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Abstract
We propose a novel adversarial reprogramming (AR) approach
for low-resource spoken command recognition (SCR) and build
an AR-SCR system. The AR procedure aims at repurposing a
pretrained SCR model (from the source domain) to modify the
acoustic signals (from the target domain). To solve the label
mismatches between source and target domains and further im-
prove the stability of AR, we propose a novel similarity-based
label mapping technique to align classes. In addition, the trans-
fer learning (TL) technique is combined with the original AR
process to improve the model adaptation capability. We eval-
uate the proposed AR-SCR system on three low-resource SCR
datasets, including Arabic, Lithuanian, and dysarthric Mandarin
speech. Experimental results show that with a pretrained acous-
tic model trained on a large-scale English dataset, the proposed
AR-SCR system outperforms the current state-of-the-art re-
sults on Lithuanian and Arabic datasets, with only a limited
amount of training data.
Index Terms: low-resource speech processing, adversarial re-
programming, spoken command recognition, transfer learning,
label mapping.

1. Introduction
The aim of spoken command recognition (SCR) is to identify a
target command out of a set of predefined candidates, based on
an input utterance [1, 2]. Owing to its wide applicability to var-
ious domains, such as smart home devices [3] or crime defec-
tions [4], SCR has long been an important research topic in the
speech processing field [5, 6]. Due to recent advances in deep
learning (DL) algorithms, the performance of SCR systems has
been significantly enhanced [7, 8, 9]. However, a common re-
quirement to build a high-performance DL-based SCR system
is to prepare a large amount of labeled training data (speech
utterances and corresponding transcriptions of the commands).
Such a requirement is not always realizable in real-world sce-
narios. In fact, it is generally favorable to build an SCR system
with only a limited amount of training data. Such a scenario is
often referred to as a low-resource training scenario [10].

For resource-limited speech command recognition, tradi-
tional methods leverage template matching-based approaches
such as dynamic time warping (DTW) [11, 12] to look for simi-
larities at the feature level. Recently, numerous algorithms have
been developed to train DL-based systems under low-resource
scenarios. A well-known category of approaches is transfer
learning (TL) [13], which aims to use a small amount of train-
ing data to fine-tune a pretrained model, where the pretrained
model is generally trained on a large-scale dataset. Prior arts
have demonstrated the effectiveness of TL in speech processing
tasks. For example, in [14], an English acoustic model (AM)
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Figure 1: Illustration of the proposed AR-SCR system. The
acoustic signals of a Lithuanian command (“ne”) is repro-
grammed to English commands (“nine” and “no”) and mapped
to its final prediction with a pretrained English acoustic model.

pretrained on a large-scale training set is fine-tuned with limited
training data to obtain a Spanish AM. Meanwhile in [15], a mul-
tilingual bottleneck feature extractor is pretrained on a large-
scale training set and fine-tuned to form a keyword recognizer
on a low-resourced Luganda corpus. The study of [16] collected
200 million pieces of 2-second data from Youtube to pretrain a
speech embedding model to extract useful features for a down-
stream keyword spotting task. Although these TL approaches
show promising results, the fine-tuning process (which is often
done in the online mode) requires large training resources and
thus is only feasible for applications where sufficient computa-
tion resources are available.

Another category of approaches is to adopt a pretrained
model to extract representative features to facilitate efficient and
effective training for the SCR systems. The pretrained model
is generally trained on a large-scale dataset with either a su-
pervised or self-supervised training manner. In [17] and [18],
the SCR systems were established by adopting representative
features extracted from a pretrained sound event detector and
phone classifier, respectively. Both were trained on large-
scale labeled data. Meanwhile, several methods adopt self-
supervised models, such as PASE+ [19, 20] , wav2vec [21, 22],
and wav2vec 2.0 [23], as feature extractors to build the SCR
systems [24, 25, 6]. A notable drawback of this category of ap-
proaches is that an additional large-scale DL-based model (ac-
cordingly with increased hardware) is required.

