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Abstract—Falls are the public health issue for the elderly all 

over the world since the fall-induced injuries are associated with 
a large amount of healthcare cost. Falls can cause serious 
injuries, even leading to death if the elderly suffers a “long-lie.” 
Hence, a reliable fall detection (FD) system is required to 
provide an emergency alarm for first aid. Due to the advances 
in wearable device technology and artificial intelligence, some 
fall detection systems have been developed using machine 
learning and deep learning methods to analyze the signal 
collected from accelerometer and gyroscopes. In order to 
achieve better fall detection performance, an ensemble model 
that combines a coarse-fine convolutional neural network and 
gated recurrent unit is proposed in this study. The parallel 
structure design used in this model restores the different grains 
of spatial characteristics and capture temporal dependencies for 
feature representation. This study applies the FallAllD public 
dataset to validate the reliability of the proposed model, which 
achieves a recall, precision, and F-score of 92.54%, 96.13%, and 
94.26%, respectively. The results demonstrate the reliability of 
the proposed ensemble model in discriminating falls from daily 
living activities and its superior performance compared to the 
state-of-the-art convolutional neural network long short-term 
memory (CNN-LSTM) for FD. 

Keywords—sensor applications, ensemble learning, fall 
detection, deep learning 

I. INTRODUCTION 

Falls are a common health issue worldwide, particularly 
for the elderly. Globally, one-third of people aged over 65 fall 
at least once per year [1]. Poor physical ability and fitness 
increase the chance of injury and death when a fall occurs [2, 
3]. In addition, the association between the mortality rate and 
waiting time for rescue shows a positive correlation [4]. When 
the elderly experience a fall and lie on the ground for more 

than 2.5 h (a “long lie”), the mortality rate increases to 50% 
[5]. Therefore, developing a reliable fall detection (FD) 
system for first aid purposes is essential. 

With the progress of micro-electro-mechanical systems 
(MEMS), several types of wearable sensors have been used to 
collect long-term sequential data for FD systems, including 
wearable accelerometers [6-10], barometers [9], and cameras 
[11]. Among these, wearable accelerometers are the most 
popular for collecting data in FD system development because 
of their low cost, compactness, miniaturization, and 
noninvasive nature. Previous studies [6-10] have 
demonstrated the feasibility of accelerometer-based FD 
systems. 

Several studies have developed FD systems using typical 
machine learning (ML) methods, such as support vector 
machine (SVM) [4, 6, 7], Naïve Bayes (NB) [6], k-nearest 
neighbor (kNN) [6], and decision tree (DT) [6]. These 
methods require several handcrafted features, relying on the 
domain knowledge of researchers and requiring extensive 
research. A previous study demonstrated the limited detection 
performance of typical ML methods in more complicated 
experimental setups [9]. Compared with typical ML, deep 
learning (DL) methods, including convolutional neural 
network (CNN) and recurrent neural network (RNN), can 
extract features automatically and directly from raw data. 
Several studies have shown that DL-based FD systems have 
better detection abilities than typical ML-based approaches [9, 
12, 13]. 

CNNs are generally applied in FD systems [9, 13], which 
can extract the spatial features of raw data using convolutional 
filters. Santos et al. [10] proposed a CNN-based FD system 
with data augmentation preprocessing that achieved 99.86%, 



 

 

100%, and 99.72% in accuracy, precision, and sensitivity, 
respectively. RNNs, which are another common DL model 
that use cells to store time-series information, are ideal for 
analyzing temporal data. As a fall can be represented as a 
temporal sequence, RNNs are used in FD systems to address 
the temporal characteristics. Two common variants, the long 
short-term memory (LSTM) and gated recurrent unit (GRU), 
were developed to avoid the vanishing gradient problem in the 
traditional RNN model. Francisco et al. [7] validated the 
effectiveness of RNN in wearable-based FD systems. Each 
temporary segment was classified as a fall event, fall hazard, 
or activity of daily living (ADL). Their method achieved 
96.7%, 69.5%, 90.2%, 73.0% in accuracy, precision, 
sensitivity, and F-score, respectively. They also demonstrated 
that a GRU-based FD system has a detection performance 
similar to that of an LSTM-based FD system but requires a 
slightly lower computing complexity owing to the smaller 
number of parameters. 

Some research has focused on combining CNN and RNN 
in different structures to further improve FD performance. Xu 
et al. [14] developed a state-of-the-art model for FD called 
CNN-LSTM, which applies a sequential structure that passes 
the features extracted by convolutional filters to the RNN 
layers in series. Their results demonstrated that FD using 
CNN-LSTM has a better detection ability than conventional 
RNN. However, combining a CNN and RNN in a sequential 
structure may dilute the contribution of the CNN features to 
the FD ability, whereas the RNN post-processes features. 

