
ar
X

iv
:2

30
9.

13
65

0v
1 

 [
ee

ss
.A

S]
  2

4 
Se

p 
20

23

CROSS-MODAL ALIGNMENT WITH OPTIMAL TRANSPORT FOR CTC-BASED ASR

Xugang Lu1∗, Peng Shen1, Yu Tsao2, Hisashi Kawai1

1. National Institute of Information and Communications Technology, Japan.

2. Research Center for Information Technology Innovation, Academic Sinica, Taiwan

ABSTRACT

Temporal connectionist temporal classification (CTC)-based

automatic speech recognition (ASR) is one of the most suc-

cessful end to end (E2E) ASR frameworks. However, due

to the token independence assumption in decoding, an ex-

ternal language model (LM) is required which destroys its

fast parallel decoding property. Several studies have been

proposed to transfer linguistic knowledge from a pretrained

LM (PLM) to the CTC based ASR. Since the PLM is built

from text while the acoustic model is trained with speech, a

cross-modal alignment is required in order to transfer the con-

text dependent linguistic knowledge from the PLM to acous-

tic encoding. In this study, we propose a novel cross-modal

alignment algorithm based on optimal transport (OT). In the

alignment process, a transport coupling matrix is obtained us-

ing OT, which is then utilized to transform a latent acoustic

representation for matching the context-dependent linguistic

features encoded by the PLM. Based on the alignment, the

latent acoustic feature is forced to encode context dependent

linguistic information. We integrate this latent acoustic fea-

ture to build conformer encoder-based CTC ASR system. On

the AISHELL-1 data corpus, our system achieved 3.96 % and

4.27 % character error rate (CER) for dev and test sets, respec-

tively, which corresponds to relative improvements of 28.39

% and 29.42% compared to the baseline conformer CTC ASR

system without cross-modal knowledge transfer.

Index Terms— End to end ASR, pretrained language

model (PLM), optimal transport, cross-modal alignment.

1. INTRODUCTION

End to end (E2E) model has achieved substantial improve-

ment in automatic speech recognition (ASR) in recent years

with several state of the art model frameworks [1], for ex-

ample, temporal connectionist temporal classification (CTC)-

based ASR [2], attention with encoder-decoder (AED)-based

ASR [3, 4, 5, 6], and recurrent neural network transducer

(RNN-T)-based ASR [7], etc. Among these E2E-ASR frame-

works, CTC-based ASR attracts a lot of attention. One of its

advantages is its non-autoregressive (NAR) decoding capabil-

ity, i.e., fast and parallel decoding in obtaining transcription

tokens since tokens in CTC are assumed to be independent.

However, this token independence assumption in CTC makes

it difficult for acoustic encoder to learn rich context depen-

dent linguistic information during model training. Therefore,

an external language model (LM) is often required as a post

processing to improve the ASR performance. In recent years,

the effectiveness of pretrained language models (PLMs) in

natural language processing (NLP) tasks has led to their fre-

quent usage as external language models for rescoring in ASR

[8, 9]. Using an external LM as another post-processing (e.g.,

beam search, rescoring, etc.) destroys the fast and parallel de-

coding property of CTC-based ASR. So here comes a ques-

tion: is it possible to explicitly encode rich linguistic infor-

mation in acoustic feature representation for the CTC-based

ASR without using any external LM for post processing. In

this study, rather than utilizing a PLM as an external LM,

we focus on how to transfer the context-dependent linguis-

tic knowledge from a PLM to acoustic feature representation

learning, and do recognition with CTC-based ASR only.

One of the most successful CTC-based E2E ASR frame-

works which enhances linguistic information in acoustic

encoder is based on a hybrid CTC/AED-based ASR model

framework [3, 4, 5, 6]. In this framework, an attention text

decoder with cross entropy induced attention loss and CTC

based loss are integrated in a multi-task (or objective) learn-

ing framework. The integration of the text decoder in model

learning allows the shared acoustic encoder to potentially

learn rich linguistic information [10, 11]. With multi-task

learning framework, several methods have been proposed to

learn linguistic information by inserting linguistic knowledge

in intermediate layers of acoustic encoders for ASR [12, 13].