Adversarial reprogramming (AR), as an alternative model
adaptation technique, has been confirmed to provide satisfac-
tory results in numerous machine learning tasks [26, 27].
In [28], AR adopts a trainable layer to generate additive
noise (e.g., as additional information) on input acoustic signals
(source-domain data) to guide an AM to recognize electrocar-
diography (ECG) signals (target-domain data). Along with the
success of neural reprogramming [28, 29, 30], our study inves-
tigates whether AR can be applied to domain adaptation and
accordingly building an SCR system in a low-resource train-
ing scenario. Different from [31, 32], which perform acous-
tic model adaptation by passing input through a neural net-
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Figure 2: Frameworks studied in this work. The ”AM” block
refers to the acoustic model. In (a), the baseline system is
trained from scratch on the target domain data. In (b), AM
is pretrained and then fine-tuned on the target domain data. In
(c), AM is pretrained on the source domain and then fixed; an
adversarial reprogram (AR) layer is then placed before the pre-
trained AM model to modify the input signals. In (d), we com-
bine AR and TL to train the adversarial reprogram layer and
fine-tune AM simultaneously.

work layer for transformation, AR aims to add a trainable noise
directly to the input sequence without modifying the model.
Fig. 1 shows the design concept of the proposed AR-SCR sys-
tem, which consists of a reprogram layer and a pretrained AM.
The reprogram layer first generates trainable noises, θ, to mod-
ify the original signals before passing them into the pretrained
AM. The AM will then output class probabilities corresponding
to the source classes. A label mapping technique is adopted to
map the probabilities of source classes to the target class by ag-
gregating probabilities over the assigned source labels. Based
on the aggregated probabilities, the reprogram layer is further
trained to generate noises and thus modify the input signals, so
that the pretrained AM can be repurposed to perform recogni-
tion in the target task.

The proposed AR-SCR system adopts two additional tech-
niques to further improve the model adaptation capability: (1)
a novel similarity-based label mapping strategy that aims to
align the target and source classes and (2) a fine-tuning pro-
cess that adjusts the AM with the AR-generated signals. Ex-
periment results on three low-resource SCR datasets, including
Arabic, Lithuanian, and dysarthric Mandarin speech command
datasets, demonstrate that the proposed AR-SCR system can
yield better performance than other state-of-the-art methods. In
summary, the major contribution of the present work is twofold:
1) This is the first study that investigates the applicability of AR
to low-resource SCR tasks with promising results. 2) We verify
that AR has the flexibility to combine with the TL technique to
achieve a better model adaptation performance.

2. The Proposed AR-SCR System
2.1. AR-SCR System

Fig. 2 illustrates the overflow of an SCR system with AR and TL
model adaptation techniques. In Fig. 2 (a), the AM is directly
trained by data from the target-domain task. When the train-
ing data from the target domain is limited, the model cannot be
trained well and thus may result in unsatisfactory recognition
performance. In Fig. 2 (b), the TL technique is applied to the
pretrained AM to establish a new SCR system that matches the
target domain. In Fig. 2 (c), the pretrained AM is fixed, and
an adversarial reprogram layer is trained to transform the in-
put signals to reduce the distance between the target and source
distributions. In Fig. 2 (d), the adversarial reprogram layer is
treated as a front-end processor, and the TL technique is applied
to further fine-tune AM with the reprogrammed signals. We ex-
pect the combination of AR (as a front-end processing) and TL
(as a back-end processing) can reach better model adaptation
capability due to their complementary abilities.

2.2. Acoustic Signal Reprogramming

The concept of AR was first introduced in [26], and its aim was
to determine a trainable input transformation function H to re-
purpose a pretrained model from the source domain to a target
task. The authors in [26] showed that by the AR process, a pre-
trained ImageNet model trained on the image classification task
can solve a square-counting task with high accuracy. A later
study [33] demonstrated that a reliable classification system can
be established using AR and a black-box pretrained model with
scarce data and limited resources. Meanwhile, the Voice2Series
method [28] is proposed to transfer time series data (e.g., ECG
or Earthquake) xt, as the target domain, XT ⊆ RdT from the
source domain XS ⊆ Rds , where dimension dT < dS . For
these AR approaches, a reprogrammed sample x′

t can be for-
mulated as:

x′
t = H (xt; θ) := Pad (xt) +M ⊙ θ︸ ︷︷ ︸

δ

, (1)

where Pad (xt) generates a zero-padded time series of dimen-
sion dS . The binary mask M ∈ {0, 1}dS indicates the indexes
that are not occupied and reprogrammable. θ ∈ RdS is a set of
trainable parameters for aligning source and target domain data
distributions. The term δ denotes the trainable additive input
transformation for reprogramming. In the original AR method,
the target sequence must be shorter than the source counterpart.
To overcome this limitation, we design to add trainable noises
to the whole sequence, and thus Eq. (1) becomes

x′
t = H (xt; θ) := xt + θ. (2)

In this work, we focus on applying AR as a model adapta-
tion technique to effectively fine-tune a pretrained model.