To address this issue, a parallel structure may serve as a 
viable approach to reserve critical CNN features for FD. For 
example, Avilés-Cruz et al. [15] combined CNN networks 
with a parallel structure named coarse-fine CNN for ADLs, 
involving several branches with an inconsistent number of 
convolution and max-pooling layers to reserve different grains 
of features and provide more information for training a better 
classifier. The coarse-fine CNN method used in [15] showed 
superior performance compared to typical CNN methods. 
However, such a parallel structure combining the coarse-fine 
CNN model has not yet been applied in FD systems. 

Motivated by previous approaches, we propose an 
ensemble neural network model of a parallel structure 
combining a coarse-fine CNN and GRU for an FD system. 
The proposed method applies a coarse-fine CNN and GRU to 
gather the different grains of spatial and temporal features, 
respectively. A parallel structure can restore the features 
extracted by different neural networks and avoid possible 
dilution in a sequential structure. In addition, the proposed 
model employs a simple concatenation process to merge the 
extracted spatial and temporal features. We conducted 
experiments on the public FallAllD [9] dataset to validate the 
reliability of the proposed framework. The results show that 
the proposed network successfully incorporates temporal and 
coarse-fine spatial features and achieves superior performance 
compared to other DL models for FD. 

II. II. MATERIAL AND METHODS  

A. Public FallAllD Dataset 

FallAllD [9] is a public dataset containing several types of 
falls and ADLs recorded by inertial measurement units (IMUs) 
worn on the neck, waist, and wrist of subjects. A total of 6605 
instances, including 1722 fall instances and 4883 ADL 
instances, were performed by 15 subjects (eight males and 
seven females). Each instance contained streaming data for 20 

s. The transition phase of the ADL instances and the impact 
point of the fall instances were centered at the 10th second of 
each instance. Each IMU consisted of a tri-axial accelerometer 
(measuring range: ±8 g; sampling rate: 238 Hz), a tri-axial 
gyroscope (measuring range: ±2000 degree per second; 
sampling rate: 238 Hz), a tri-axial magnetometer (measuring 
range: ±4 Gauss; sampling rate: 80 Hz), and a barometer 
(measuring range: 10-1200 mbar; sampling rate: 10 Hz). 

Only tri-axial acceleration data recorded from the IMU on 
the waist was applied in this study to validate the proposed 
ensemble FD network, which involved 466 fall instances and 
1332 ADL instances. The preprocessing process adopts 
downsampling and sliding-window techniques to segment 
raw data as input for the proposed model. Each instance was 
downsampled from 238 Hz to 20 Hz. The sliding window 
technique, with a window size of 7 s and 50% overlapping, 
was applied to divide each instance. For each ADL instance, 
all segments were adopted as the data, but only segments 
containing the fall impact signal were adopted as fall instances. 
A total of 6260 segments were used as input data through 
preprocessing, including 5328 ADL segments and 932 fall 
segments. Each segment is a two-dimensional data point with 
a size of 3 × 140. 

B. CNN 

A typical CNN comprises convolution layers, a nonlinear 
activation function, pooling layers, flattening, and fully 
connected layers. The convolution layers extract spatial 
features from the raw data with multiple filters sliding over the 
input data. The summation of the element-wise multiplication 
of a filter and receptive field of the input data is calculated as 
the layer output, as shown in Fig. 1. Each filter is trained using 
backpropagation and can represent different aspects of the 
input data. Nonlinear activation functions, such as the rectified 
linear unit (ReLU), sigmoid (S), and hyperbolic tangent (tanh) 
functions, are applied to the outputs of the convolution and 
fully connected layers to improve the accuracy of the classifier. 
The ReLU function, expressed by Equation (1), is commonly 
used in CNN 

𝑅𝑒𝐿𝑈(𝑥) =  
0,       𝑥 < 0
𝑥,       𝑥 ≥ 0

 (1) 

Pooling layers reduce the dimensions of the input data by 
applying certain rules inside the filter. Max pooling, the most 
common method, retrieves the maximum value inside the 
filter as output. After the convolution and pooling layers, the 
extracted two-dimensional features are flattened into one-
dimensional representations to be input into the fully 
connected layers. A fully connected layer computes the output 
vector using Equation (2), as follows:  

𝑦 =  𝜎(𝑤𝑥 + 𝑏) (2) 

Fig. 1 Illustration of convolutional computation  



 

 

where 𝑦 is the output vector, 𝑥 the input vector, 𝑤 the weight 
matrix, 𝑏 the bias vector, and 𝜎 is the layer activation function. 
We used the softmax function for the last fully connected layer 
and the ReLU function for the other fully connected layers. 
The softmax function was implemented to produce the 
normalized probabilities for each class. The coarse-fine CNN 
has the same structure as a typical CNN except for two 
branches with an inconsistent number of convolutional and 
max-pooling layers. 