In recent years, due to the success of self-supervised learn-

ing in feature exploration, knowledge transfer learning from

both pretrained acoustic model (e.g., wav2vec2.0 [14]) and

PLM (e.g., bidirectional encoder representation from trans-

formers (BERT) [15]) for ASR task also have been proposed

[16, 17, 18, 19, 20, 21, 22]. There are two strategies for

transferring linguistic knowledge from a PLM to ASR, one

strategy is to stack text encoder of the PLM on top of the

acoustic encoder in an ASR framework and fine tune both

encoders for the ASR task. The other strategy is to design

a multi-task (or objective) learning framework to transfer

linguistic knowledge from the text encoder branch to acous-

tic encoder branch for the ASR task. Several studies have
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been proposed based on these two strategies. For example,

in [23], it was suggested to stack a BERT text encoder on a

transformer-based acoustic encoder, allowing an NAR-based

ASR model to leverage the pretrained BERT-based language

model as a decoder for recognition. However, PLMs in NLP

are often trained for common NLP tasks such as question

answering, text summarization, and others. They are not

compatible with ASR tasks because these LMs are designed

to process standard text inputs. Moreover, stacking the PLM

in ASR decoding increases the inference complexity. From

the point view of knowledge distillation (KD) [24], when

transferring linguistic information encoded in a PLM to an

acoustic model, the PLM can be considered as the teacher

model while the acoustic model serves as the student model.

The rich textual knowledge from the teacher model can be

distilled to the student model through cross-modal knowledge

distillation during model training [25, 26, 27, 28]. During

recognition, only the student model is used, and the teacher

model is not involved in the decoding process for ASR.

Speech and text sequences, like two sides of a coin, pos-

sess shared knowledge that is represented in two modalities,

but their representation distributions and lengths are quite dif-

ferent. Most of the methods mentioned above encounter a

common problem, namely, how to efficiently align feature

representations between text and acoustic modalities to facil-

itate transfer knowledge from a PLM to an acoustic encoder.

One of the most successful alignment algorithms is based on a

cross-modal attention (CMA) modeling between the acoustic

and text representations within a transformer decoder frame-

work [29]. However, when the CMA based decoder is not

involved in decoding for ASR (e.g., the NAR based ASR

trained with CTC only), the efficiency of linguistic informa-

tion encoded in the acoustic encoder is limited. In this study,

we propose a novel cross-modal alignment method for trans-

ferring linguistic information encoded in a PLM for ASR. Our

method is based on optimal transport (OT) which was origi-

nally proposed in mathematics for measuring discrepancy be-

tween two probability distributions [30]. The OT has been ap-

plied for shape matching and domain adaptation in machine

learning [31, 32], in cross-domain spoken language recogni-

tion and speech enhancement [33, 34], in speech translation

[35, 36]. In this study, we adopt the OT for cross-modal align-

ment and knowledge transfer for ASR. Our contributions can

be summarized as follows:

1. We propose a cross-modal alignment and knowledge

transfer model based on OT and integrate the cross-modal

transfer loss with the CTC-based loss for training the acoustic

model.

2. To enable efficient knowledge transfer, we introduce

a cross-modal neural adapter that facilitates the transfer lin-

guistic knowledge from a PLM to the acoustic encoder.

3. We construct an ASR system using the proposed cross-

modal transfer learning algorithm and validate its effective-

ness through experiments.
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Fig. 1. Cross-modal matching and knowledge transfer. Only

modules or blocks in the dashed red box are used in inference

(recognition).

The remainder of this study is organized as follows: Sec-

tion 2 presents the proposed model framework in which the

cross-modal alignment based on OT is introduced. In Section

3, the experiments conducted are evaluated, and comparisons

with several advanced knowledge transfer learning algorithms

for ASR are presented. Finally, the conclusion is presented in

Section 4.

