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Abstract
The lack of clean speech is a practical challenge to the develop-
ment of speech enhancement systems, which means that there
is an inevitable mismatch between their training criterion and
evaluation metric. In response to this unfavorable situation,
we propose a training and inference strategy that additionally
uses enhanced speech as a target by improving the previously
proposed noisy-target training (NyTT). Because homogeneity
between in-domain noise and extraneous noise is the key to
the effectiveness of NyTT, we train various student models by
remixing 1) the teacher model’s estimated speech and noise
for enhanced-target training or 2) raw noisy speech and the
teacher model’s estimated noise for noisy-target training. Ex-
perimental results show that our proposed method outperforms
several baselines, especially with the teacher/student inference,
where predicted clean speech is derived successively through
the teacher and final student models.
Index Terms: speech enhancement, noise remixing

1. Introduction
Speech Enhancement (SE) aims to improve audio quality by
removing noise from speech signals. It has a wide range of ap-
plications, such as the front-end of automatic speech/speaker
recognition systems [1, 2], where the SE module removes
noise from noisy inputs, thereby improving recognition re-
sults. The success of current SE development mainly relies on
training data containing many pairs of clean and noisy speech
[3, 4, 5, 6, 7, 8, 9, 10, 11]. During training, noisy speech is usu-
ally synthesized by mixing clean speech and noise so that the
SE model can be trained to transform the noisy speech into its
corresponding clean speech. This traditional training scheme,
called clean-target training (CTT) [12], is suitable for various
specific applications due to environmental changes. However,
due to the higher cost and lower convenience of recording, it
is challenging to collect clean speech and in-domain noise in
real-world scenarios.

Many methods that operate without clean speech and in-
domain noise have recently been proposed to address this prob-
lem [3, 13, 12, 14, 15, 16]. Belonging to one branch of un-
supervised SE1, where no subjective/objective speech quality
metrics are included as learning reference, and the traditional
ground truth (i.e., training targets) does not exist in this kind
of SE task, researchers have to explore alternatives, which are
close to clean speech, for the corresponding noisy speech.

1As described in [14], unsupervised SE can be defined that the use
of paired/parallel noisy and clean speech during training is prohibited
or infeasible. Fu et al. accordingly further divided unsupervised SE
tasks into three levels: 1) clean speech or in-domain noise is required;
2) noisy speech is required; and 3) no training data is required [17].

To this end, the noisy-target training (NyTT) method pro-
posed by Fujimura et al. [12] takes a significant step forward
by directly treating original noisy speech as the training target.
The original noisy speech is used to mix with extraneous noise
to form noisier input speech that needs to be enhanced. The
extraneous noise can be any corpus of noise recordings other
than the in-domain noise. (The authors pretend not to have real
in-domain noise for training.) Despite NyTT’s competitive per-
formance, it shares a disadvantage with CTT-based SE models
trained with paired clean and noisy data. That is, NyTT only
performs well when the extraneous noise is close to the realistic
in-domain noise contained in the training/test noisy speech. If
the extraneous noise is not similar to the in-domain noise, the
out-of-domain (OOD) issue can easily distract the processing
power of the NyTT model because it has to deal with different
noise than the noise seen in training.

To overcome the OOD problem, various unsupervised al-
gorithms have been proposed. For example, mixture invariant
training (MixIT) in speech separation enables unsupervised do-
main adaptation and learning from large amounts of real-world
data without needing ground-truth source waveforms [18]. Al-
though MixIT has been successfully adapted to other SE tasks,
it requires access to the in-domain noise. To address this is-
sue, Tzinis et al. proposed RemixIT [19, 20], which adopts
a teacher-student training framework to achieve state-of-the-
art (SoTA) performance on various unsupervised and semi-
supervised SE tasks. The framework’s flexibility allows using
any SE model as the teacher model.

It is known that when the training data used for an SE model
matches the test data, the performance of the test is higher,
and vice versa. This makes domain matching a critical perfor-
mance factor. This is especially important in real-world scenar-
ios where the noise is complex, and it is challenging to synthe-
size similar noise during model training. We believe that this
issue needs to be addressed urgently. Therefore, inspired by
CTT, NyTT, and RemixIT, we propose a new training and infer-
ence strategy based on a teacher-student structure, which uses
noisy and enhanced speech as a target for SE without any clean
speech. The novelty of this study spans the following aspects:
1) Our strategy, called Ny/EnhTT2, can skillfully extract out

the in-domain noise related components from noisy speech
with the assistance of extraneous noise. This helps alleviate
the effect of domain mismatch.

