
  

 

Abstract— The assessment of a frozen shoulder (FS) is critical 

for evaluating outcomes and medical treatment. Analysis of 

functional shoulder sub-tasks provides more crucial 

information, but current manual labeling methods are time-

consuming and prone to errors. To address this challenge, we 

propose a deep multi-task learning (MTL) U-Net to provide an 

automatic and reliable functional shoulder sub-task 

segmentation (STS) tool for clinical evaluation in FS. The 

proposed approach contains the main task of STS and the 

auxiliary task of transition point detection (TPD). For the main 

STS task, a U-Net architecture including an encoder-decoder 

with skip connection is presented to perform shoulder sub-task 

classification for each time point. The auxiliary TPD task uses 

lightweight convolutional neural networks architecture to detect 

the boundary between shoulder sub-tasks. A shared structure is 

implemented between two tasks and their objective functions of 

them are optimized jointly. The fine-grained transition-related 

information from the auxiliary TPD task is expected to help the 

main STS task better detect boundaries between functional 

shoulder sub-tasks. We conduct the experiments using wearable 

inertial measurement units to record 815 shoulder task 

sequences collected from 20 healthy subjects and 43 patients 

with FS. The experimental results present that the deep MTL U-

Net can achieve superior performance compared to using single-

task models. It shows the effectiveness of the proposed method 

for functional shoulder STS. The code has been made publicly 

available at https://github.com/RobinChu9890/MTL-U-Net-for-

Functional-Shoulder-STS. 

 
Clinical Relevance— This work provides an automatic and 

reliable functional shoulder sub-task segmentation tool for 

clinical evaluation in frozen shoulder. 

I. INTRODUCTION 

Frozen shoulder (FS) is a shoulder condition associating 
with pain and stiffness that often limits the function of 
shoulder and the ability for daily living [1, 2]. Assessment of 
FS is critical for evaluating outcomes to clinical intervention, 
treatment, and follow up progress. In recent years, several 
works [3-5] employed wearable sensors to analyze kinematic 
movements in patients with FS while they perform daily 
shoulder tasks. These studies demonstrated that wearable-

based measurement approach could catch the movement 
characteristics of affected shoulders and provide objective and 
quantitative scales for clinicians. Particularly, Lu et al. [6] 
have suggested that the complex functional shoulder tasks 
could be divided into a series of sub-tasks for further 
assessment. The extracted characteristics and kinematics from 
sub-tasks provide kinematic information related to impaired 
shoulders in patients with FS compared to that from the 
complete shoulder task. However, the current annotation of 
shoulder sub-tasks from the continuous streaming data still 
relies on manual observation and operation, which is 
exhausting and may serve as the main barrier in clinical 
practice. Moreover, the manual errors and inter-observer 
variability affects the reliability of the obtained kinematics 
from the sub-tasks [6, 7]. Therefore, an automatic and reliable 
functional shoulder sub-task segmentation (STS) model is 
needed to support clinical evaluation and to alleviate burden 
of clinical professionals. 

Conventional human movement segmentation approaches 
mainly utilized sliding window techniques to divide a 
successive sensing data into several windows and identify 
these windows with machine learning classifiers [8-10]. The 
prior study [7] has shown its feasibility in functional shoulder 
STS in healthy subjects and patients with FS, which achieves 
acceptable 83.23% F1-score. Nevertheless, the selection of 
suitable window size and overlapping percentage is still a 
challenging and time-consuming process during the 
development. Furthermore, the larger overlapping ratio often 
results in high computational complexity [11]. In order to 
tackle the aforementioned challenges, the advanced semantic 
segmentation models based on deep learning (DL) can serve 
as viable approaches to support efficiently automatic 
movement segmentation. DL-based semantic segmentation 
models have been successfully developed in the applications 
of medical image [12, 13] and audio signal processing [14]. 
This approach can classify each image pixel or data frame as 
an object category with DL methods [15, 16]. The critical 
advantage is that it allows to directly process the whole raw 
data without any framing, and effectively catch global 
information [17]. 

One of the popular DL-based semantic segmentation is 
fully convolutional network (FCN) [12]. An FCN only 
contains convolutional layers but no fully connected layer, 
which enables it to process images with arbitrary size and 
produce a segmentation map with the same size at the final 
layer. Among variants of FCN, U-Net [13] is one of the most 
well-known networks for biomedical image segmentation. The 
architecture of U-Net comprises two parts, a contracting path 
as an encoder and an expansive path as a decoder. The 
contracting path follows a typical layout of convolutional 
neural network (CNN) without fully connected layers to 
extract the spatial context of input images. The expansive path 
has a symmetric structure of contracting path, but max-pooling 
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layers are replaced with up-convolutional layers to increase 
feature map dimensions. Several works have applied U-Net to 
activity recognition and human movement segmentation [18, 
19]. Nonetheless, the limited training data is still a challenge 
restricting the effectiveness of U-Net in wearable-based 
activity recognition and segmentation, due to the numerous 
parameters of U-Net. 