2. PROPOSED METHOD

In this study, the two modalities are an acoustic encoder with

CTC based acoustic model and BERT based text model. The

purpose for cross-modal knowledge transfer in our study is

to transfer the linguistic knowledge encoded in BERT to the

acoustic encoder for ASR. For efficient knowledge transfer,

an OT based alignment and transform is designed. The pro-

posed model framework is showed in Fig. 1. In this figure,

the two modalities are located in two branches, the left branch

consists of encoder blocks and a full-connection layer (FC1)

with softmax activation function which is trained with CTC-

based loss for speech recognition. The right branch is for

text processing based on a PLM (BERT). There is a con-

nection between these two modalities via an OT matching

block for cross-modal alignment. Moreover, a cross-modal

neural adapter (the blocks in gray in the left branch): Two

full-connection layers (FC2 and FC3) and two layer normal-

izations (LN) is attached to acoustic modality for efficient lin-

guistic knowledge transfer. The final feature representation

for ASR is an addition of the acoustic encoder output and

cross-modal adapter output. It is supposed that the feature

explored by this two-branch modalities will enhance the lin-

guistic information representation for ASR. We will introduce

the model framework in details in the following.



2.1. Acoustic feature representation in speech modality

In the left branch of Fig. 1, the original input acoustic feature

is X ∈ R
T×d, where T is the time length, d is the feature

dimension. The ‘CNN blocks Subsampling’ module is used

for speech feature transform and subsampling, which is com-

posed of two 2D convolution layers (with ReLU activation)

and one feed-forward layer. And each convolution is with a

stride larger than one for subsampling. After this subsampling

process, the position encoding (PE) is added before it is input

to the encoder blocks. The process is formulated as:

X̃ = CNNSubsampling (X)

Hin
0 = X̃+ PE

(

X̃
)

(1)

Acoustic encoder in Fig. 1 is a conformer based encoder

[37]. Each conformer block is composed of four consecu-

tive modules, i.e., feed-forward network (FFN) (FNN1) mod-

ule, multi-head self attention (MHSA) module, convolution

(Conv) module, and a second FFN (FFN2) module. The pro-

cessing in each conformer block is formulated as:

H1
l = Hin

l−1 +
1
2FFN1(H

in
l−1)

H2
l = H1

l +MHSA(H1
l )

H3
l = H2

l +Conv(H2
l )

H4
l = H3

l +
1
2FFN2(H

3
l )

H̃4
l = LN

(

H4
l

)

Hin
l = H̃4

l ,

(2)

where l takes values from 1 to L, with L representing the

total number of blocks, Hin
0 is the output of the CNN sub-

sampling process with position encoding defined in Eq. (1).

H̃4
L ∈ R

Ta×da is the final output of the conformer encoder

with length (temporal dimension) Ta, and feature dimension

da. This acoustic feature is utilized for speech recognition,

wherein a linear projection layer (FC1) is applied prior to us-

ing softmax to estimate the probability (P) of predicted to-

kens as:

P = Softmax
(

FC1
(

H̃4
L

))

(3)

Please note that in CTC-based model training, the token se-

quence is used the same as in the text modality (BERT to-

kenization) (refer to 2.2), and the symbols ‘ebos’ and ‘eeos’

represent the start and end of acoustic sequences.

2.2. Linguistic feature representation in text modality

In the right branch of Fig. 1, the context-dependent linguis-

tic representation is explored from a pretrained BERT model.

The process is formulated as:

ytoken = Tokenizer (y)
Z0 = [CLS,ytoken, SEP]

Zi = BERTi (Zi−1) ,
(4)

where ‘BERTi’ is the i-th transformer encoder layer of BERT

model, i takes values from 1 to M , with M representing

the total number of BERT encoder layers. ‘Tokenizer’ is a

process to convert standard text to word piece based tokens

[15]. Token symbols ‘CLS‘ and ‘SEP‘ represent the start

and end of an input sequence. ZM ∈ R
Tt×dt is the final

text representation which encodes context dependent linguis-

tic information, Tt denotes the sequence length, and dt repre-

sents feature dimension of text encoding representation. The

outputs of acoustic and text encoders, H̃4
L ∈ R

Ta×da and

ZM ∈ R
Tt×dt , are with different dimensional modalities,

a cross-modal alignment is required before comparing their

features.