2.3. Pretrained Acoustic Model

In the Voice2Series study [28], the authors have compared sev-
eral well-known AMs as pretrained models and provided the
first theoretical justifications by optimal transport for repro-
gramming general time-series signals to acoustic signals. Based
on the provided justifications, in this study, we established AM
with two layers of fully convolutional neural networks, followed
by two bidirectional recurrent neural networks, which are then
combined with an attention layer. To train the model, we use the
Google Speech Commands dataset [34], which is a large-scale
collection of spoken command words, containing 105,829 ut-
terances of 35 words from 2,618 speakers; all the utterances are
recorded in a 16 kHz sampling-rate format. The pretrained AM
has 0.2M parameters and yields a 96.90% recognition accuracy
rate on the testing set of Google Speech Commands.

2.4. Similarity Label Mapping

As illustrated in Fig. 1, a label mapping function is adopted
to map the probabilities of the source class to that of the tar-
get class. The results in [28] show that a many-to-one label
mapping strategy (randomly mapping multiple classes from the
source task to an arbitrary target class) yields a better perfor-
mance as compared to the one-to-one mapping strategy. In this
study, we attempt to improve the random mapping process with
a similarity mapping that considers the relationships of data
in the source and target domains. In [35], the structural rela-
tionships between acoustic scene classes are explored and uti-
lized to address the domain mismatch issue, while the authors
in [36] proposed an unsupervised learning method that maps

3318



(a) English-Lithuanian (b) English-Arabic

cosine similarity label mapping★   target class source class

Figure 3: PCA plots of average representations of several
source-target pairs for (a) English-Lithuanian and (b) English-
Arabic datasets. A target class (star point) is mapped to two or
three source classes (circle points) with higher cosine similarity
(marked with same colors).

sentences in two different languages into the same latent space
for the Machine Translation task. Inspired by the prior arts,
we propose to investigate the similarity of the labels between
the source and target domains and determine the optimal many-
to-one label mapping strategy. To compute the similarity, we
first feed source and target data to the pretrained AM and cal-
culate the average representations of all classes and compute
the cosine similarity between each of them. Based on the sim-
ilarity of classes, each target class is mapped to two or three
source classes in our AR-SCR system. Fig. 3 (a) and (b), re-
spectively, show the PCA plots of representation vectors for the
English-Lithuanian and English-Arabic datasets. Interestingly,
we can observe that command words with similar acoustic char-
acteristics are mapped to the same target word. For example,
in Fig. 3 (a), the source English classes ”nine, no, learn” are
mapped to the target Lithuanian class ”ne”; whereas in Fig. 3
(b), the source English classes ”right, eight” are mapped to the
target Arabic class ”Takeed”. In our experiment, the AR sys-
tem with similarity mapping strategy outperforms the one with
random mapping [28], improving the average testing accuracy
by 2.1%, 13.4%, and 9.2% on the Arabic, Lithuanian, and Man-
darin datasets respectively.

3. Experiments
3.1. Speech Commands Dataset
We use the Google Speech Commands [34] as the source do-
main data to pretrain our AM. Three low-resource SCR datasets,
including the Lithuanian, dysarthric Mandarin, and Arabic
speech command datasets, are used as the target domain tasks.
Lithuanian Speech Commands: The content of the Lithua-
nian speech commands dataset [25] is created by translating
20 keywords from Google Speech Commands [34] into the
Lithuanian language. The dataset consists of recordings from
28 speakers, with each speaker pronouncing 20 words on a mo-
bile phone. We follow the setting in [25] and [37] and chose
15 target classes: 13 command words, 1 unknown word, and 1
silent class. The resulting dataset consists of 326 recordings for
training, 75 for validation, and 88 for testing.
Dysarthric Mandarin Speech Commands: The dataset con-
tains 19 Mandarin commands, each uttered 10 times from 3
dysarthric patients [38], with a 16kHz sampling rate. These 19
commands include 10 action commands and 9 digits, which are
designed to allow dysarthric patients to control web browsers
via speech. By removing long recordings, we select 13 short
commands with durations around one second in our experi-
ments. We follow the setting in [38] to split the whole dataset
into 70% and 30% to form training and testing tests.

