:::
Recommender systems are vital ingredients for many e-commerce services. In the literature, two of the most popular approaches are based on factorization and graph-based models; the former approach captures user preferences by factorizing the observed direct interactions between users and items, and the latter extracts indirect preferences from the graphs constructed by user-item interactions. In this paper we present HOP-Rec , a uni ed and e cient method that incorporates the two approaches. The proposed method in- volves random sur ng on a graph to harvest high-order information among neighborhood items for each user. Instead of factorizing a transition matrix, our method introduces a con dence weighting parameter to simulate all high-order information simultaneously, for which we maintain a sparse user-item interaction matrix and enrich the matrix for each user using random walks. Experimental results show that our approach signi cantly outperforms the state of the art on a range of large-scale real-world datasets.
In this paper, we propose a smartphone-based hearing assistive system (termed SmartHear) to facilitate speech recognition for various target users who could benefit from enhanced listening clarity in the classroom. The SmartHear system consists of transmitter and receiver devices (e.g., smartphone and Bluetooth headset) for voice transmission, and an Android mobile application that controls and connects the different devices via Bluetooth or WiFi technology. The wireless transmission of voice signals between devices overcomes the reverberation and ambient noise effects in the classroom. The main functionalities of SmartHear include: 1) configurable transmitter/receiver assignment, to allow flexible designation of transmitter/receiver roles; 2) advanced noise-reduction techniques; 3) audio recording; and 4) voice-to-text conversion, to give students visual text aid. All the functions are implemented as a mobile application with an easy-to-navigate user interface. Experiments show the effectiveness of the noise-reduction schemes at low signal-to-noise ratios (SNR) in terms of standard speech perception and quality indices, and show the effectiveness of SmartHear in maintaining voice-to-text conversion accuracy regardless of the distance between the speaker and listener. Future applications of SmartHear are also discussed.
This paper proposes an item concept embedding (ICE) framework to model item concepts via textual information. Specifically, in the proposed framework there are two stages: graph construction and embedding learning. In the first stage, we propose a generalized network construction method to build a network involving heterogeneous nodes and a mixture of both homogeneous and heterogeneous relations. The second stage leverages the concept of neighborhood proximity to learn the embeddings of both items and words. With the proposed carefully designed ICE networks, the resulting embedding facilitates both homogeneous and heterogeneous retrieval, including item-to-item and word-to-item retrieval. Moreover, as a distributed embedding approach, the proposed ICE approach not only generates related retrieval results but also delivers more diverse results than traditional keyword-matching-based approaches. As our experiments on two real-world datasets show, ICE encodes useful textual information and thus outperforms traditional methods in various item classification and retrieval tasks.
Hearing-impaired patients have limited hearing dynamic range for speech perception, which partially accounts for their poor speech understanding abilities, particularly in noise. Wide dynamic range compression aims to compress speech signal into the usable hearing dynamic range of hearing-impaired listeners; however, it normally uses a static compression based strategy. This work proposed a strategy to continuously adjust the envelope compression ratio for speech processing in cochlear implants. This adaptive envelope compression (AEC) strategy aims to keep the compression processing as close to linear as possible, while still confine the compressed amplitude envelope within the pre-set dynamic range. Vocoder simulation experiments showed that, when narrowed down to a small dynamic range, the intelligibility of AEC-processed sentences was significantly better than those processed by static envelope compression. This makes the proposed AEC strategy a promising way to improve speech recognition performance for implanted patients in the future.
The Gaussian mixture model (GMM)-based method has dominated the field of voice conversion (VC) for last decade. However, the converted spectra are excessively smoothed and thus produce muffled converted sound. In this study, we improve the speech quality by enhancing the dependency between the source (natural sound) and converted feature vectors (converted sound). It is believed that enhancing this dependency can make the converted sound closer to the natural sound. To this end, we propose an integrated maximum a posteriori and mutual information (MAPMI) criterion for parameter generation on spectral conversion. Experimental results demonstrate that the quality of converted speech by the proposed MAPMI method outperforms that by the conventional method in terms of formal listening test.
Use of a linear projection (LP) function to transform multiple sets of acoustic models into a single set of acoustic models is proposed for characterizing testing environments for robust automatic speech recognition. The LP function is an extension of the linear regression (LR) function used in maximum likelihood linear regression (MLLR) and maximum a posteriori linear regression (MAPLR) by incorporating local information in the ensemble acoustic space to enhance the environment modeling capacity. To estimate the nuisance parameters of the LP function, we developed maximum likelihood LP (MLLP) and maximum a posteriori LP (MAPLP) and derived a set of integrated prior (IP) densities for MAPLP. The IP densities integrate multiple knowledge sources from the training set, previously seen speech data, current utterance, and a prepared tree structure. We evaluated the proposed MLLP and MAPLP on the Aurora-2 database in an unsupervised model adaptation manner. Experimental results show that the LP function outperforms the LR function with both ML- and MAP-based estimates over different test conditions. Moreover, because the MAP-based estimate can handle over-fittings well, MAPLP has clear improvements over MLLP. Compared to the baseline result, MAPLP provides a significant 10.99% word error rate reduction.