Multi-task learning (MTL) has been widely applied to 
improve performance, generalization and accuracy by 
combining related/different tasks for jointly learning. 
Especially, MTL has the potential to improve the performance 
of neural networks with limited training data [20]. Several 
researches have successfully employed MTL in activity 
recognition and segmentation [21-23]. For example, Peng et 
al. [21] developed MLT-based approaches to jointly recognize 
simple and complex activities, which mined the 
commonalities and differences between them to improve 
recognition accuracy. Chen et al. [22] presented a deep multi-
task learning based activity and user recognition (METIER) 
model to solve activity recognition and user recognition 
jointly, which used soft sharing architecture and attention 
mechanism to exploit important features simultaneously and 
transfer knowledge across tasks. 

Inspired by the advantages of DL-based semantic 
segmentation and MTL, we propose a deep MTL U-Net for 
functional shoulder STS to support FS assessment, which 
involves the main task of STS and auxiliary task of transition 
point detection (TPD). For the main STS task, a U-Net 
architecture including encoder-decoder with skip connection 
is presented to perform shoulder sub-task classification for 
each time point. For auxiliary TPD task, a lightweight 
convolutional neural networks (CNN) architecture is 
employed to detect the boundary between shoulder sub-tasks, 
which shares the parameters with the STS encoder. The 
knowledge extracted from TPD is expected to preserve critical 
boundary information that could help main task execute more 
precise transition detection and achieve better STS. 

The main contribution is summarized as follows: (i) To 
provide an automatic and reliable functional shoulder STS tool 
for clinical evaluation in FS, we propose a deep MTL U-Net 
model to boost STS performance with the auxiliary TPD task. 
(ii) We evaluate the proposed model on healthy subjects and 
patients with FS and compare it with the STS performance 
using single-task models. (iii) The experimental results 
demonstrate the effectiveness of the proposed method for 
functional shoulder STS. 

II. PROPOSED METHOD 

A. Data Preprocessing 

Before fed into the network, all time-serial data is first 
denoised with simple moving average (SMA) filter by 
averaging a group of samples [24]. A 5-point SMA filter is 
calculated as (1), where ��  is the filtered sample, �  is the 
original sample, and �  is the sample index. The example 
smoothed time-serial data is presented in Fig. 1 (a). 
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Next, we apply zero-padding to each filtered time-serial 

sequence ��  for length resizing [25]. This resizing process 

ensures all sequences to the same size. Let �� be the length of 
sequence � , and ����  is the maximum of ���|∀� ∈ �1, ��� , 
where �  is the total number of sequences. Zero values are 
added before and after each original time-serial sequence to 

ensure the new sequence �� have the same length equal to ����, 
as shown in Fig. 1 (b).  

The added zero samples are labeled as a new sub-task class 
to be distinguished from the original shoulder sub-task 
samples. The sub-task boundaries in each IMU sequence are 
normalized with a respect to ���� . The class label sequence 
 � �!�|∀!� ∈ ", � ∈ �1, ������  and the transition points set 

# � $%&|∀%& ∈ �1, �����, ' ∈ (1, �)*+ of resized sequence �� 

are illustrated in Fig. 1 (c), where " is the sub-task class set, 
and �) is the number of sub-task boundary 

B. Deep MTL U-Net 

Fig. 2 presents the architecture of the proposed deep MTL 
U-Net. The structure can be separated into three parts: the STS 
encoder ,- , the STS decoder ,. , and the transition point 
detector ,/. ,- and ,. perform sub-task classification on each 
time point for the STS task while ,- and ,/ perform the TPD 
task. Both tasks share the parameters of ,-.  

,-  contains recurrent union of two convolutional layers 
with kernel size of 1-by-3 and one max-pooling layer with 
kernel size as 1-by-2. The number of convolutional kernels is 
doubled after each max-pooling layer. Padding as 1 and stride 
as 1 are set for convolutional layers to maintain the sequence 
length. The final contextual encoding is next passed to ,. and 
,/ respectively. 

,.  has a symmetry structure of the encoder, but max-
pooling layers are replaced with up-convolutional layer having 
kernel size as 1-by-2 to increase length and cut channel 
number in half. After up-convolution, the feature is 
concatenated with the sequence from corresponding encoder 
layer to conserve extracted spatial characteristics. For the last 
layer, a convolutional layer with kernel size as 1-by-1 is used 
for mapping the feature sequences to the class number. 

