
SDEMG: SCORE-BASED DIFFUSION MODEL FOR SURFACE ELECTROMYOGRAPHIC
SIGNAL DENOISING

Yu-Tung Liu1,5 Kuan-Chen Wang2,5 Kai-Chun Liu3 Sheng-Yu Peng4 Yu Tsao5

1Department of Electronics and Electrical Engineering, National Yang Ming Chiao Tung University, Taiwan
2Graduate Institute of Communication Engineering, National Taiwan University, Taiwan

3Department of Electronic Engineering, National Taipei University of Technology, Taiwan
4Department of Electrical Engineering, National Taiwan University of Science and Technology, Taiwan

5Research Center for Information Technology Innovation, Academia Sinica, Taiwan
tonyliu.ee09@nycu.edu.tw, d12942016@ntu.edu.tw, kaichunliu@ntut.edu.tw, sypeng@mail.ntust.edu.tw, yu.tsao@citi.sinica.edu.tw

ABSTRACT
Surface electromyography (sEMG) recordings can be influenced by
electrocardiogram (ECG) signals when the muscle being monitored
is close to the heart. Several existing methods use signal-processing-
based approaches, such as high-pass filter and template subtraction,
while some derive mapping functions to restore clean sEMG sig-
nals from noisy sEMG (sEMG with ECG interference). Recently,
the score-based diffusion model, a renowned generative model, has
been introduced to generate high-quality and accurate samples with
noisy input data. In this study, we proposed a novel approach, termed
SDEMG, as a score-based diffusion model for sEMG signal denois-
ing. To evaluate the proposed SDEMG approach, we conduct ex-
periments to reduce noise in sEMG signals, employing data from
an openly accessible source, the Non-Invasive Adaptive Prosthetics
database, along with ECG signals from the MIT-BIH Normal Sinus
Rhythm Database. The experiment result indicates that SDEMG out-
performed comparative methods and produced high-quality sEMG
samples. The source code of SDEMG the framework is available at:
https://github.com/tonyliu0910/SDEMG

Index Terms— Surface electromyography, Score-based diffu-
sion model, ECG interference removal, Deep neural network

1. INTRODUCTION

Surface electromyography (sEMG) records the biopotential gener-
ated by motor units during muscle contractions. This technique
can noninvasively provide valuable insights into muscle anatomy
and physiology, and thus sEMG finds applications in various clin-
ical areas, including neuromuscular system investigation [1], reha-
bilitation [2], stress monitoring [3], assessment of neuromuscular or
respiratory disorders [4, 5], and prosthesis control [6]. In these ap-
plications, sEMG recordings may be subject to electrocardiogram
(ECG) interference if the measurement is taken near the heart [7, 8].
The ECG contamination can distort the amplitude and frequency as-
pects of sEMG signals, posing a challenge in extracting meaning-
ful information. Hence, developing effective ECG removal methods
is crucial to enhance signal quality for various clinical and human-
computer interaction applications.

sEMG and ECG signals have frequency bands between 10 to 500
Hz and 0 to 100 Hz, respectively [9]. The overlapping frequency
bands pose difficulties in segregating the two signals. To address
this issue, several single-channel ECG removal methods have been
developed, such as high-pass filters (HP) and template subtraction

(TS) [7, 10]. However, HP causes distortion by removing the low-
frequency part of sEMG signals, and TS relies on the assumption
that ECG is quasi-periodic and sEMG follows a zero-mean Gaussian
distribution, which may not hold in real-world scenarios. These lim-
itations make these ECG removal methods struggle under demand-
ing conditions, such as low signal-to-noise (SNR) ratios. Recently,
neural networks (NNs) have been widely adopted for their power-
ful nonlinear mapping capabilities in signal enhancement [11, 12].
Some studies have applied NNs for sEMG denoising [13, 14]. In
[14], Wang et al. developed an NN-based ECG removal method
employing a fully convolutional network (FCN) as a denoising au-
toencoder (DAE). The experimental results in [14] show that FCN
outperformed traditional methods in ECG artifact removal, while it
also introduced some signal distortion, which can be problematic in
clinical applications. Therefore, it is desirable to develop more ef-
fective ECG removal methods.