2) We explore several student models that vary concerning the
use of enhanced speech, noisy speech, and the estimated in-
domain noise. This helps the teacher model to extract more
reliable in-domain noise.

2The code is open-sourced on https://github.com/
Sinica-SLAM/Ny-EnhTT.
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Figure 1: An overview of the proposed strategy for training and inference, where X, N, Y, and S denote noisy speech, noise, synthe-
sized noisy speech, and enhanced speech, respectively, in the sense of mini-batches. The blue dashed line only exists when Bootstrap
Θ0

T is trained by NyTT. The gray dashed line shows the flow of how the estimated in-domain noise N̂in is obtained from the k-th
inference-in-training by Teacher Θk

T , i.e., N̂k
in = X− Ŝk

T . Students Θk
Si

(i = 1, ..., 6) are elaborated in Section 3.1.

3) We discover that the resulting teacher-student model is more
suitable for a strategy of inference called the teacher/student
inference, where predicted clean speech is derived succes-
sively through the teacher and final student models. This
makes the performance of NyTT further improved.

2. Related Work
2.1. Noisy-target Training (NyTT)

Traditionally, supervised SE methods are based on CTT, use
clean speech as the training target, and the noisy input speech
is synthesized by mixing clean speech and noise. Unlike CTT,
in NyTT [12], clean speech is replaced by noisy speech. As
shown in Fig. 1 (the blue part), the mini-batch Y ∈ RB×M

of the noisy input speech is synthesized by mixing the noisy
speech X ∈ RB×M and the noise N ∈ RB×M , where B is the
batch size, and M is the signal length. The input Y is then fed
into the model to get the estimated speech Ŝ ∈ RB×M . NyTT
uses the mean squared error as the loss function to update the
model in each iteration:

LNyTT =
1

B
||X− Ŝ||2F , (1)

where || · ||F is the Frobenius norm.

2.2. RemixIT

RemixIT is a teacher-student training framework with SoTA
results on several unsupervised and semi-supervised denoising
tasks by adapting a model’s domain to another domain [20]. It
uses the speech and noise the teacher model estimates to form
paired training data for student model training. Specifically, the
model trained with OOD data is the initial teacher model Θ0

T .
When training k-th epoch, the teacher model Θk

T estimates the
speech Ŝk

T ∈ RB×M and noise N̂k
in ∈ RB×M from the in-

domain noisy speech X ∈ RB×M :

(Ŝk
T , N̂

k
in) = Θk

T (X). (2)

Then, the new noisy speech Y ∈ RB×M for training the student
model is synthesized by mixing the estimated speech Ŝk

T , and
the shuffled estimated noise Ñk

in = PN̂k
in ∈ RB×M . P is

a B × B permutation matrix used to generate random-order
estimated in-domain noise from N̂k

in.
The teacher model Θk

T is updated according to one of the
following Teacher Update Protocols (TUPs):
• Static teacher: The teacher model is not updated during the

training of the student model.
• Exponentially moving average teacher: For each epoch, the

teacher model is replaced by the weighted sum of the latest
student model and the current teacher model, i.e., Θk+1

T =

γΘk
S + (1− γ)Θk

T , where γ = 0.005.
• Sequentially updated: The teacher model is replaced by the

latest student model every K epochs. However, we do not
consider this protocol our TUP because the results are worse
than the baseline in the task of VoiceBank-DEMAND.

3. Proposed Method
3.1. Training Framework

We use NyTT to train the initial teacher model. The blue lines
in Fig. 1 illustrate the training process of Bootstrap Θ0

T and
the inference-in-training process of the teacher model Θk

T . The
noisy speech X and the extraneous noise Next ∈ RB×M are
mixed into the noisy input speech Y. Different from the loss
function in Eq. 1, referring to the DEMUCS architecture [21],
the model is updated by minimizing the mean absolute error of
the noisy speech X and the estimated noisy speech Ŝk

T .
Given the initial teacher model Θ0

T , the epoch size E, the
number of mini-batch Nm, the batch size B, and TUP, we fol-
low the teacher-student training process of RemixIT. In k-th
epoch, we first sample a batch of noisy speech X and initialize
a random B×B permutation matrix for shuffling the estimated
in-domain noise N̂k

in. We then estimate speech and in-domain
noise from X and remix in-domain noisy speech for student
model training. After the student model is trained, the teacher
model is updated according to the given TUP.