 
(a)  

 
(b) 

 

 
 

 

 
(c) 

Figure 1. Illustration of time-serial data with data preprocessing. (a) The 

filtered time-serial data ��. (b) The time-serial data with zero padding ��. (c) 

The corresponding class label sequence   and transition points set # for ��. 



  

,/  uses multilayer perceptron (MLP) as the main 
component. We flatten the contextual encoding from the 
output of ,-, and then input them to two fully connected layers 
with 210 and 4 neurons. 

Given an IMU sequence with zero padding �� �
$�0�

�,�|∀� ∈ �1, �����, 1 ∈ 2, 3 ∈ 4+, where �0�  is the sample 

point at time point �, 2 is the modality set, and 4 is the axis 
set. The corresponding class label sequence   and the 
transition points set # are determined as the target for STS and 

TPD respectively. The predicted class label sequence  5 �
�!̂�|∀!̂� ∈ ", � ∈ �1, ������  from ,.  and the predicted set of 

transition points #� � $%̂&|∀%̂& ∈ �1, �����, ' ∈ (1, �)*+  from 

,/ are given formally by (2) and (3): 

 5 � ,.7,-8��; :-;; :.<,  (2) 

#� � ,/7,-8��; :-;; :/<, (3) 

where :- , :. , and :/  are the parameters of ,- , ,. , and ,/ , 
respectively. 

The total loss "=>>/?/�@  contains two losses "=>>ABA  and 
"CBDE, which are given formally by (4)-(6): 

"=>>/?/�@ � F"=>>ABA G 71 H F<"=>>BDE, (4) 

"=>>ABA �  I8 5,  ;, (5) 

"=>>BDE � 2JI8#�, #;, (6) 

where F is the weight to balance "=>>ABA and "=>>BDE,  I is 
cross entropy loss function, and 2JI is mean square error loss 
function. 

III. EXPERIMENTS 

A.  Data Collection 

This study collects a dataset containing time sequences of 
functional shoulder tasks collected from IMUs. We recruit 63 
subjects, including 20 healthy subjects (10 males, 17 right-
handedness, age: 24.55±3.76 years old, height: 168.60±6.73 

cm, weight: 67.95±15.34 kg) and 43 patients with FS (16 
males, 18 right side affected, 7 both sides affected, age: 
57.63±10.58 years old, height: 171.77±47.91 cm, weight: 
63.10±11.38 kg). Five functional shoulder tasks are selected 
from the Shoulder Pain and Disability Index (SPADI) 
questionnaire [26], containing washing head (WH), washing 
upper back (WUB), washing lower back (WLB), putting an 
object on a high shelf (POH), and removing an object from the 
back pocket (ROB). The data collection is approved by the 
institutional review board (TSGHIRB No.: A202005024) at 
the university hospital. All subjects are provided informed 
consent and voluntary for participation. 

Each task is performed once in one recording session and 
is divided into three shoulder sub-tasks. A total 815 shoulder 
task sequences are recorded in this study, where 100 sequences 
performed by healthy subjects and 715 sequences performed 
by patients at their first and follow-up visits. The longest 
sequence length ����  is 3798. The shoulder sub-task 
description of five selected shoulder tasks is shown in Table I. 
Sub-task 1, 2, and 3 of different tasks are trained as the same 
class to validate the generality of the proposed method. Two 
IMUs (APDM Inc., Portland, USA) with sampling rate of 128 
Hz are fastened to the wrist and upper arm of the dominant side 
for healthy subjects and the affected side for patients. Each 
IMU contains a tri-axial accelerometer (range: ±16 g, 
resolution: 14 bits) and a tri-axial gyroscope (range: ±2000 °/s, 
resolution: 16 bits) to collect time-serial data with 4 
modalities, including acceleration of wrist, angular velocity of 
wrist, acceleration of upper arm, and angular velocity of upper 
arm, and 3 axes for �0�. 

B. Implementation Details 

The element number of sub-task class set "  is four, 
including three functional shoulder sub-task and one zero-
padding class. The number of sub-task boundary �) is four. 

The optimizer is AdamW with an initial learning rate of 0.001. 

 
Figure 2.  The architecture of proposed deep MTL U-Net 



  

A total 128 epochs are used for mini-batch training, where the 
batch size is 64. 

This work utilizes 10-fold cross validation on the collected 
dataset for performance evaluation. Three common metrics are 
chosen as the criteria for performance evaluation, including 
recall, precision, and F1-score. 