C. GRU 

A GRU network is a variant of an RNN that significantly 
reduces the influence of the vanishing gradient problem, with 
similar performance but lower computing complexity than an 
LSTM network. A GRU network typically comprises GRU  

layers for extracting temporal features and fully 
connected layers to use the features for classification. Fig. 2 
shows the structure of a GRU component. The 𝑡  GRU 
component outputs hidden state ℎ , which is a vector that 
stores the information of past and present inputs, with input  

value 𝑥  and hidden state ℎ  produced by the last GRU 
component. The variables in Fig.2 were calculated using 
Equations (3)-(7). In these equations, parameters 𝑊 , 𝑊 , 
𝑊 , 𝑏 , 𝑏 , and 𝑏  were trained by backpropagation, where 
𝑊  is the weight matrix, and 𝑏  the bias vector. 𝑟  is the 
parameter of the reset gate, and 𝑧  is the parameter of the  

update gate, whose range is (0,1). The greater the 𝑧 , the 
more information ℎ  stores about 𝑥 . Operator ×  and + 
represent element-wise production and addition, respectively. 
Two activation functions, S and tanh, were applied; these are 
presented as Equations (8)–(9). 

𝑟 = 𝑆(𝑊 [ℎ , 𝑥 ] + 𝑏 ) (3) 

𝑧 = 𝑆(𝑊 [ℎ , 𝑥 ] + 𝑏 ) (4) 

ℎ = 𝑟 × ℎ  (5) 

ℎ = tanh 𝑊 ℎ , 𝑥 + 𝑏  (6) 

ℎ = ℎ × (1 − 𝑧 ) + ℎ × 𝑧  (7) 

𝑆(𝑥) =
1

1 + 𝑒
 (8) 

𝑡𝑎𝑛ℎ(𝑥) =
𝑒 − 𝑒

𝑒 + 𝑒
 (9) 

D. Proposed Model 

The proposed ensemble model comprises three branches 
for extracting different motion characteristics from the raw 
data: the coarse, fine, and temporal branches. Each branch 
contains a flattening procedure at the end to reshape the 
extracted features from two dimensions to one. Figure 3 
illustrates the structure of the proposed ensemble model. The 
three branches were designed to extract spatial and temporal 
features from the input sequence. 

 Coarse branch: The first branch extracts coarse-
grained spatial features from the raw signal. It 
comprises one convolutional layer with 32 3 × 3 filters 
and one max pooling layer with a 1 × 2 filter. 

 Fine branch: The second branch extracts fine-grained 
spatial features from the accelerometer signals. It 
involves two groups of a convolution layer with 32 
filters and a max-pooling layer with a 1 × 2 filter. The 
convolution layer filter size was 3 × 3 in the first group 
and 1 × 3 in the second. 

 Temporal branch. This branch captures temporal and 
contextual information from the movement signals 
performed. This model has two GRU layers, and each 
layer uses a 64-element array to represent the hidden 
state at each timestamp. 

The outputs of each branch are concatenated into a one-
dimensional vector as input for the fully connected layer. The 
first and second fully connected layers had 64 and two neurons, 
respectively. Softmax was the activation function of all 
convolutional layers and the first fully connected layer.  

The total loss of the system is the summation of the loss 
functions of the three branches, as expressed in Equation (10). 

𝑙𝑜𝑠𝑠 =  𝑙𝑜𝑠𝑠 + 𝑙𝑜𝑠𝑠 + 𝑙𝑜𝑠𝑠  (10) 

All loss functions are binary cross-entropies. The 
optimizer was Adam, with an initial learning rate of 0.01. 
Forty epochs were applied for model training, and the batch 
size for each epoch was 32. The proposed ensemble model 
was processed and analyzed on Python 3.8 in a Windows 10 
environment. For training, we used an NVIDIA GTX 1060 
graphic processor unit, and the CuDNN versions of the RNN 
layer provided were implemented in the Keras framework. 

E. Performance Evaluation 

This study applies the leave-one-subject-out (LOSO) 
cross-validation method to evaluate the performance of the 
proposed model. This method uses the data of one subject as 
the testing set and the remaining data as the training set. The 
process was repeated until all subject data were tested once. 

Three common evaluation metrics were considered to 
assess the model: accuracy, recall, precision, and F-score. The 
metrics were computed using Equations (11)–(14): 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (11) 

Fig. 2 Structure of a GRU component  



 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (12) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (13) 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =  2 ×
𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (14) 

where TP, FN, and FP are the true positive, false negative, and 
false positive, respectively. As the primary purpose of the 
proposed model is to detect fall events, falls and ADLs were 
defined as positive and negative, respectively. 

