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ABSTRACT

The demand for augmented reality (AR) and virtual reality
(VR) is steadily rising. To provide the best user experience in
a virtual environment, their applications must ensure consis-
tency between the visual and audio signals perceived by the
users. For example, when an avatar (sound source) speaks
while moving, the arrival direction of the avatar changes. In
this paper, we introduce a voice direction of arrival (DOA)
conversion task that aims to change the DOA of speech sig-
nals while keeping the remaining components unaltered. Fur-
thermore, we propose DOAC-Net, a novel speech DOA con-
version system that can perform causal speech DOA conver-
sion. The results show that DOAC-Net can effectively convert
the DOA of multi-channel speech signals with little distortion,
while maintaining speech quality and intelligibility.
Index Terms: direction-of-arrival (DOA), audio conversion,
DOA conversion, multi-channel audio conversion, stereo au-
dio conversion

1. INTRODUCTION

The demand for augmented reality (AR) and virtual reality
(VR) applications, such as virtual online conferences, has
gained increasing attention. Smooth integration of audio and
video signals plays a key role in AR and VR applications. In
a virtual online conference, as we explore the surroundings
or communicate with other participants, we expect the sound
source to reflect the relative spatial positions of the avatars.
On the other hand, when listening to oral presentations, it is
preferable for the audio to continually originate from directly
ahead to avoid distractions. Therefore, for audio signals, the
direction of arrival (DOA) is a key component that indicates
the sound source of interest in the augmented or virtual envi-
ronments. In other virtual scenarios, such as virtual games,
plays, or concerts, converting DOAs on the fly is also a de-
sirable feature to achieve a more immersive experience. In
this study, we investigate the causal DOA conversion based
on deep learning (DL) for the first time.

The DOA is the arrival direction of the audio wave rela-
tive to a set of receivers, such as human ears or a microphone
array [1]. The DOA estimation is widely utilized for locating
and tracking signal sources (e.g., sonar, emergency search and
rescue, etc). Numerous research works have been have been

conducted to accurately estimate the DOA for a given set of
received audio signals using either estimation-theory- [2, 3]
or DL-based methods [4]. Besides, in other research [5, 6],
the multiple audio waves are further combined into one sig-
nal based on beamforming techniques. The beamformed sig-
nals generally possess better audio quality with reduced noise
and interference components; in the meanwhile, DOA infor-
mation is discarded. On the contrary, another research work
focuses on simulating a set of audio waves from a single au-
dio source with a specified DOA information [7, 8]. With
the simulated audio waves, listeners or microphone arrays can
identify the direction of the audio signals.

To the best of our knowledge, no previous work has inves-
tigated the task of voice DOA conversion that involves chang-
ing the DOA of audio signals while keeping the other audio
content unaltered. In this study, we implemented a novel
voice DOA conversion system, called DOAC-Net based on
the ResNet architecture. To perform the DOA conversion us-
ing traditional methods, a three-stage framework is conceiv-
able: (1) inferring the source DOA of the received signals, (2)
converting incoming multi-channel audio to a single-channel
one by MVDR beamforming (or similar) techniques, and (3)
forwarding the beamformed audio and the DOA parameter
obtained from stage (1) to the Pyroomacoustics (PyRoom)
simulator [7] to generate outputs of designated DOA. How-
ever, PyRoom simulator requires detailed information such
as the room size, source location, and locations of the micro-
phone array, which usually remain unknown to users. Thus, in
the proposed DOAC-Net, we transfer the received set of audio
waves to a specific DOA angle end-to-end. When performing
voice DOA conversion, DOAC-Net directly generates the au-
dio signals with a specified target DOA and leaves the remain-
ing components of received audio signals unchanged. The
comparison of the integration of the traditional methods and
the proposed end-to-end system is illustrated in Fig. 1.

We used speech signals from the VCTK corpus to pre-
pare audio data and the PyRoom simulator to generate paired
training data with arbitrary DOAs. In the experiments, two
DOA estimation methods were used to evaluate the resulting
signals, the traditional MUSIC [2] and a DL method (termed
DOAE-Net in the following). We note that, based on the pro-
posed DOA estimation method, DOAC-Net can accurately
convert the DOAs of audio signals according to our specifi-
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cations.
The remainder of this paper is organized as follows: In

Section 2, the related works, including the DOA estimation,
acoustic beamforming, and speech conversion, are reviewed.
Section 3 introduces the proposed DOAC-Net system. The
experimental setup and results are presented in Section 4. Fi-
nally, Section 5 concludes our work.
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Fig. 1. The top panel is the visualization of voice DOA con-
version; the bottom panel includes the flowcharts of (a) the
traditional three-stage conversion and (b) the proposed end-
to-end neural network (NN)-model.