Table 1: Testing results (average and std of the accuracy scores)
of three conditions (3, 10, and 20 training samples) for the
Lithuanian speech commands dataset.

Limit System Avg. Acc. (%) Rel. Imp. (%) Std.

3 DTW 45.6 – –
Baseline 33.8 – ±8.82

AR 25.1 -25.7 ±2.27
TL 52.8 56.2 ±7.69

AR+TL 58.9 72.8 ±4.84

10 DTW 50.0 – –
Baseline 63.7 – ±5.35

AR 34.4 -46.0 ±4.1
TL 80.7 26.7 ±5.65

AR+TL 81.9 28.6 ±4.44

20 DTW 64.5 – –
Baseline 70.3 – ±6.8

AR 34.6 -51.4 ±3.0
TL 86.8 23.5 ±2.92

AR+TL 88.6 26 ±1.7

Arabic Speech Commands: The Arabic speech commands
dataset [39] consists of 16 commands, including 6 control
words and 10 digits (0 through 9), and each command has 100
samples, amounting to 1600 utterances in total. 40 speakers
are involved in preparing the dataset. The speech utterances are
recorded at a sampling rate of 48 kHz and then converted into
16 kHz in our experiments. We follow the setting in [39] and
split the dataset into 80% for training and 20% for testing. In
addition, we randomly excerpt 20% of the training data to form
a validation set.

3.2. Experimental Results
For each of the three datasets, we compare the SCR results of
the four systems, as shown in Fig. 2. Additionally, we con-
sider a dynamic time warping method [40], denoted as DTW,
for comparison. The DTW algorithm uses a learned warping
window and a nearest neighbor classifier on input waveforms
to perform speech command recognition. The results of the
DL-based baseline system (denoted as Baseline), stand for an
AM trained from scratch on the training set of the three SCR
datasets. The results of the systems with AR and TL model
adaptations (Fig. 2 (b) and (c)) are denoted as AR and TL, re-
spectively. The results of combining the AR and TL methods
referred to Fig. 2 (d) are denoted as AR+TL. In our preliminary
experiments, we tested the performance of several different se-
tups. We have compared the domains for signal reprogramming
by directly modifying the input waveforms or modifying the
input spectral features. Meanwhile, we evaluated different la-
bel mapping techniques, i.e., one-to-one versus many-to-one,
as well as random mapping versus similarity mapping. Em-
pirically, all the best results we obtained use the many-to-one
similarity mapping technique. In the following discussions, we
only report the results of the best setups. For all the experiments
in this study, we tested each SCR system 10 times and the aver-
age accuracy and standard deviation (std.) values are reported
in each table.

Table 1 lists the testing results of the Lithuanian speech
commands dataset. We follow the setting in [25] to conduct
experiments using different amounts of training data and report
the results of three conditions: each keyword has 3, 10, and
20 training samples. From Table 1, we observe that TL con-
sistently outperforms DTW and Baseline for the three condi-
tions. Notably, although AR alone cannot attain improved per-
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Table 2: Testing results (average and std of the accuracy scores)
of the dysarthric Mandarin dataset.

System Avg. Acc. (%) Rel. Imp. (%) Std.

DTW 48.7 – –
Baseline 64.0 – ±16.43

AR 33.2 -48.12 ±2.88
TL 78.1 22.03 ±3.18

AR+TL 82.3 28.59 ±2.56

formance, AR+TL can yield average accuracy of 58.9%, 81.9%,
and 88.6% for 3, 10, and 20 training samples conditions, re-
spectively, which are notably better than TL with the average
accuracy of 52.8%, 80.7%, and 86.7%. The best results for
AR+TL are obtained by modifying the input waveforms with a
reprogramming layer. Moreover, the std values in Table 1 show
that AR can improve performance stability when combined with
the TL technique. Fig. 4 also compares our best AR+TL sys-
tem with the state-of-the-art SCR system [25], where the best-1
accuracy results are reported for the 3, 10, and 20 conditions.
From the figure, AR+TL consistently outperforms the state-
of-the-art wav2vec SCR system [25] on the Lithuanian speech
commands dataset.