III. RESULT AND DISCUSSION 

Several typical models were implemented in FD systems 
using the FallAllD dataset to validate the superiority of the 
proposed ensemble model. For fairness, all models followed 

the same experimental setup as the proposed method, with 
their parameters optimized. Each structure was set up as 
follows: 

Simple CNN: Adopting a CNN architecture comprising 
two convolutional layers and two pooling layers.  

Simple GRU: Utilizing two GRU layers to process raw 
sensor data.  

Coarse-fine CNN: The coarse branch of Coarse-fine CNN 
uses a one-layer CNN structure; the fine branch shares the 
same architectural design as Simple CNN. 

CNN-LSTM: The state-of-the-art model for FD shares the 
same architectural design and hyperparameters as in a 
previous study [14]. It consists of two convolution layers, 
followed by two LSTM layers. 

CNN-GRU: The LSTM layers in the CNN-LSTM were 
replaced with GRU layers because these were used in the 
proposed model to extract temporal features. The remaining 
structure and hyperparameters were the same as that with 
CNN-LSTM. 

As shown in Table 1, the proposed model achieved recall, 
precision, and F-score values of 92.54%, 96.13%, and 94.26%, 
respectively. The CNN and Coarse-Fine CNN models have 
the best F-score of 93.52 % for FD among the other DL 
methods, revealing that FD using the proposed ensemble 
model outperforms those using typical DL approaches. In 
addition, the FD model using two-layer GRU achieves an F-
score of 92.71%, slightly lower than that of the CNN-based 
methods (93.52%). The performance of FD using these typical 
DL models are similar to that in a previous study [9]. 

The state-of-the-art FD model developed by Xu et al. [14] 
has been widely used to compare FD tasks [14, 16, 17]. To 
validate the superiority of the proposed ensemble approach, 
the CNN-LSTM-based FD is tested on the FallAllD dataset 
for comparison purposes. The results demonstrate that FD 
system using CNN-LSTM achieve F-score, recall, and 
precision values of 93.48%, 90.78%, and 95.49%, 
respectively; the proposed ensemble approach improves the F-
score, recall, and precision of FD by 1.76%, 0.64%, and 0.74%, 
respectively.  

To the best of our knowledge, the proposed approach is the 
first to apply a parallel structure design to increase FD 
performance. We validate the design using a parallel structure 
that could provide FD system with better detection abilities 
than using a sequential structure combining CNN and LSTM. 
An ensemble model involving coarse-fine CNN and GRU 
branches was proposed to further enhance the FD ability. The Fig. 3 Framework of the proposed ensemble model  

Table 1 Comparison table of performances of different models 

Method 
Evaluation Metrics 

Accuracy (%) Recall (%) Precision (%) F-score (%) 

Simple CNN 97.82 90.88 95.77 93.52 

Simple GRU 97.49 91.60 94.01 92.71 

Coarse-fine CNN 97.78 91.82 95.43 93.52 

CNN-LSTM 97.90 90.78 95.49 93.48 

CNN-GRU 97.69 89.56 95.42 92.24 

The proposed model 97.95 92.54 96.13 94.26 
 



 

 

results reveal that a parallel structure design that restores CNN 
and RNN features benefits FD, however, passing the output of 
convolutional layers to RNN can lose critical spatial 
characteristics in typical sequential structures (e.g., CNN-
LSTM and CNN-GRU). The feasibility of the parallel 
structure has also been validated in other classification studies 
[18]. In addition, a previous study [7] demonstrated that an FD 
system using GRUs can reduce computational complexity and 
achieve a detection performance similar to that using LSTM 
layers. Therefore, GRU layers, instead of LSTM layers, were 
employed in the proposed ensemble FD model. This setup 
allows the proposed FD approach to support the creation of a 
wearable-based FD system for long-term healthcare services. 

IV. CONCLUSION 

Falls are a concerning health issue among the elderly 
worldwide. To address this issue, a reliable and automatic FD 
system is required to detect falls and alert emergency services. 
This study proposes an ensemble model that combines a 
coarse-fine CNN and GRU to extract spatial and temporal 
features for FD. We show that FD using the proposed model 
achieves 92.54% in recall, 96.13% in precision, and 94.26% 
in the F-score and achieves superior performance to using 
typical DL models and the state-of-the-art CNN-LSTM. The 
results show that the proposed method can provide an FD 
system with a better ability to discriminate falls from ADLs. 

Future work will involve additional datasets to validate the 
effectiveness of the proposed approach. Several advanced 
models and mechanisms, such as residual learning [19] and 
self-attention [20] mechanisms, will be incorporated to 
enhance detection performance. 
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