:::
Unconstrained video-based face recognition is a challenging problem due to significant within-video variations caused by pose, occlusion and blur. To tackle this problem, an effective idea is to propagate the identity from high-quality faces to low-quality ones through contextual connections, which are constructed based on context such as body appearance. However, previous methods have often propagated erroneous information due to lack of uncertainty modeling of the noisy contextual connections. In this paper, we propose the Uncertainty-Gated Graph (UGG), which conducts graph-based identity propagation between tracklets, which are represented by nodes in a graph. UGG explicitly models the uncertainty of the contextual connections by adaptively updating the weights of the edge gates according to the identity distributions of the nodes during inference. UGG is a generic graphical model that can be applied at only inference time or with end-to-end training. We demonstrate the effectiveness of UGG with state-of-the-art results in the recently released challenging Cast Search in Movies and IARPA Janus Surveillance Video Benchmark dataset.
Image deblurring aims to restore the latent sharp images from the corresponding blurred ones. In this paper, we present an unsupervised method for domain-specific single-image deblurring based on disentangled representations. The disentanglement is achieved by splitting the content and blur features in a blurred image using content encoders and blur encoders. We enforce a KL divergence loss to regularize the distribution range of extracted blur attributes such that little content information is contained. Meanwhile, to handle the unpaired training data, a blurring branch and the cycle-consistency loss are added to guarantee that the content structures of the deblurred results match the original images. We also add an adversarial loss on deblurred results to generate visually realistic images and a perceptual loss to further mitigate the artifacts. We perform extensive experiments on the tasks of face and text deblurring using both synthetic datasets and real images, and achieve improved results compared to recent state-of-the-art deblurring methods.
Covariates are factors that have a debilitating influence on face verification performance. In this paper, we comprehensively study two covariate related problems for unconstrained face verification: first, how covariates affect the performance of deep neural networks on the large-scale unconstrained face verification problem; second, how to utilize covariates to improve verification performance. To study the first problem, we implement five state-of-the-art deep convolutional networks and evaluate them on three challenging covariates datasets. In total, seven covariates are considered: pose (yaw and roll), age, facial hair, gender, indoor/outdoor, occlusion (nose and mouth visibility, and forehead visibility), and skin tone. We first report the performance of each individual network on the overall protocol and use the score-level fusion method to analyze each covariate. Some of the results confirm and extend the findings of previous studies, and others are new findings that were rarely mentioned previously or did not show consistent trends. For the second problem, we demonstrate that with the assistance of gender information, the quality of a precurated noisy large-scale face dataset for face recognition can be further improved. After retraining the face recognition model using the curated data, performance improvement is observed at low false acceptance rates.
Customer reviews on platforms such as TripAdvisor and Amazon provide rich information about the ways that people convey sentiment on certain domains. Given these kinds of user reviews, this paper proposes UGSD, a representation learning framework for constructing domain-specific sentiment dictionaries from online customer reviews, in which we leverage the relationship between user-generated reviews and the ratings of the reviews to associate the reviewer sentiment with certain entities. The proposed framework has the following three main advantages. First, no additional annotations of words or external dictionaries are needed for the proposed framework; the only resources needed are the review texts and entity ratings. Second, the framework is applicable across a variety of user-generated content from different domains to construct domain-specific sentiment dictionaries. Finally, each word in the constructed dictionary is associated with a low-dimensional dense representation and a degree of relatedness to a certain rating, which enable us to obtain more fine-grained dictionaries and enhance the application scalability of the constructed dictionaries as the word representations can be adopted for various tasks or applications, such as entity ranking and dictionary expansion. The experimental results on three real-world datasets show that the framework is effective in constructing high-quality domain-specific sentiment dictionaries from customer reviews.
A catastrophe equity put (CatEPut) is constructed to recapitalize an insurance company that suffers huge compensation payouts due to catastrophic events (CEs). The company can exercise its CatEPut to sell its stock to the counterparty at a predetermined price when its accumulated loss due to CEs exceeds a predetermined threshold and its own stock price falls below the strike price. Much literature considers the evaluations of a CatEPut that can only be exercised at maturity; however, most CatEPuts can be exercised early so the company can receive timely funding. This paper adopts lattice approaches to evaluate CatEPuts with early exercise features. To solve the combinatorial exposition problem due to the trigger of CatEPuts’ accumulated loss, our method reduces the possible number of accumulated losses by taking advantage of the closeness of integral additions. We also identify and alleviate a new type of nonlinearity error that yields unstable numerical pricing results by adjusting the lattice structure. We provide a rigorous mathematical proof to show how the proposed lattice can be constructed under a mild condition. Comprehensive numerical experiments are also given to demonstrate the robustness and efficiency of our lattice.