2.3. Cross-modal alignment based on OT matching

The original OT concept is used to transport from one proba-

bility distribution to another with minimum amount of trans-

port cost [30]. With a relaxed usage of the concept, we can de-

fine OT for cross-modal alignment when we regard the acous-

tic and text feature sequences as two independent distribu-

tions [38]. By finding an optimal transport, a latent acous-

tic feature can be transformed to a space which is guided by

the context dependent linguistic information. We define the

cross-modal OT as:

LOT(Z,H)
∆
= min

γ∈
∏

(Z,H)

∑

i,j

γ (zi,hj)C (zi,hj), (5)

where γ ∈ R
Tt×Ta is a transport plan matrix with dimen-

sions Tt and Ta,
∏

(Z,H) is the set of transport plan be-

tween two distributions of text feature Z and acoustic feature

H. C (zi,hj) is a transport cost or distance function between

zi and hj , where zi is the i-th column vector of Z, and hj is

the j-th column vector of H.

In Eq. (5), for matching the feature dimension to that of

text representation, the acoustic latent feature H is defined as

a linear transformation of the conformer encoder output as:

H = FC2
(

H̃4
L

)

∈ R
Ta×dt , (6)

where FC2(.) is a linear transform function. And the text fea-

ture Z is the output of the BERT encoder, i.e., Z = ZM ∈

R
Tt×dt . Cost function C (zi,hj) is defined as a cosine dis-

tance:

C (zi,hj) = 1− cos (zi,hj) (7)

For efficiently solving Eq. (5), we seek to solve an entropy

regularized OT (EOT) defined as [39]:

LEOT(Z,H)
∆
= min

γ∈
∏

U(Z,H)

∑

i,j

γ(zi,hj)C(zi,hj)− αH(γ),

(8)

where H(.) is the entropy function of transport coupling, and

α > 0 is a regularization coefficient. The solution can be
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Fig. 2. Linguistic guided acoustic representation with OT

based matching

obtained as:

LEOT(Z,H) =
∑

i,j

γ∗ (zi,hj)C (zi,hj)− αH(γ∗), (9)

where the optimal coupling γ∗ is estimated by:

γ∗
∆
= argmin

γ∈
∏

(H,Z)

LEOT(Z,H) (10)

2.4. Cross-modal knowledge transfer

After obtaining the optimal coupling from Eq. (10), the con-

text dependent linguistic guided acoustic representation is es-

timated as:

Z̃Z←H

∆
= γ∗ ×H ∈ R

Tt×dt (11)

We summarize the transform for context dependent linguistic

guided acoustic feature extraction in Fig. 2. From this fig-

ure, we can observe that a bi-level optimization framework

involves OT matching and feature transformation. The OT

optimization is embedded within the optimization process for

cross-modal feature transformation. Through this transform,

the representation from acoustic modality space is projected

onto the text modality space, allowing for the direct estima-

tion of cross-modal discrepancy (or cross-modal alignment

loss) by:

Lalign =

Tt−1
∑

i=2

1− cos (zi, z̃i) (12)

In this formulation, the sum ranges from 2 to Tt − 1 in or-

der to exclude the ‘[CLS]’ and ‘[SEP]’ tokens from the loss

estimation (refer to Eq. (4) in text encoding).

By minimizing the alignment loss defined in Eq. (12), it

is supposed that the feature representation H is pushed to en-

code rich linguistic information. For making this representa-

tion compatible with acoustic feature for ASR, the following

transforms are designed:

Ĥ = FC3 (LN (H)) ∈ RTa×da

Ha,t = H̃4
L + s · LN

(

Ĥ
)

(13)

In Eq. (13), ‘FC3’ is a full-connected linear transform, ‘LN’

is a layer normalization operator, s is a weighting coefficient.

Based on this new representationHa,t (subscript ‘a,t’ denotes

features incorporating acoustic and text modalities), the prob-

ability prediction for recognition is:

P̃ = Softmax (FC1 (Ha,t)) (14)

In training for cross-modal knowledge transfer, given an

input acoustic feature sequence and corresponding output text

token sequence, the total loss is defined as:

L
∆
=λ·LCTC(P̃,ytoken)+(1− λ)·w·(Lalign+LEOT) (15)

where LCTC(P̃,ytoken) is CTC loss, Lalign is cross-modal

alignment loss defined in Eq. (12), and LEOT is OT loss de-

fined in Eq. (9), λ is a trade off parameter, w is a parameter to

scale the alignment loss. After the model is trained, only the

left branch of Fig. 1 is kept for ASR inference.