We propose six methods to train the student model, each
of which, Ny/EnhTT-i, is for Student Θk

Si
in Fig. 1. Note that

Nk in Fig. 1 can be either samples from estimated in-domain
noise, samples from estimated in-domain and extraneous noise,
or mixtures of estimated in-domain and extraneous noise. The
six methods are described as follows:
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• Ny/EnhTT-1 (for Student Θk
S1

) takes the noisy speech X as
input (i.e., Y = X) and the speech, Ŝk

T , estimated by the
teacher model as the target.

• Ny/EnhTT-2 (for Student Θk
S2

) takes the remix of estimated
speech Ŝk

T and noise Nk as input (i.e., Y = Ŝk
T +Nk) and

Ŝk
T as the target. Nk contains only estimated in-domain noise

(i.e., Nk = N̂k
in).

• Ny/EnhTT-3 (for Student Θk
S3

) takes the remix of estimated
speech Ŝk

T and noise Nk as input (i.e., Y = Ŝk
T +Nk) and

Ŝk
T as the target. Nk is a mixture of estimated in-domain and

extraneous noise (i.e., Nk = N̂k
in +Next).

• Ny/EnhTT-4 (for Student Θk
S4

) takes the remix of noisy
speech X and noise Nk as input (i.e., Y = X + Nk) and
X as the target. Nk contains only estimated in-domain noise
(i.e., Nk = N̂k

in). Its complete training process is summa-
rized in Algorithm 1.

• Ny/EnhTT-5 (for Student Θk
S5

) takes the remix of noisy
speech X and noise Nk as input (i.e., Y = X + Nk) and
X as the target. Each sample in Nk is from N̂k

in and Next.
• Ny/EnhTT-6 (for Student Θk

S6
) takes the remix of noisy

speech X and noise Nk as input (i.e., Y = X + Nk) and
X as the target. Nk is a mixture of estimated in-domain and
extraneous noise (i.e., Nk = N̂k

in +Next).
Note that N̂k

in is “predicted” or “estimated” by the k-th teacher
model, not “real” in-domain noise.

3.2. Teacher/Student Inference

As mentioned in Section 1, the enhanced speech Ŝ0
T still con-

tains some in-domain noise that cannot be removed entirely by
the initial NyTT model Θ0

T . Although Grzywalski et al. claim
that performing speech enhancement through the same network
up to five times improves speech intelligibility [22], there is no
significant improvement when we pass noisy speech through
Θ0

T twice (see Table 1).
Instead of using the same model in multi-stage inference,

we successively use the initial teacher model Θ0
T and the final

model (i.e., Θk
Si

or γΘk
Si

+ (1− γ)Θk
T ) for the teacher/student

inference. The teacher model Θ0
T enhances noisy speech in the

first inference. Then, in the second inference, we feed the en-
hanced speech into k-th student model Θk

Si
or the model whose

parameters are the weighted sum of the parameters of the kth
teacher model and the kth student model, i.e., γΘk

Si
+ (1 −

γ)Θk
T . We were surprised to see a considerable improvement

in this practice. We will show the effect of different k values on
the experimental results in Section 4.4.

4. Experiments
4.1. Datasets

We used VoiceBank-DEMAND as the in-domain noisy speech
dataset [23]. The training set consists of 28 speakers (11,572
utterances) with four signal-to-noise ratios (SNR: 15, 10, 5, and
0 dB). The test set consists of two speakers (824 utterances)
with four SNRs (17.5, 12.5, 7.5, and 2.5 dB). We also used
the CHiME-3 backgrounds as the extraneous (OOD) noise set
[24]. DEMAND and CHiME-3 backgrounds are part of the
training noise set in the original NyTT study [12], but DE-
MAND and CHiME-3 backgrounds were constructed from dif-
ferent authors, environments, recording devices, noise sources,
etc. Hence, we think they are not in the same domain. There

Algorithm 1 Proposed Training Process for Ny/EnhTT-4

1: Given the initial teacher model Θ0
T , the epoch size E, the

number of mini-batch Nm, and the batch size B
2: for k ∈ {0, . . . , E} do
3: for each batch batchj , j = 1, . . . , Nm do
4: Sample noisy speech X← {xi}Bi=1

5: P← Initialize a random B×B permutation matrix
6: Estimate speech using teacher Ŝk

T ← Θk
T (X)

7: Estimate in-domain noise N̂k
in ← X− Ŝk

T

8: Remix in-domain noisy speech Y ← X+PN̂k
in

9: Update student model Θk
Si
← NyTT(Y)

10: end for
11: if TUP is Static then
12: Teacher model remains the same Θk+1

T ← Θk
T

13: else if TUP is Exponentially moving average then
14: Update teacher model Θk+1

T ← γΘk
Si

+(1−γ)Θk
T

15: end if
16: end for

might be some similarities between them at the signal level, but
we do not know.