2. RELATED WORKS

2.1. DOA Estimation

For DOA estimation, we generally assume that the received
signal satisfies the far-field condition, and a microphone ar-
ray is required. That is, assuming that the signal is a plane
wave, the angle of the signal relative to the array is considered
to be the DOA. Among the DOA estimation techniques, one
representative class is MUSIC [2] and its various extensions
[9, 10, 11]. Another is the rotation-invariant subspace-based
methods that include ESPRIT [3] and its extensions [12, 13].
Notably, analytical algorithms such as MUSIC and ESPRIT
set out from strong mathematical assumptions that restrict
the possible application scenarios. In fact, recall that a m-
channeled temporal signal x(t) =

∑K
i Ai e

−iωit + v(t) ∈
Cm of K source signals and noise v(t), the covariance ma-
trix [14] of the combined signal x is given by Rx = E[x(t) ·
x∗(t)] such that Rx is an m×m self-adjoint (Hermitian) ma-

trix, R∗
x = Rx. Thus, Rx can be decomposed into,

Rx =

m∑
j=1

λj uj ⊗ u∗
j (1)

with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λm ∈ R and the cor-
responding (orthonormal) eigenvectors u1, . . . , um ∈ Cm by
spectral decomposition theorem [15]. There is also a natu-
ral project operator associated to the spectral decomposition,
P =

∑m
j=1 uj ⊗ u∗

j . Therefore, there is a cut-off we need
to decide which eigen-decompositions belong to the noise
and which belong to the K sources. By choosing a thresh-
old j∗ ∈ N, we manually determine below the noise level
λj∗ ≥ · · · ≥ λm is deemed as noise. Correspondingly, we
have a noise projection operator Pnoise =

∑m
j>j∗ uj ⊗ u∗

j .
The MUSIC then utilizes a function f(v) = 1

||Pnoise(v)||2 to
detect DOA since

f(v) =
1

||Pnoise(v)||2
=

{
∞ v ∈ {u1, . . . , uj∗}
finite v ∈ {uj∗ , . . . , um}

(2)

In summary, there are two inherent constraints in MUSIC as
follows: (1) it considers that the clean signal must be louder
than the noise (eigenvalues) and (2) the number of noise sig-
nals and clean sources combined cannot exceed the micro-
phone number m. Note that both conditions can be easily
violated as in the real world there is no constraint on the
noise volume and the number of noises and acoustic sources.
By looking into the analytical methods, we need to bear in
mind that these signal-processing-based approaches are gen-
erally designed based on strong assumptions of signal models.
Although they have been widely used in real-world applica-
tions, their achievable performance drops when the assump-
tions fail.

Recently, DOA estimation based on DL techniques has
gained significant attention. Generally speaking, these meth-
ods use DL models to directly characterize the relationship
between the input signal and DOA [16, 17]. It has been shown
that the DL-based approaches can provide high DOA esti-
mation accuracy with reduced computational complexity as
compared to MUSIC and ESPRIT; moreover, they have bet-
ter generalization capabilities to be implemented in realistic
scenarios, where inevitable noise and reverberation may be
involved.

2.2. Acoustic Beamforming

Acoustic beamforming performs two major functions: sig-
nal extraction and source localization. When multi-channel
sound signals are available, acoustic beamforming can re-
trieve the signal of interest with high quality. Among var-
ious acoustic beamforming techniques, MVDR [18, 19, 20]
and its extensions (such as LCMV and GSC) [21, 20] con-
stitute a representative group. These methods have found ex-
tensive usage across a diverse range of speech-related applica-
tions. The main idea of MVDR is to minimize the interference



and noise sources while keeping the desired signal distortion-
less in a specific direction (i.e., DOA of the desired signal).
More recently, DL has been introduced to perform acoustic
beamforming [22, 23]. Compared to traditional beamform-
ing methods (such as MVDR), the DL-based approaches can
yield better performance and possess the advantages of being
trained along with downstream tasks [6, 24].

2.3. Speech Conversion

The purpose of speech conversion is to modify the prop-
erties of speech, such as speech content, emotion, accents,
and speaker characteristics. Maintaining the remaining com-
ponents unchanged while manipulating the target property
poses a challenge. Unlike the discrete nature of texts or fig-
ures, it is difficult to annotate the continual speech signals
of variable lengths. With the surge in DL techniques, neu-
ral network (NN)-based models have achieved state-of-the-art
performances, particularly in speaker conversion and emotion
transformation [25, 26]. The NN-based models were shown
to have a better ability to disentangle the target conversion
component and maintain unchanged components from the
speech signals.