The score-based diffusion model, a generative model, has ex-
celled in producing high-quality data in various tasks, including im-
age and acoustic generation [15, 16, 17]; various studies have also
incorporated the model into signal enhancement [18, 19, 20]. Com-
pared to discriminative NNs, the score-based diffusion model could
observe and model the data distribution and reconstruct the desired
sample through sampling steps. Also, the diffusion process and
the reverse process are relatively more tractable and more flexible
compared to other generative models, such as generative adversarial
networks (GANs) and variational autoencoders (VAEs), i.e., we can
determine the sample quality by adjusting the hyperparameters em-
pirically. The features of the score-based diffusion model mentioned
above allow us to model the distribution of the dataset as a whole and
generate samples of higher quality based on the given conditions.

To refine sEMG denoising performance, this study proposes
SDEMG, a conditional score-based diffusion model for sEMG de-
noising. The proposed method progressively adds isometric Gaus-
sian noise to the clean sEMG during the diffusion process. In the
reverse process, we leverage the sEMG waveform contaminated by
ECG and the noise scale variable as conditions for the NN, and the
Gaussian noise is reverted to the clean sEMG segment. Experimen-
tal results show that SDEMG outperforms the previous FCN-based
denoising method in signal quality, providing a refined ECG removal
approach for clinical sEMG applications.

The remainder of this paper is organized as follows. Section 2
reviews related works. Section 3 introduces the proposed approach.
Section 4 presents the experimental setup and results. Finally, Sec-
tion 5 concludes the paper and discusses future works.



2. RELATED WORK

2.1. ECG interference removal methods

Several single-channel ECG removal methods have been developed
in previous studies, including HP and TS [7, 10]. HP removes the
frequency band of the ECG, inevitably leading to the loss of the low-
frequency part of the sEMG signal. In contrast, TS removes ECG ar-
tifacts in the time domain. It extracts ECG templates for subtraction
by either filtering or waveform averaging [7, 21], and the ECG arti-
facts are subtracted from the contaminated sEMG waveform. How-
ever, the effectiveness of TS relies on the assumption that sEMG
signals are zero-mean Gaussian distributions, which may not be sat-
isfied in real-world scenarios. This study applies both HP and TS to
serve as comparative sEMG denoising methods. HP is implemented
with a cutoff frequency of 40 Hz, and the TS method was followed
using the HP method for optimal results.

Beyond conventional techniques, NN-based methods have
demonstrated exceptional performance in sEMG denoising [13, 14].
In [14], Wang et al. proposed an FCN as a DAE to eliminate
ECG interference from sEMG. The proposed FCN consists of two
parts: an encoder and a decoder. Both parts consist of multiple
convolutional layers with different filter sizes and strides. The en-
coder receives contaminated sEMG waveform as input and performs
downsampling to generate high-level feature maps. Conversely, the
decoder attempts to reconstruct the clean sEMG waveform from the
encoder output. According to the study, the FCN demonstrates more
effective denoising performance than conventional methods.

2.2. Score-based diffusion models

Score-based diffusion models are a category of deep generative mod-
els initially devised for image generation, and they have further been
adapted to signal enhancement, including speech enhancement and
ECG denoising [19, 20]. It is preferable to other generative meth-
ods, such as GANs and VAEs. To elaborate, GANs are notoriously
unstable during the training process, and VAEs lack sample qual-
ity. Score-based diffusion models overcome these limitations and
achieve remarkable performance in numerous applications [15, 22,
23].

The process of the score-based diffusion model starts with grad-
ually adding Gaussian noise to input data at different scales. The
NN within the diffusion model aims to estimate the noise segment at
each particular time step. Subsequently, desired samples are gener-
ated during the sampling process.

s(y) = ∇x log p(x). (1)

To further introduce the score-based diffusion model, we start with
modeling the underlying data distribution with the Stein score func-
tion as shown in Eq. (1), which is the gradient of data log-density
log p(x) concerning data x:

Ep(x)[∥∇x log p(x)− sθ(x)∥22]. (2)

We can train an NN, a score-based model sθ , to minimize the Fisher
divergence between the model and the actual data distribution as
shown in Eq. (2). As presented, we calculate the L2 distance be-
tween the target data score and the score-based model with score-
matching methods [24, 25]:

xi+1 ← xi + ϵ∇x log p(x) +
√
2ϵ zi, i = 0, 1, · · · ,K. (3)

After training the score-based model sθ , we can generate samples
from the specific density, x̃ ∼ p(x), via Langevin dynamics pre-
sented in Eq. (3):

Fig. 1. The diffusion process and the sampling in SDEMG.