4.2. Model Structure

We used DEMUCS as the model architecture [21]. It was de-
veloped for real-time SE in the waveform domain and has been
widely adopted in academia and industry. It consists of a U-net
connected encoder and decoder, and the configurable parame-
ters are the number of layers (L) and the number of initially
hidden channels (H). We upsampled the input audio by the re-
sampling factor U , fed it to the encoder, and downsampled the
model’s output by the sampling rate of the original input. The
i-th layer of the encoder consists of a convolutional layer with
a kernel size of K, a stride of S, and 2i−1H output channels,
followed by a ReLU activation and a 1× 1 convolution with an
output channel of 2iH , and a GLU activation that converts the
number of channels to 2i−1H . A sequence model between the
encoder and decoder is an LSTM network with two layers (each
with 2L−1H hidden units). We adopted a causal version of DE-
MUCS; therefore, the LSTM was unidirectional. The i-th layer
of the decoder takes 2L−iH channels as input. It performs 1×1
convolution of 2L−i+1H channels, a GLU activation function
for 2L−iH output channels, a transposed convolution of kernel
size 8, stride 4, and 2L−i−1H output channels, and a ReLU
function in sequence. There is no ReLU function in the last
output layer. The experimental parameters are U = 4, S = 4,
K = 8, L = 5, and H = 48.

4.3. Training Details

All our models were trained by the Adam optimizer with a step
size of 3 × 10−4, a momentum of β1 = 0.9, and a denomi-
nator momentum β2 = 0.999. We used the Shift, Remix, and
BandMask data augmentation methods proposed by Défossez
et al. [21]. Shift is to apply a random shift from 0 to n sec-
onds. Remix shuffles the noises in a batch to form new noisy
mixtures. BandMask is a band-stop filter with a stop band be-
tween f0 and f1, sampled to remove 20% of frequencies in the
Mel scale. All audio is sampled at 16 kHz. We randomly chose
an SNR between −5 and 5 dB when mixing two signals.

The NyTT baseline was trained for 500 epochs using
VoiceBank-DEMAND (noisy speech) and CHiME-3 (extrane-
ous noise). This baseline NyTT model was also used as the ini-
tial teacher model. Each student model with the static teacher
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Table 1: Results of the baseline and our proposed models, which
use “static teacher” as TUP, on VoiceBank-DEMAND.

Method PESQ STOI

S T/S S T/S

NyTT 2.20 2.21 0.932 0.932

Ny/EnhTT-1 2.04 2.22 0.923 0.932
Ny/EnhTT-2 2.07 2.22 0.928 0.932
Ny/EnhTT-3 2.10 2.20 0.928 0.930
Ny/EnhTT-4 2.04 2.26 0.927 0.933
Ny/EnhTT-5 2.10 2.26 0.928 0.932
Ny/EnhTT-6 2.19 2.28 0.930 0.931

Table 2: Results of the baseline and our proposed models,
which use “exponentially moving average teacher” as TUP, on
VoiceBank-DEMAND.

Method PESQ STOI

S T/S S T/S

NyTT 2.20 2.21 0.932 0.932

Ny/EnhTT-1* 2.20 2.36 0.927 0.928
Ny/EnhTT-2* 2.22 2.37 0.926 0.927
Ny/EnhTT-3* 2.11 2.27 0.923 0.926
Ny/EnhTT-4* 2.22 2.37 0.927 0.928
Ny/EnhTT-5* 2.15 2.31 0.924 0.927
Ny/EnhTT-6* 2.11 2.27 0.923 0.926

as TUP was trained for 500 epochs. Each student model with
the exponentially moving average teacher as TUP was trained
for 35 epochs. Because the training data did not contain clean
speech, and there was no validation set for selecting the best
model, we constantly tested the model after the last epoch in
the experiments.