3. EXPERIMENTS

In this section, we evaluate our proposed cross-modal align-

ment and knowledge transfer model on the ASR task to deter-

mine whether the new acoustic representation guided by the

linguistic features from the PLM can improve ASR perfor-

mance or not.

3.1. Data corpus and feature process

Our experiments are carried out on an open source Mandarin

speech corpus AISHELL-1 which includes speech recorded

from 400 speakers [40]. In our experiments, the corpus was

divided into three sets, i.e., a training set with 340 speak-

ers (150 hours), a development (or validation) set with 40

speakers (10 hours), and a test set with 20 speakers (5 hours).

In training, we applied speed perturbation with factors of 0.9

and 1.1 for data augmentation the same as used in the baseline

system for AISHELL-1 corpus [40]. The input feature vector

for the deep model network is composed of two compo-

nents, i.e., 80-dimensional log Mel-filter bank features, and

3-dimensional fundamental frequency related features (F0,

delta F0 and delta delta F0). These features are computed

with a 25ms window size and a 10ms shift.

3.2. Model implementation

As showed in Fig. 1, before the speech features are sent to the

acoustic encoder, a CNN transform and subsampling process

module is applied. This CNN subsampling module is con-

sisted of two 2D convolutional blocks (256 channels, kernel

size 3, and stride 2, with ReLU activation function for each).

In the acoustic encoder blocks, L = 16 conformer blocks

are used and each is with a series of computations defined

in Eq. (2). Moreover, in the conformer block, convolutional



kernel size is 15, attention dimension is 256, attention head

is 4, and the dimension of FFN is 2048. The dimension of

the feature output of the conformer encoder is da = 256. In

text processing blocks with Eq. (4), the ‘bert-base-chinese’

from huggingface is used in the BERT model [42]. In this

BERT model, there are M = 12 transformer encoders, to-

ken size is 21128, and the dimension of the final text feature

representation is dt = 768. In order to match feature dimen-

sions between acoustic and text modalities, the linear trans-

form ‘FC2’ in Fig. 1 is with size of 768 ∗ 256 weight matrix

(to transform from acoustic feature with dimension da = 256
to text feature with dimension dt = 768), and ‘FC3’ is used to

transform back (with matrix size of 256 ∗ 768) to the feature

size of acoustic space. In AISHELL-1, there are only 4230

unique characters. By using Chinese BERT tokenizer model

on AISHELL-1 text data, token sequences are obtained for

supervised model training, and only 4281 unique tokens ap-

peared among the 21128 token-based vocabulary size of Chi-

nese BERT model. Based on this information, ‘FC1’ used

for class probability prediction in Eqs. (3) and (14) is a lin-

ear transform to convert an acoustic feature vector to class

prediction probability logits with length of 4282 (one addi-

tional token ‘BLK’ used in CTC). Several hyper-parameters

are used in the model, in this study we fixed their values dur-

ing experiments as: EOT regularization parameter α = 0.2 in

Eq. (9), weighting coefficient s = 1.0 in Eq. (13), scale pa-

rameter w = 1.0 and alignment trade off parameter λ = 0.3
in Eq. (15).

Adam optimizer [41] is used with a learning rate (initial

with 0.001) schedule with 20,000 warm-up steps. The model

was trained for 130 epochs, and the final model used for eval-

uation was obtained by averaging models from the last 10

epochs. The performance was evaluated based on character

error rate (CER).

3.3. Results

After the model is trained, only the left branch (blocks in

dashed red box in Fig. 1) is used for ASR, i.e., CTC based

decoder is used in speech recognition. In addition, we only

used CTC greedy search in decoding, the results are showed

in table 1. The results of baseline system and several state-of-

the-art systems which integrate BERT for linguistic knowl-

edge transfer are also showed in Table 1 for comparison. In

this table, the ‘Conformer+CTC’ represents the baseline sys-

tem, which was trained using CTC loss without utilization of

an external PLM for linguistic information transfer. ‘Con-

former+CTC/AED’ denotes a hybrid CTC/AED ASR sys-

tem [4, 5, 6] which used a transformer decoder with atten-

tion to text representation during model training, and after

the model is trained, only the conformer encoder module is

used for speech recognition (the results are our implementa-

tion based on [43]). The other systems in comparison are all

based on integrating acoustic and linguistic features for ASR.