The experiments are processed and examined on python 
3.9 in a Windows 11 environment with a GPU of NVIDIA 
RTX 3080. The deep learning network is programed using 
PyTorch 1.12.1 with CUDA 11.6. The code is available at 
https://github.com/RobinChu9890/MTL-U-Net-for-
Functional-Shoulder-STS. 

C. Experimental Results 

The results using different weight value 7F< for the deep 
MTL U-Net are depicted in Fig. 3. When the weight value F is 
0.1 for "CABA and "CBDE, both STS and TPD tasks can reach 
their best performance of 89.92% and 87.88% in F1-score, 
respectively. 

To demonstrate the effectiveness of the proposed deep 
MTL U-Net for STS, we compare the proposed method with 
baseline models without MTL, including a single-task U-Net 
for STS and a single-task CNN for TPD. These simplified 
networks have the same experimental details, and their 
parameters are optimized. The experiment results are 
presented in Table 2. It shows that the proposed deep MTL U-
Net can reach superior performance to the single-task models. 
The F1-score on STS and TPD are increased by 0.66% and 
0.32%, respectively. Moreover, the segmentation f1-score 
(89.92%) of the proposed model notably outperforms that 

(83.23%) of the prior study [7] approach using conventional 
sliding window and machine learning techniques. 

When performing STS and TPD tasks jointly, MTL could 
transfer knowledge across them, which are hard to learn by 
single-task models. On one hand, for STS task, the fine- 
grained information of transition from TPD task is considered 
while performing time-serial segmentation by giving TPD task 
large weight. It helps STS task have better ability to tackle the 
boundary between sub-tasks. On the other hand, the TPD task 
obtains critical contextual knowledge from STS task to 
efficiently detect transition points between sub-tasks with only 
a relatively small weight for STS task. Moreover, the 
differences between STS and TPD tasks are the inductive bias, 
joint learning and sharing parameters could improve 
generalization ability of both tasks. 

IV. CONCLUSION 

In this work, we propose deep MTL U-Net to provide 
automatic functional shoulder STS for clinical evaluation in 
FS. We apply an MTL architecture to combining the encoder-
decoder U-Net and CNN structures, where the former 
performs the main STS task and the latter performs the 
auxiliary TPD task. This study conducts an experiment using 
wearable IMUs to record 815 functional shoulder tasks, which 
are collected from 20 healthy subjects and 43 patients with FS. 
The experimental results present that the proposed methods 
can achieve superior performance compared to using single-
task models. It shows the effectiveness of proposed deep MTL 
U-Net for functional shoulder STS. Future work aims to 
exploit other deep learning methods to boost STS performance, 
such as gated recurrent unit (GRU), and self-attention 
mechanism. Another intent is to recruit more healthy seniors 
to reduce the age gap between healthy subjects and FS patients. 

  

TABLE I.  SHOULDER SUB-TASK DESCRIPTION OF FIVE SHOULDER 

TASK 

Task Sub-task Description 

WH 

1 Lift up both hands toward the head 

2 Wash head for a few seconds 

3 
Put down both hands and return to the initial 

position 

WUB 

1 
Lift up the dominant / affected hand toward the 

upper of back 

2 Wash upper back for a few seconds 

3 
Put down the dominant / affected hand and return 

to the initial position 

WLB 

1 
Lift up the dominant / affected hand toward the 

lower of back 

2 Wash lower back for a few seconds 

3 
Put down the dominant / affected hand and return 

to the initial position 

POH 

1 
Lift up the dominant / affected hand toward a 

high shelf while holding a smartphone 

2 Hold the hand for a few seconds 

3 
Put down the dominant / affected hand and return 

to the initial position 

ROB 

1 

Putting a smartphone from the initial position to 

the back pocket with the dominant / affected 

hand 

2 Hold the hand for a few seconds 

3 

Removing the smartphone from the back pocket 

to the initial position with the dominant/affected 

hand 

 

TABLE II.  THE PERFORMANCE COMPARISON BETWEEN DEEP MTL 

U-NET AND SIMPLIFIED MODELS 

Task Structure Reca (%) Prea (%) F1a (%) 

STS 
Deep MTL U-Net 90.31 89.64 89.92 

U-Net only (without ,B)  89.52 89.08 89.26 

TPD 
Deep MTL U-Net 88.26 87.61 87.88 

CNN only (without ,E) 87.62 87.55 87.56 

a. Rec: Recall, Pre: Precision, F1: F1-score 

 

 
Figure 3.  The performance line chart of segmentation decoder and transition 

points detector in proposed multi-tasks network with different F. 
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