4.4. Results

The results are shown in Table 1 and Table 2. The top row shows
the results of the NyTT baseline, which is used as the initial
teacher model for training our proposed models. Table 1 shows
the results of student models trained with a static teacher. Table
2 shows the results of student models trained with an exponen-
tially moving average teacher. S refers to only using the stu-
dent model for inference. T/S refers to using the initial teacher
model for the first inference and the student model for the sec-
ond inference. Two standardized metrics were used to evalu-
ate the SE performance: perceptual evaluation of speech qual-
ity (PESQ) [25], and short-time objective intelligibility measure
(STOI) [26].

Table 1 shows that all student models trained with the static
teacher performed worse than the baseline in single-stage in-
ference in terms of PESQ. However, almost all student models
outperformed the baseline in the teacher/student inference. No-
tably, the best performer among these models is Ny/EnhTT-6,
trained with a mixture of estimated in-domain and extraneous
noise as input. The mixture of estimated in-domain and ex-
traneous noise is relatively similar to the training noise of the
baseline, thereby giving Ny/EnhTT-6 comparable performance
to the baseline. Compared with other models, Ny/EnhTT-6
showed less improvement in the teacher/student inference. A
similar trend was also observed in the results of Ny/EnhTT-3.

Comparing Table 1 and Table 2, we found the student mod-
els trained with the exponentially moving average teacher out-

Table 3: PESQ achieved by various existing (un)supervised
SE methods on VoiceBank-DEMAND. † indicates that external
noisy data is used during training.

Method Clean Speech? S T/S

SEGAN [27] ✓ 2.16 N/A
MetricGAN [28] ✓ 2.86 N/A
DEMUS [9] ✓ 3.07 N/A
CMGAN [29] ✓ 3.41 N/A

NyTT† [12] ✗ 2.30 N/A
MetricGAN-U (full) [17] ✗ 2.13 N/A
NyTT (our implementation) ✗ 2.20 2.21
Proposed (Ny/EnhTT-4*) ✗ 2.22 2.37

Table 4: PESQ achieved by different teacher models Θk
T

used the teacher/student inference on VoiceBank-DEMAND.
The model of Ny/EnhTT-4 with “exponential moving average
teacher” as TUP is the student model.

k 0 2 4 6 8 10

PESQ 2.371 2.372 2.368 2.366 2.363 2.359

performed the student models trained with the static teacher
in terms of PESQ. Some models outperformed the baseline
in single-stage inference, and all models performed well in
the teacher/student inference. However, in terms of STOI, the
student models trained with the exponentially moving average
teacher were worse than those trained with the static teacher and
the baseline, which requires further study.

Table 3 compares our best model with previous super-
vised and unsupervised models. It can be seen that the su-
pervised models are still more capable than the unsupervised
models. When comparing the unsupervised models, our self-
implemented NyTT model and our best Ny/EnhTT-4* model
were inferior to the NyTT model in single-stage inference [12].
Possible reasons are as follows. First, the model structure is
slightly different. Second, we used a causal model architecture,
which is less effective than a non-causal one but more practical
in real-world applications. Third, the original NyTT study used
more training data than this work.

Moreover, we explore the effect of different teacher models
Θk

T in the teacher/student inference. In Table 4, we find that
when k ≤ 2, the overall performance slightly increases, but
the results are worse afterward (when k > 3). The closer Θk

T

is to the final student model (when k is larger), the worse the
performance is.

5. Conclusions and Future Work
In this paper, we have proposed a training and inference strategy
for SE to mitigate the shortcomings of NyTT and other super-
vised methods. Our proposed method combines CTT, NyTT,
and RemixIT and uses enhanced speech to estimate in-domain
noise. Our experiments show that the exponentially moving av-
erage is the best teacher protocol for unsupervised SE tasks. It
is also found that the teacher/student inference helps our pro-
posed framework further to improve the performance in terms
of PESQ and STOI. In the future, more powerful models, such
as a non-causal DEMUCS or its transformer-based version, will
be implemented in this framework. Furthermore, we will ana-
lytically investigate why the teacher/student inference leads to
a performance boost. It can provide another perspective for de-
signing more efficient teacher-student frameworks without the
need for multiple stages of inference.
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ment generative adversarial network,” in Proc. Interspeech, 2017.

[28] S.-W. Fu, C.-F. Liao, Y. Tsao, and S.-D. Lin, “MetricGAN: Gen-
erative adversarial networks based black-box metric scores opti-
mization for speech enhancement,” in Proc. ICML, 2019.

[29] R. Cao, S. Abdulatif, and B. Yang, “CMGAN: Conformer-based
MetricGAN for speech enhancement,” in Proc. Interspeech, 2022.

2477


