss is defined as:

L
∆
=λ.LCTC(P̃,ytoken) + (1− λ).w.

Ma∑
i=1

(Li
align + Li

EOT),

(16)
where LCTC(P̃,ytoken) is CTC loss, Li

align and Li
EOT are

cross-modality alignment loss and OT loss collected from the
hierarchical encoder block indexed by i as defined in Eqs. (7)
and (10), respectively. λ is a trade off parameter, w is a pa-
rameter to scale the alignment loss. After the model is trained,
only the left branch of Fig. 1 is kept for ASR inference.

3. EXPERIMENTS

We carried out experiments on an open source Mandarin
speech corpus AISHELL-1 which includes speech record-
ed from 400 speakers [24]. Three data sets are included: a
training set with 340 speakers (150 hours), a development (or
validation) set with 40 speakers (10 hours), and a test set with
20 speakers (5 hours). In training, data augmentation with
speed perturbation (with factors of 0.9 and 1.1) was applied
[24]. 80-dimensional log Mel-filter bank features together
with 3-dimensional fundamental frequency related features
(F0, delta F0 and delta delta F0) are used as raw input feature,
and they were extracted with a 25ms window size and a 10ms
shift.

3.1. Parameter settings

In acoustic modality, the convolutional block in CNN sub-
sampling module is with 256 channels, kernel size 3, stride 2,
and ReLU activation function. Conformer based acoustic en-
coder [25] is used. In each conformer block, the convolution
is with kernel size of 15, attention dimension is da = 256,
attention head is 4, and the dimension of FFN layer is 2048.
The BERT of ‘bert-base-chinese’ from huggingface is used as
the PLM. In this BERT model, there are Mb = 12 transformer
encoders, token size is 21128, and text feature dimension is
dt = 768. For reducing calculation redundancy, the CMTK
was carried out on every three layers of the acoustic encoders.
Several other hyper-parameters are fixed and set as: EOT reg-
ularization parameter α = 1.0 in Eqs. (10) and (11), scale pa-
rameter w = 1.0 and alignment trade off parameter λ = 0.3
in Eq. (16). In optimization, Adam optimizer [26] is used
with a learning rate (initial with 0.001) schedule with 20,000
warm-up steps. The model was trained for 130 epochs, and
the final model used for evaluation was obtained by averag-
ing models from the last 10 epochs. The performance was
evaluated based on character error rate (CER).



Table 1. ASR performance on AISHELL-1 coprus, CER (%).
Methods dev set test set

Conformer-CTC (Baseline) 5.53 6.05
Conformer-CTC/AED ([3]) 4.61 5.06

NAR-BERT-ASR ([13]) 4.90 5.50
LASO with BERT ([11]) 5.20 5.80

KT-RL-ATT ([9]) 4.38 4.73
Wav2vec-BERT ([12]) 4.10 4.39
Last-CMKT (proposed) 4.05 4.40

Hierarchical-CMKT (proposed) 3.64 3.94

3.2. Results

The model is trained by fixing hyper-parameter settings of a-
coustic encoder layers Ma = 16, textual encoder layers Mt =
5, and three times of iteration in Sinkhorn attention. After the
model is learned, CTC greedy search based decoding is used
for recognition where only the components in acoustic modal-
ity is used. The results are showed in table 1. For comparison,
the results of baseline system and several state-of-the-art sys-
tems which integrate BERT for linguistic knowledge transfer
are also showed in Table 1. In this table, the ‘Conformer-
CTC’ is the baseline system. ‘Conformer-CTC/AED’ denotes
a hybrid CTC/AED ASR system as proposed in[3]. ‘KT-RL-
ATT’ [9], and ‘Wav2vec-BERT’ [12] took pretrained acoustic
model (from wav2vec2.0 [6]) and BERT for knowledge trans-
fer. The two methods with ‘Last-CMKT’ or ‘Hierarchical-
CMKT’ represents that our proposed CMKT was applied on
the last hidden layer or on hierarchical of the acoustic en-
coders. From this table, we can see that our proposed CMKT
yields competitive results. In particular, hierarchical CMK-
T achieved state of the art performance which suggested that
linguistic knowledge transfer should be on both high and low-
level of acoustic abstractions in order to improve ASR perfor-
mance.

3.3. Ablation study

In this section, we figure out several important factors which
affect the ASR performance in CMKT learning.

3.3.1. How many textual encoder layers are sufficient?

In textual encoder, several ‘CM-encoder’ layers are used to
explore linguistic information with reference to features from
acoustic encoder (refer to Fig. 2). With target linguistic rep-
resentation from BERT as a supervision signal, the textual
encoder could explore textual information from both textual
and acoustic modalities. We did experiments with different
number of CM-encoder layers, and showed results in table 2.
From this table, we can see that it is necessary to increase the
number of CM-encoder layers for the purpose of increasing
textual encoder’s capability to fully explore the information
from textual and acoustic modalities.

Table 2. ASR performance with different number of CM-
encoder layers, CER (%).

# CM-encoder layers dev set test set
Mt = 1 5.11 5.60
Mt = 3 3.69 4.05
Mt = 5 3.64 3.94
Mt = 7 3.66 3.99

Table 3. ASR performance with and without adapter connec-
tions in CMKT learning, CER (%).

Adapter connections dev set test set
Condition 1 5.25 5.77
Condition 2 4.20 4.54

3.3.2. Is the adapter necessary?

The adapter is a connection to pass acoustic information to
text modality in CMKT learning, and transfer back the tex-
tual information conditioned on acoustic representations. T-
wo experimental conditions are examined, i.e., Condition1:
the adapter module is integrated in acoustic modality but no
CMKT learning is performed (i.e., cut-off the connection to
textual modality); Condition 2: the adapter is connected to
textual modality with CMKT learning but it is not connected
back to acoustic encoder (i.e., cut-off the FC3 link to acoustic
modality in Fig. 2). The results are shown in table 3. From
this table, we can see that the CMKT is the most important
part in the proposed framework, and adapter with connections
to both acoustic and textual modalities are also necessary.

4. CONCLUSION

In this study, we propose a novel hierarchical CMKT learning
approach to enhance CTC-based ASR by harnessing linguis-
tic representations encoded in a PLM model. CMKT learning
involves transferring linguistic knowledge at both high and
low levels of acoustic representations. In CMKT, we design
Sinkhorn attention with just a few iterations to align cross-
modal features. Using this alignment, the textual encoder can
extract information from both textual and acoustic modalities
to approximate the target linguistic representations encoded
in BERT. By using an adapter that connects both acoustic and
textual modalities, we efficiently transfer linguistic knowl-
edge to the acoustic encoder. Our experiments confirm the
effectiveness of the proposed CMKT learning framework.

The capacity of the proposed CMKT learning framework
has not been fully explored. For example, questions remain
regarding the integration of latent representations from the
BERT model in CMKT learning and the adjustment of various
hyperparameters in objective functions, especially concern-
ing the Sinkhorn attention. In our future work, we will delve
deeper into the potential of this learning framework through
rigorous experimentation.
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