3. THE PROPOSED SDEMG METHOD

3.1. Training process

In this study, we trained a score-based model to estimate the noise
distribution and generate high-quality and high-fidelity sEMG sam-
ples based on the diffusion probabilistic model proposed by Ho et
al. [15]. The original model was devised for unconditional image
generation, i.e., the model generates samples from Gaussian noise
without any inputs. In our case, we aim to retrieve clean sEMG sam-
ples from noisy sEMG waveforms contaminated with ECG. There-
fore, we require the noisy signal x̃ as a condition. The score-based
denoising framework takes sEMG mixed with actual noise as input
and attempts to reconstruct the clean waveform.

The score-based diffusion framework comprises two steps:
a diffusion process (algorithm 1) and a sampling process (algo-
rithm 2). The diffusion process (algorithm 1), otherwise forward
process, is defined as a Markov Chain as shown in Eq. (4):

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1). (4)

During this process, Gaussian noise is gradually added (Eq. (5))
with respect to different noise schedules β1, . . . , βN . The original
signals will be perturbed more significantly as t becomes larger.

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI). (5)

Ho et al. [15] observed that: Let αt = 1−βt and ᾱt =
∏t

i=1 αi,
the resultant distribution of the diffusion process can be presented in
Eq. (6) with variance 1− ᾱt:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I). (6)

As mentioned earlier, to avoid signal distortion and generate
high-quality samples, during the training process, we introduce
noisy sEMG as the condition to assist the model in retrieving more
features regarding the data distribution. Furthermore, Song & Er-
mon [26] discovered that the selection of noise schedule is critical
to sample quality, and Chen et al. [17] proposed the continuous con-
dition ᾱ instead of discrete time step variable t will provide more
auxiliary information to the model. In the methods proposed by Li
et al. [20], the reparameterized condition was also adopted and gen-
erated high-quality samples. Consequently, we utilized the cosine
beta scheduler as it was more helpful for the model to generate more
robust predictions [27] and adapted similar condition methods to our
denoising framework and selected the corresponding noise scale ᾱ
from the noise scale schedule γ = {1,

√
ᾱ0, . . . ,

√
ᾱT } as one of



Algorithm 1 Training
1: repeat
2: x0, x̃ ∼ q(x0, x̃)
3: t ∼ Uniform({1, . . . , T})
4: ᾱ ∼ Uniform(γt−1, γ)
5: ϵ ∼ N (0, I)
6: Take gradient descent step on

∇θ||ϵ− ϵθ(
√
ᾱx0 +

√
1− ᾱϵ, x̃, ᾱ)||2

7: until Converged

the inputs. As shown in Algorithm 1, the model will receive clean
sEMG x0, noisy sEMG x̃, and noise scale parameter ᾱ as inputs and
aims to predict the isotropic Gaussian noise ϵ. We will minimize the
mean squared error of the predictions during the training process.

3.2. Sampling process

In the reverse sampling process, as shown in Algorithm 2, the initial
sample is random Gaussian noise xT . The denoising framework will
reconstruct the desired sEMG signals through T sampling steps. The
sampling process is defined as a reverse Markov chain in Eq. (7):

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt, x̃). (7)

During each iteration, SDEMG will generate a sample xt−1 from
the previous sample xt and the input noisy data x̃:

pθ(xt−1|xt, x̃) = N (xt−1;µθ(xt, t, x̃),Σθ(xt, t, x̃)). (8)