Table 1. ASR performance on AISHELL-1 coprus, CER (%).

Methods dev set test set

Conformer+CTC (Baseline) 5.53 6.05

Conformer+CTC/AED ([6, 43]) 4.61 5.06

NAR-BERT-ASR ([23]) 4.90 5.50

LASO with BERT ([21]) 5.20 5.80

KT-RL-ATT ([17]) 4.38 4.73

Wav2vec-BERT ([22]) 4.10 4.39

ConformerAdpt+CTC-OT-BERT 3.96 4.27

Table 2. Ablation experiments, CER (%).

ConformerAdpt+CTC 5.64 6.24

Conformer+CTC-OT-BERT 4.33 4.79

Specifically, they all employed the BERT model for linguistic

knowledge transfer. In addition, some of them (e.g., ‘KT-RL-

ATT’ [17], and ‘Wav2vec-BERT’ [22]) even took pretrained

acoustic model (from wav2vec2.0 [14]) and PLM for knowl-

edge transfer. Based on the information in this table, it is

evident that incorporating cross-modal linguistic knowledge

transfer during model training to enable the acoustic encoder

to learn rich linguistic information contributes to the improve-

ment of ASR performance. Our proposed cross-modal knowl-

edge transfer, based on OT, yields competitive results. Please

note that different systems were implemented with distinct

model architectures and training procedures.

3.4. Ablation study

In our proposed model framework, two innovations are intro-

duced, the first one is a cross-modal neural adapter (repre-

sented by gray blocks in Fig. 1), and the second one is the use

of OT matching for cross-modal alignment. It is important to

determine the contribution of each innovation. We conducted

two additional experiments. The first involved attaching the

neural adapter to the original conformer-based acoustic en-

coder and training the system using CTC-based loss only.

In the second experiment, we trained the system with both

CTC and cross-modal alignment losses, but without attaching

the adapter to the original conformer-based acoustic encoder.

The results are shown in Table 2. In this table, the entry la-

beled ‘ConformerAdpt+CTC’ corresponds to the branch en-

closed within the dashed red box in Fig. 1. The performance

is even worse than that of the ‘Conformer+CTC (baseline)’

(refer to table 1). This indicates that using only the con-

former with an adapter architecture, without OT-based cross-

modal transfer learning, does not yield satisfactory results.

‘Conformer+CTC-OT-BERT’ indicates that the adapter does

not connect to the conformer encoder for feature represen-

tation, despite the utilization of OT-based cross-modal trans-

fer learning in model learning. Based on these results, we

can observe that the performance is quite satisfactory, likely



due to the sharing of the conformer encoder during cross-

modal learning. Furthermore, by examining the results of

‘ConformerAdpt+CTC-OT-BERT’ in table 1, we can observe

that explicitly incorporating the adapter for linguistic feature

extraction further enhances the performance.

4. CONCLUSION

In this study, we introduced a novel cross-modal alignment

and knowledge transfer model for ASR leveraging the con-

cept of OT. In the model, an OT matching module was em-

ployed to align the acoustic feature sequence (from acous-

tic modality) with linguistic feature sequence (from the text

modality). Using the obtained alignment, a transport plan was

derived to transform the latent acoustic features into the text

modality space, facilitating sequence matching. Additionally,

we designed a cross-modal neural adapter to integrate lin-

guistic knowledge-guided acoustic feature with the original

acoustic features for ASR. Our experimental results confirm

the effectiveness of linguistic knowledge transfer in enhanc-

ing ASR performance.

Model training involves several hyper-parameters that

play crucial roles in cross-modal knowledge transfer for per-

formance improvement. In our paper, we conducted partial

investigations on their value ranges, which resulted in fairly

good performance. In our future work, we plan to exten-

sively explore the impact of these hyper-parameters on ASR

performance through rigorous experimentation.
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