Table 2 shows the results of the dysarthric Mandarin
dataset. A similar observation can be obtained as those from
Table 1 with input waveforms reprogramming. First, TL yields
an improved performance as compared to DTW and Baseline.
Next, although AR alone can not provide better results than
Baseline, AR+TL achieves the best performance among the
four systems. As compared to Baseline, AR+TL yields notable
improvements of 28.59% (from 64.0 to 82.3). Moreover, the
low std value of ±2.56 suggests that AR can improve the sta-
bility of the SCR systems.

We also conducted experiments on the Arabic speech com-
mands dataset. Empirically, we found that modifying input
spectral features with the reprogramming layer gives the best
performance. From the testing results, we first note that the
three adaptation systems (AR, TL, and AR+TL) all yield im-
proved accuracy rates with lower std as compared to Baseline.
AR alone can achieve 95.8% accuracy with only 16k train-
able parameters, which is far fewer than the Baseline system
(200.4k). Next, we note that AR+TL can achieve the highest
accuracy of 98.9%, which outperforms individual AR (94.8%)
and TL (98.6%). Based on our literature survey, AR+TL also
outperforms the state-of-the-art SCR system using LSTM [39]
(98.13%) on this Arabic speech commands dataset.
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Figure 4: The best-1 accuracy values of Baseline, the state-of-
the-art wav2vec model [25], and the proposed AR+TL system
on the Lithuanian speech command dataset. We follow the same
evaluation metrics in [25] and only reported the best-1 test ac-
curacy values.

Table 3: Testing results (average and std of the accuracy scores)
of two conditions (3, and 10 training samples) for the Lithua-
nian speech commands dataset.

Limit System Avg. Acc. (%) Rel. Imp. (%) Std.

3 Baseline+Aug 39.5 - ±8.65
TL+Aug 65.9 66.8 ±4.52

AR+TL+Aug 70.2 77.7 ±2.72

10 Baseline+Aug 65.3 - ±8.80
TL+Aug 81.7 25.1 ±2.64

AR+TL+Aug 87.4 33.8 ±2.63

3.3. Ablation Study: Combining Adversarial Reprogram-
ming with Data Augmentation

As mentioned in Section 2, AR could be easily combined with
TL and achieve the highest performance. It is thus very natu-
ral to assume that we can combine AR with other low-resource
training techniques and further improve the performance of the
whole system. To verify whether AR has such flexibility, we
combine AR with Data Augmentation (Aug), another standard
approach when training DL-based systems with limited amount
of data. In our experiments, we utilize SpecAugment [41], a
common data augmentation method in the speech processing
field which randomly masks input features by zero along both
time and frequency axes. We dynamically perform augmenta-
tion to generate additional data during training. We compare the
results by combining Aug with the Baseline, TL, and AR+TL
systems mentioned above. We respectively denoted the three
systems as Baseline+Aug, TL+Aug, and AR+TL+Aug.

Table 3 shows the testing results of the Lithuanian Speech
command dataset when each keyword has 3 or 10 training sam-
ples. Compared with the results in Table 1, data augmentation
can improve and stabilize the performance of the AR and TL
systems by a large margin. Similar results can be observed as
those from Table 1. First, TL+Aug improves the performance
by 66.8% and 25.1% as compared to Baseline+Aug. Then,
AR+TL+Aug again achieves the highest average accuracy of
70.2% and 87.4% among the three systems, which is notably
better than TL+Aug (65.9% and 81.7%) and Baseline+Aug
(39.5% and 65.3%), under the conditions of 3 and 10 train-
ing samples. Moreover, the lower std values also show that
AR combined with data augmentation can improve the stabil-
ity of the systems. The results show that AR could be success-
fully combined with data augmentation schemes and further im-
proves the SCR system under low-resource scenarios.

4. Conclusion
In this paper, we introduce an AR approach to establish an
SCR system with a very limited amount of training data. Ex-
perimental results show that the proposed AR-SCR system
can yield better performance as compared with state-of-the-art
SCR methods on the Lithuanian and Arabic speech command
datasets [39, 25]. The results also demonstrate that AR can ef-
fectively improve the accuracy over the baseline with few train-
able parameters on the Arabic dataset. Meanwhile, we also
show AR has great flexibility to combine with different low-
resource training techniques, such as transfer learning and data
augmentation. In our future work, we will explore to further
improving the AR-SCR performance by combining it with self-
supervised learning methods. Meanwhile, we will open our
source code and all hyperparameters with pre-trained models.
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