3.3. Model Architecture

The network within SDEMG is adapted from the model proposed by
Li et al. [20]. The model comprises two data streams, one for the
clean signal and the other for the noisy data, and the bridges to ag-
gregate the features extracted from different layers. The data streams
are composed of multiple Half Normalized Filters (HNF), which are
computation blocks adopted from Multi-Kernel Filter design [28]
and HiNet [29]. The HNF blocks act as a feed-forward module that
combines features extracted by different convolutional layers with
various receptive fields with channel-wise concatenation. Moreover,
half of the features will be normalized as this technique has demon-
strated more stability during the training process [29]. These blocks
utilize residual connections to produce outputs from input data and
processed features. The Bridge blocks are modified from the feature-
wise linear modulation (FiLM) block [30] and condition on the input
noise scale

√
ᾱ. Notably, we increased the input dimension of the

model from 64 to 128 to better accommodate the complexity and dy-
namic nature of sEMG data, since sEMG is inherently more intricate
and variable than ECG data.

4. EXPERIMENTS

4.1. Datasets

The sEMG signals used in this study are from the DB2 subset of the
Non-Invasive Adaptive Prosthetics (NINAPro) database [31], which
contains 12 channels of sEMG recordings of hand movement made
by 40 intact subjects. Notably, the sEMG recordings were acquired
from the upper limb. The DB2 subset includes 3 sessions, Exercise

Algorithm 2 Sampling
1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: z ∼ N (0, I) if z > 1 else z = 0

4: xt−1 = 1
αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt, x̃,

√
ᾱt)

)
+ σtz

5: end for
6: return x0

1, 2, and 3, which involve 17, 22, and 10 movements, respectively.
Each movement was repeated six times for five seconds, followed by
a three-second rest interval. Previous studies [14, 32] have applied
filters to obtain clean sEMG data from this database.

As for ECG interference, this study adopts MIT-BIH Normal
Sinus Rhythm Database (NSRD) from the PhysioNet database [33].
In this data set, 2-channel ECG recordings were collected from 18
healthy subjects, with a sampling rate of 128 Hz. Previous studies
have adopted the ECG signals from this data set as the interference
in sEMG signals [14, 32].

4.2. Data preprocessing and preparation

The sEMG data were processed by a 4th-order Butterworth bandpass
filter with cutoff frequencies of 20 and 500 Hz and downsampled to
1kHz. Subsequently, all sEMG signals were normalized and divided
into 10-second segments. ECG data in Channel 1 from the MIT-
BIH NSRD were filtered by a 3rd-order Butterworth high-pass and
low-pass filter with cutoff frequencies of 10 and 200 Hz to discard
possible noise in ECG signals [7].

sEMG segments of Channel 2, Exercise 1 and Channel 2, Ex-
ercise 3 from 30 subjects were selected as the training and vali-
dation set, respectively. For each segment in the training set, 10
randomly selected ECG signals from 12 subjects in the MIT-BIH
NSRD were considered ECG artifacts and were superimposed onto
the clean sEMG segments at 6 SNRs (-5, -7, -9, -11, -13, and -
15 dB). For the validation set, three other subjects in the MIT-BIH
NSRD were considered ECG artifacts, and the SNRs are identical to
the training sets.

The mismatch conditions between the training and testing sets
were considered to evaluate the generalizability of the proposed
framework. sEMG segments of Channel 9, 10, 11, and 12, Exercise
2, from the remaining 10 subjects were selected as the testing set.
The ECG data from the remaining 3 subjects (16420, 16539, and
16786) were selected for interference, and the SNRs are -14-0 dB
with an increment of 2 dB. Please note that sEMG subjects, sEMG
movements, sEMG channel, ECG subjects, and SNRs are entirely
different from the setting of the training set.

4.3. Evaluation metrics

To compare SDEMG with prior methods, this study follows the ear-
lier work [14, 12, 34] and evaluates the performance with two as-
pects of criteria: signal reconstruction quality and feature extraction
errors. SNR improvement (SNRimp) and root-mean-square error
(RMSE), respectively, reflect the quality of the reconstructed sig-
nal by presenting the difference of SNR between the inputs and the
outputs and the variance between the outputs and the ground truth.
Furthermore, the RMSE of the average rectified value (ARV) and
mean frequency (MF) feature vectors are adopted as the metrics to
evaluate the features extracted from the sEMG signals [7]. The set-
tings for calculating these metrics follow the previous study [14].