However, voice DOA conversion has not received ample
attention. It is important to note that multi-channel speech
signals carry additional spatial information. With such spatial
information, humans can locate the sound source. Therefore,
the DOA information is important for applications in AR and
VR fields, where it is necessary to establish the spatial rela-
tionship of avatars and imitate moving sound sources in real
time. In this study, we first considered the DOA as the main
component of interest and other factors in speech as the re-
maining components to perform voice DOA conversion.

3. MODEL ARCHITECTURE

3.1. Audio Type

The input and label data are assumed to be m-channel audio
signals in temporal form, denoted by x = (x1, . . . , xm) ∈
Rm×T and y = (y1, . . . , ym) ∈ Rm×T , respectively, where
each xi, yi ∈ RT is a mono-channel audio of length T .

3.2. The DOA Conversion Net

The ground-truth DOA of an m-channel input x is denoted as
θx. DOAC-Net is designed to be an end-to-end function f :
Rm×T ×R1 → Rm×T , given a designated DOA shift ϕ such
that the output f(x, ϕ) produces target DOA θf(x,ϕ) ∼= θx+ϕ.
The DOAC-Net consists of three parts f = F−1 ◦ h ◦ F ,
where F : Rm×T → Cm×k×T̃ is the complex Short-Time
Fourier-Transform (STFT) converting temporal signals to a
complex k-Fourier space with F−1 : Cm×k×T̃ → Rm×T de-
noting its inverse operation. The STFT function F is fixed
with no unknown parameters to be varied. Therefore, the

parameters to be trained in f solely come from the network
h. The main network h receives a target shift ϕ such that
h( · , ϕ) : Cm×k×T̃ → Cm×k×T̃ converts from one spectrum
to another, with the following structure (see Fig. 2).
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Fig. 2. The left panel is the structure of DOAC-Net/DOAE-
Net. It should be highlighted that the angle embedding is only
used in DOAC-Net. The right panel details the structures of
the residual block. Conv2D represents the 2D convolution
layer, where c denotes the number of filters and k denotes the
kernel size. f is the size of the output feature in the dense
layer.

The spectrum conversion net h utilizes the ResNet [27] as
the building block, which is composed of various 2D convo-
lution layers and batch-normalization layers (Fig. 2). We take
stride 1 in every ResNet module and remove the pooling lay-
ers so that the STFT frame number can always match the time
dimension. Under such construction, h takes a multi-channel
complex spectrogram x̃ = (x̃1, . . . , x̃m) ∈ Cm×k×T̃ and a
target angle ϕ ∈ R as input. This target angle (in radians)
is first processed by an angle encoder to get an angle embed-
ding, which then entangles with the complex spectrogram x̃
to inject and integrate the desired anglar information.



To train the end-to-end neural network f , we define a loss
function in the k-Fourier space for h in that

L(h) = ∥h(x̃, ϕ)− ỹ∥Cm×k×T̃ (3)

where ỹ = F(y) is the spectrum of the target audio y.

3.3. The DOA Estimation Net

The DOA Estimation Net (DOAE-Net) was designed to
tackle the problem mentioned in Section 2.1, where the
performances of the MUSIC algorithm were significantly
hampered in the presence of noise or reverberation. Since ex-
traction of the DOA information is the key concept no matter
in the DOA conversion and DOA estimation tasks, we used
a similar ResNet-based structure as the DOAC-Net with the
target angle removed and a few linear layers concatenated at
the end to predict the ground truth DOA θx. The training of
DOAE-Net used the Mean Absolute Error (MAE) as the loss
function.

L(g) = |g(x̃)− θx|R (4)

where g denotes the DOAE-Net.

4. EXPERIMENTS

4.1. Experimental Setup

The speech corpus selected for our task was the Voice-Bank
Corpus [28], consisting of monaural (single-channel) clean
speech uttered by 110 English speakers. Each speaker spoke
approximately 400 sentences. We randomly selected 2500
clean utterances as the training set and another 250 utterances
for testing to build up our own dataset at a sampling rate of
16kHz. However, this dataset remained purely monaural due
to the source of Voice-Bank. To conduct DOA conversion
experiments, we required a multi-channel audio dataset with
various DOA information within our control. Therefore, the
Pyroomacoustics [7] (PyRoom) package was used to synthe-
size the multi-channel audio by generating a room impulse re-
sponse (RIR) with virtual space settings. The generated RIRs
were convolved with the mono-sound signals to simulate the
spatial sound signals.

A virtual audio environment can be easily created in Py-
Room, in which we build up a rectangular room of size 40×
40m2 along with a linear 2-microphone array placed at the
room center, as shown in Fig. 3. The 2-microphone array
has linear separation of 0.1m to receive a sound source in the
room. The incident angle of a source to the microphone array
is defined as the Direction of Arrival (DOA), which is calcu-
lated counterclockwise from the x-axis. The source is placed
at a fixed distance of 5m from center of the microphone. Be-
cause of the front and rear symmetry of the 2D linear array,
we only considered possible DOA angles ranging from 0◦ to
180◦ with a 10◦ separation.