Recommender systems are vital ingredients for many e-commerce services. In the literature, two of the most popular approaches are based on factorization and graph-based models; the former approach captures user preferences by factorizing the observed direct interactions between users and items, and the latter extracts indirect preferences from the graphs constructed by user-item interactions. In this paper we present HOP-Rec , a uni ed and e cient method that incorporates the two approaches. The proposed method in- volves random sur ng on a graph to harvest high-order information among neighborhood items for each user. Instead of factorizing a transition matrix, our method introduces a con dence weighting parameter to simulate all high-order information simultaneously, for which we maintain a sparse user-item interaction matrix and enrich the matrix for each user using random walks. Experimental results show that our approach signi cantly outperforms the state of the art on a range of large-scale real-world datasets.
In this paper, we propose a smartphone-based hearing assistive system (termed SmartHear) to facilitate speech recognition for various target users who could benefit from enhanced listening clarity in the classroom. The SmartHear system consists of transmitter and receiver devices (e.g., smartphone and Bluetooth headset) for voice transmission, and an Android mobile application that controls and connects the different devices via Bluetooth or WiFi technology. The wireless transmission of voice signals between devices overcomes the reverberation and ambient noise effects in the classroom. The main functionalities of SmartHear include: 1) configurable transmitter/receiver assignment, to allow flexible designation of transmitter/receiver roles; 2) advanced noise-reduction techniques; 3) audio recording; and 4) voice-to-text conversion, to give students visual text aid. All the functions are implemented as a mobile application with an easy-to-navigate user interface. Experiments show the effectiveness of the noise-reduction schemes at low signal-to-noise ratios (SNR) in terms of standard speech perception and quality indices, and show the effectiveness of SmartHear in maintaining voice-to-text conversion accuracy regardless of the distance between the speaker and listener. Future applications of SmartHear are also discussed.
This paper proposes an item concept embedding (ICE) framework to model item concepts via textual information. Specifically, in the proposed framework there are two stages: graph construction and embedding learning. In the first stage, we propose a generalized network construction method to build a network involving heterogeneous nodes and a mixture of both homogeneous and heterogeneous relations. The second stage leverages the concept of neighborhood proximity to learn the embeddings of both items and words. With the proposed carefully designed ICE networks, the resulting embedding facilitates both homogeneous and heterogeneous retrieval, including item-to-item and word-to-item retrieval. Moreover, as a distributed embedding approach, the proposed ICE approach not only generates related retrieval results but also delivers more diverse results than traditional keyword-matching-based approaches. As our experiments on two real-world datasets show, ICE encodes useful textual information and thus outperforms traditional methods in various item classification and retrieval tasks.
Hearing-impaired patients have limited hearing dynamic range for speech perception, which partially accounts for their poor speech understanding abilities, particularly in noise. Wide dynamic range compression aims to compress speech signal into the usable hearing dynamic range of hearing-impaired listeners; however, it normally uses a static compression based strategy. This work proposed a strategy to continuously adjust the envelope compression ratio for speech processing in cochlear implants. This adaptive envelope compression (AEC) strategy aims to keep the compression processing as close to linear as possible, while still confine the compressed amplitude envelope within the pre-set dynamic range. Vocoder simulation experiments showed that, when narrowed down to a small dynamic range, the intelligibility of AEC-processed sentences was significantly better than those processed by static envelope compression. This makes the proposed AEC strategy a promising way to improve speech recognition performance for implanted patients in the future.
The Gaussian mixture model (GMM)-based method has dominated the field of voice conversion (VC) for last decade. However, the converted spectra are excessively smoothed and thus produce muffled converted sound. In this study, we improve the speech quality by enhancing the dependency between the source (natural sound) and converted feature vectors (converted sound). It is believed that enhancing this dependency can make the converted sound closer to the natural sound. To this end, we propose an integrated maximum a posteriori and mutual information (MAPMI) criterion for parameter generation on spectral conversion. Experimental results demonstrate that the quality of converted speech by the proposed MAPMI method outperforms that by the conventional method in terms of formal listening test.