Table 1. Overall performance of HP, TS, FCN, and SDEMG.

SNRimp (dB) RMSE RMSEARV RMSEMF (Hz)

HP 13.885 1.735e-2 3.06e-3 17.688
TS 14.279 1.626e-2 3.86e-3 23.149

FCN 17.758 1.178e-2 3.86e-3 18.038
SDEMG(Ours) 18.467 1.138e-2 2.81e-3 14.435

Fig. 2. Comparison of all methods with SNRimp under different
SNR input.

Better signal reconstruction quality and higher fidelity can be repre-
sented by smaller RMSE values, larger SNRimp values, and smaller
RMSE values of the extracted feature vectors ARV and MF.

4.4. Results and discussion

We compared the performance of SDEMG with three previous meth-
ods, namely HP, TS, and FCN [14]. Table 1 illustrates the over-
all performance of all methods evaluated by SNRimp, RMSE, and
RMSE of ARV and MF. The results show that SDEMG can achieve
higher SNR improvement, lower RMSE value, and better ARV and
MF. Furthermore, Fig. 2 presents the SNRimp of ECG elimination
approaches under various SNRs. The proposed approach performs
best across all SNR conditions, demonstrating its superior effective-
ness and robustness in ECG removal.

Notably, this study evaluated the performance of SDEMG under
the specific scenario in which biceps brachii sEMG [7, 10] (Chan-
nel 11 in DB2) is introduced as simulation data. These trunk sEMG
signals are prone to contamination of ECG at around SNR -10dB
according to a previous study [35]. Consequently, we investigate
the performance of SDEMG in this experimental setup along with
other methods, as shown in Fig. 3. The analysis demonstrates that
the use of SDEMG retains its superiority in most of the cases. More-
over, compared to our previous study [14], we observed performance
degradation of FCN, particularly in feature extraction error metrics.
This discrepancy might stem from the reduced length of sEMG seg-
ments (from 60s to 5s), which is designed to make the denoising
framework more efficient and practical. It is discovered that FCN
trained with a smaller segment size tends to introduce more dis-
tortion to sEMG signals, increasing the errors in sEMG feature ex-
traction. Conversely, SDEMG demonstrates the capability to allevi-
ate signal distortion, generating higher-quality sEMG signals. This
highlights the potential of SDEMG to provide improved signal qual-
ity for clinical assessment and evaluation.

Fig. 4 presents an example of ECG contamination removal us-
ing SDEMG. It can be observed that the ECG artifacts in the noisy

(a) (b)

(c) (d)

Fig. 3. Performance of simulated trunk sEMG denoising results eval-
uated by (a) SNRimp, (b) RMSE, (c) RMSEARV , and (d) RMSEMF

Fig. 4. The waveform of (a) clean sEMG (b) noisy sEMG (c) de-
noised sEMG by SDEMG.

sEMG (SNR=-8 dB) are eliminated in the denoised waveform, and
the sEMG waveform exhibits minimal distortion when compared to
the clean sEMG. This underscores the capability of SDEMG to pro-
vide high-quality sEMG signals. One challenge of SDEMG is its
relatively high computational effort for optimal performance. This
issue may be addressed by involving ODE solvers or applying pa-
rameters pruning and quantization.

5. CONCLUSION

In this study, we have proposed SDEMG, a score-based diffusion
model, to reconstruct high-quality and high-fidelity sEMG samples
from ECG-interfered sEMG signals. SDEMG requires no additional
reference signal and can directly process raw sEMG signal. The
experimental results demonstrate that the proposed approach outper-
forms the comparative methods across a broad range of SNRs and
various evaluation metrics under training-testing mismatched condi-
tions. To the best of our knowledge, this is the first study developing
diffusion models for sEMG denoising. In the future, we will explore
applying SDEMG on a real contaminated sEMG dataset. Moreover,
we will further investigate the ability of SDEMG to perform denois-
ing on other kinds of sEMG contaminants.
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