The geometrical setting of the source with the Voice-Bank
corpus resulted in a total of 47500 = 2500 × (18 + 1) utter-
ances for the training set and 3800 = 200 × (18 + 1) utter-
ances for the testing set, where all these utterances were from
2-channels due to the PyRoom simulation.

Fig. 3. Virtual room to generate our multi-channel speech
data using PyRoom. A linear 2-microphone array is at
the room center to receive a sound source from DOA θ ∈
[0◦, 180◦]. The DOAC net aims to convert the original sound
source incident at an angle θ to a target sound of an assigned
DOA ϕ, as shown in Fig. 1.

Fig. 4. Results of DOA prediction using MUSIC and DOAE-
Net in with reverb and without reverb environments.

4.2. DOA Conversion Results

4.2.1. DOA Evaluation

To evaluate the efficiency of the proposed method, we first
compared the performance of two DOA estimation methods
(DOAE-Net and MUSIC). Then, we used these two methods
to estimate the DOA of the resulting output. As shown in
Fig. 4, the proposed DOAE-Net outperforms MUSIC in both
clean and reverberant environments. It is worth mentioning
that the DOAE-Net achieves a 0.30 MAE of DOA prediction
in a reverberant environment, which is close to that in the
clean environment (0.28).



Fig. 5. Resulting plot of estimated DOA and target DOA us-
ing DOAE-Net and MUSIC. Blue and orange dots denote out-
put signals of DOAC-Net and ground truth, respectively.

Table 1. Detailed PESQ, STOI, DOA prediction scores of
DOAC-Net. For DOA prediction, difference and correlation
are displayed.

PESQ STOI DOAE-Net MUSIC
5◦ 3.81 0.980 6.79/0.990 2.84/0.996
10◦ 3.70 0.986 5.89/0.994 2.85/0.998
20◦ 3.61 0.984 6.84/0.991 3.27/0.993

Next, we trained DOAC-Nets with different DOA inter-
vals (5◦, 10◦and 20◦), and compared the corresponding re-
sults as shown in Fig. 5; the blue dots represent the DOA es-
timated using DOAC-Net and the target DOA, whereas the
orange dots represent the estimated DOA of the generated
ground truth and the target DOA. Ideally, we would like to de-
rive a 45◦straight line to indicate that the proposed algorithm
maps the multi-channel input to another with an assigned pre-
cise target DOA assigned. The results are also listed in Ta-
ble 1, and the DOA prediction can be evaluated by the differ-
ence and the correlation. As shown above, indeed we obtain
a distribution of the blue dots close to the diagonal. Another
interesting finding is that the converted signals are more ac-
curate for the MUSIC algorithm than for DOAE-Net, partic-
ularly at both ends 0◦& 180◦. We speculate that there is more
distortion when the DOA conversion becomes larger. This
distortion leads to poor model predictions.

4.2.2. Measuring Converted Audio Quality

To evaluate the fidelity of multi-channel converted audio sig-
nals, we first applied MVDR beamforming (from multi chan-
nels) to derive single-channel audio, and subsequently mea-
sured the PESQ and STOI scores, which are widely used as
a speech quality and intelligibility metrics. As shown in Ta-
ble 1, both PESQ and STOI acquired high scores, indicating

that the signal still retains its high quality and intelligibility
after conversion. We also compared the performances of dif-
ferent DOAs. Most of the scores improved mostly except
for PESQ from 5◦ to 10◦ and all degrade from 10◦ to 20◦.
The reasons behind this trend is that for small DOA inter-
vals, the model is relatively difficult to learn (distinguish) the
difference between neighboring DOA signals, while for large
DOA intervals, the DOA variability of training data is limited
that cause the angle embedding difficult to learn the angle in-
formation. Therefore, 10◦ was determined to be the optimal
DOA interval.

5. CONCLUSION

The DOA of audio signals is an important component for lo-
cating the desired sound source in an augmented or virtual
environments. To improve users’ hearing experiences in vir-
tual games, concerts, or plays, the ability to convert DOAs
instantaneously is crucial. Therefore, in this study, we pro-
posed the DOAC-Net, a causal end-to-end DOA conversion
system. In our model, speech signals were generated with
the specified target DOA, while the content and quality of
the received speech signals remained unchanged. Our results
demonstrated that DOAC-Net effectively converts the DOA
of multi-channel speech signals with minimal distortion. In
the future, we will explore the use of visual signals to guide
speech DOA conversion.
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